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Abstract

This study investigated replicating six generations of glasshouse-based flowering date selection
in wild radish (Raphanus raphanistrum L.) using an adaptation of the population model
SOMER (Spatial Orientated Modelling of Evolutionary Resistance). This individual-based
model was chosen because it could be altered to contain varying numbers of genes, along with
varying levels of environmental influence on the phenotype (namely the heritability). Accurate
replication of six generations of genetic change that had occurred in a previous glasshouse-
based selection was achieved, without intermediate adjustments. This study found that multiple
copies of just two genes were required to reproduce the polygenic flowering time adaptations
demonstrated in that previous research. The model included major effect type M1 genes, with
linkage and crossing over, andminor effect typeM2 genes undergoing independent assortment.
Within the model, transmissibility (heritability of each gene type) was parameterized at 0.60 for
the M1 genes and 0.45 for the M2 genes. The serviceable parameterization of the genetics of
flowering in R. raphanistrumwithin a population model means that simulated examinations of
the effects of external weed control on flowering time adaptations are now more feasible. An
accurate and simplifiedMendelian-basedmodel replicating the adaptive shifts of flowering time
that is controlled by a complex array of genes is useful in predicting life-cycle adaptations to
evade weed control measures such as harvest weed seed control, which apply intense adaptive
selections on traits that affect seed retention at harvest, including flowering time.

Introduction

Herbicide-resistant (HR) weeds pose the greatest threat to modern food production globally.
Despite the adoption of multiple strategies for control of HR weeds, the rate of increase in new
HR weed biotypes globally continues to grow (Delye et al. 2013; Gorddard et al. 1996;
Heap 2023). To mitigate the selection of multiple HR weed biotypes, agricultural systems
employ a range of non-herbicidal weed control tactics targeted at specific timings of the weed’s
life cycle.

Evolutionary theory suggests that recurrent management practices will select for traits in
weeds that improve survival and reproduction. Similar to herbicide resistance evolving as a
consequence of herbicide overreliance, weeds also have a long history of amending their life
cycles to evade nonchemical weed control practices (Barrett 1983). Life-cycle adaptations
include temporal mimicry of the crop’s germination, growth, and seed set phenology (Barrett
1983), plus the physical mimicry of the crop’s seed color, shape, and size (Baker 1974; Vigueira
et al. 2013). These adaptations enable weeds to more successfully grow and reproduce within a
crop field.

In response to the ongoing evolution of multiple herbicide resistance in weed populations,
harvest weed seed control (HWSC) was developed to capture or destroy weed seeds during crop
harvest (Walsh et al. 2022). The various HWSC techniques target weeds that have survived
herbicide applications earlier in the season and intercept seeds retained above the cutting height
of the harvester before they enter the soil seedbank. Therefore, HWSC reduces the fecundity and
seed dispersal of HR weed biotypes (Somerville et al. 2018). However, the long-term success of
HWSC is dependent on the continuing opportunity to capture weed seeds at harvest over
multiple generations (Norsworthy et al. 2016; Walsh et al. 2022).

To evade capture, weeds can adapt to flower earlier in the growing season, thereby increasing
the potential for weed seed shedding before crop harvest. Weeds typically contain significant
standing genetic variability in flowering time traits (Cleland et al. 2007; Simpson and Dean
2002). This variability is particularly evident in wild radish (Raphanus raphanistrum L.)
populations (Ashworth et al. 2016). In this species, flowering time adaptation could confer an
ability to shed seeds earlier and thereby evade seed capture at harvest. However, earlier flowering

https://doi.org/10.1017/wsc.2023.76 Published online by Cambridge University Press

https://www.cambridge.org/wsc
https://doi.org/10.1017/wsc.2023.76
mailto:mike.ashworth@uwa.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6207-6858
https://orcid.org/0000-0002-9141-7404
https://orcid.org/0000-0002-2659-2265
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/wsc.2023.76&domain=pdf
https://doi.org/10.1017/wsc.2023.76


can come at a cost to the plant. Plants that flower earlier in the
season have less time to grow vegetatively, making them likely to be
less competitive against crops and produce fewer seeds (Ashworth
et al. 2016).

Enhanced knowledge and understanding are needed to predict
the potential effects of future polygenic changes in weed
populations. Accordingly, the aim of this study was to build a
genetic model to replicate induced changes to flowering time in R.
raphanistrum. The modeling will simulate individual Mendelian-
based genetics (with crossing over and environmental effects on
expression), aiming to replicate six generations of glasshouse-
based results reported in Ashworth et al. (2016), without
intermediate adjustment.

Materials and Methods

Model Design

The SOMER (Spatial Orientated Modelling of Evolutionary
Resistance) model adapted here had previously used genetic
change to predict herbicide resistance (Somerville and Renton
2015). In this paper, polygenic change in days to first flower (DFF)
is investigated. Therefore, the herein newly adapted model has
been renamed SOMEF (Spatially Orientated Model of
Evolutionary Flowering). This renaming is somewhat presump-
tive, as there is no spatial component used here, because we
replicated a glasshouse study.

DFF

The glasshouse study of Ashworth et al. (2016) is used here as a
template to parameterize DFF in R. raphanistrum. That detailed
study was chosen because it contained records of data spanning a
wide range of genetic change. In addition, procedures were
followed in that study to minimize environmental influence on
DFF, meaning that the observed phenotypic results may better
reflect the underlying genotypes. Different combinations of
genetics were trialled within SOMEF, with the aim of building a
model capable of replicating (without intermediate adjustment)
eight generations of phenotypic changes reported in Ashworth
et al. (2016).

Flowering time–related studies often express results in relation
to growing degree-days (GDD), which allows comparisons across
different environments. The effect of naturally occurring changes
in day length in the sequential, out of growing season studies in the
glasshouse experiments (Ashworth et al. 2016) were accounted for
in that study by using GDD to assess flowering date. However, the
current study required the use of temporal reproductive data in
order to fit the temporal design within SOMER (Somerville and
Renton 2015), meaning that DFF was needed within SOMEF as
the unit of measure. Original records from the glasshouse study
were available, which included the data for days required for
the initiation of flowering. Adjustments were needed to account
for the different growing seasons used in that study, with
parameterization based on the same climatic conditions as the
glasshouse study. Fortunately, two datasets from southernWestern
Australia were enabled (see Supplementary Material) conversion
of the glasshouse data to a DFF unit of measure that would
replicate the weed R. raphanistrum germinating within a southern
Australia autumn-sown crop. This relationship enabled the use of
the GDD in Ashworth et al. (2016) to estimate DFF and to thereby
predict fecundity of individuals throughout the temporal growing
season (used within SOMEF).

The Genes of Days to Flowering

The aim here was to build a model with a manageable number of
genes influencing flowering date. These modeled genes are
arbitrarily labeled M1 and M2. The modeled genes were assumed
to act in a semidominant way within SOMEF. Semidominance was
chosen because it produces a more diverse pool of phenotypes,
meaning that SOMEF would be better at replicating a polygenic
characteristic that is, in reality, under the control of hundreds of
genes (Nie et al. 2016).

M1 and M2 Genes

Due to the complex nature of the genetics behind DFF (Nie et al.
2016), it was impractical to attempt to replicate these genetics
exactly within an individual-based model. Instead, the preexisting
Mendelian-based genetic inheritance within the SOMER model
(Somerville and Renton 2015) was used, which was expanded
herein to contain a manageable number of duplicated genes. To
encompass the large range of values in the original DFF data
(Ashworth et al. 2016) while maintaining model simplicity, it was
necessary to use three copies each of just two types of genes.

The simulation genes created were (1) linked type M1 genes
that each had a major effect on the flowering date and (2) unlinked
type M2 genes that had a minor effect on the flowering date. The
large effect of the M1 genes was included to allow coverage of the
range in DFF (28–135 d) seen in Ashworth et al. (2016), whereas
the M2 genes were designed to fill the gaps in the phenotypic range
generated by using the major effect M1 genes. Although the M2
genes behaved differently from the M1 genes during reproduction,
the R code (R Core Team 2008) was written to ensure that the
linkages between the M1 genes (those that did not cross over) were
maintained during meiosis. In addition, haploid M2 genetic
combinations created by each plant atmeiosis are retained together
in the same ovum (and in the same pollen grain) as haploid M1
genetic combinations from the same plant. This was incorporated
into the modeling and meant that within SOMEF no single ovum
could be pollinated with M1 genes from one plant and M2 genes
from another plant. For reproductive purposes, the genotypes were
kept distinct (e.g., AaAaAa ≠ AAAaaa during meiosis).
Notwithstanding this distinction during breeding and assuming
equal effects for the same value of M1 alleles, the values of the
diploid genotypes on flowering dates could be expressed more
simply by counting the number of semidominant M1 alleles (with
similar treatment of the M2 alleles). For both types of genes,
minimal DFF were assumed to be due to the absence of any
semidominant (uppercase type) alleles.

Crossing Over

Genetic recombination within this modeling was assumed to be
“crossing over,” in which genetic material moves from one
chromosome to another during meiosis. Crossing over was
investigated as a method of creating new genetic combinations
that would be phenotypically new and somewhat stable in the new
populations, while allowing for further genetic change under more
vigorous selection. Four extra semidominant M1 alleles were
assumed capable of being sequentially added via crossing over (two
per chromosome) to generate plants with up to 10 (5 × 2)
semidominant M1 alleles. Interactions between crossing over
events and the number of recessive M1 alleles were ignored; any
number or position of recessive M1 alleles was assumed to result in
no change in the crossing over frequency or on the weed’s DFF.
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Heritability of Genetic Traits

This study assumed that the mean phenotype equaled the mean
genotype for each population, and that environmental effects were
random and normally distributed. Heritability between each pair
of temporally adjacent generations was calculated from the original
glasshouse data, where narrow sense heritability (h2) was
calculated from average phenotypic measurements of the parent
(P0) and offspring (P1) generations (Equation 1):

h2 ¼ meanðP0Þ �meanðP1Þ
meanðP0Þ �meanðselection from P0Þ

[1]

An incorporation of heritability was needed within SOMEF, as
individual plant phenotypes (Pi) were used for selection. A new
term, “transmissibility” (T2), is introduced here. Transmissibility
describes the degree of influence of change in each type of gene on
the modeled plant’s phenotype. A reworking here of Equation 1
(using the abovementioned assumptions) yielded Equation 2.
Transmissibility (T2) was derived for the M1 and M2 genes by
using Equation 2 and iteration.

Pi ¼ meanðP0Þ þ ½Gi �meanðP0Þ� � T2 1þ eð Þ [2]

Equation 2 was needed so that each plant’s genotype (Gi) could be
used to stochastically assign it a phenotype (Pi). These phenotypes
were then used as the basis for the plant’s selection to reproduce.
The best construction of Equation 2 was chosen as the one giving
the best fit to the data set from Ashworth et al. (2016). The random
environmental factor (e) in Equation 2 was generated from a
standard normal distribution. The constant T2 was calculated via
iteration for each gene (M1 and M2) to give the best fit to the data.
This particular construction of Equation 2 incorporates an
influence whereby larger intergenerational change increases the
phenotypic variability.

Model Parameterization

This investigation looked at the number and strength of the major
effect, linked M1 genes, and their crossing over frequency. The
minor unlinked M2 genes were also investigated, as was the
transmissibility (T2) of both the M1 and M2 genes.

Biologically based values within the ranges identified for each
variable were simultaneously trialed within concentric program
loops. Each simulation began with a randomly selected G0

population (as defined in Ashworth et al. [2016]), and used R.
raphanistrum life cycle, breeding, and selection parameters
replicating conditions in the same original glasshouse study.
Two hundred replications were averaged to reduce environmental
variability in the results. Best fit to the original data was determined
simultaneously and equally for early flowering date–selected EF1,
EF3, EF4, and EF5 populations and long flowering time–selected
LF1 and LF3 populations (as defined in Ashworth et al. [2016]),
using least-square regression analysis in R (R Core Team 2008).
The modeling implemented allowed no intergenerational adjust-
ments to any variables.

Results and Discussion

The successful replication of six generations of glasshouse-based
flowering date selection was achieved in an individual-based

model using crossing over and Mendelian-based inheritance of
only two types of genes. This simulation was achieved even
though the true genetics controlling the initiation of flowering in
R. raphanistrum is complex, controlled by more than 100 genes
(Nie et al. 2016) and influenced by environmental cues (Ehrlén
2015). The use of just two types of semidominant genes in this
model in no way replicates the complex genetics involved in
flowering initiation. However, this study lends support to the
concept that the exact reproduction of genetics in models is
unnecessary to successfully model individual-based inheritance
of polygenic characteristics.

The simulation of eight generations of DFF selection (six of
which were matched with the environmental conditions and data
from Ashworth et al. [2016]) was achieved, using two types of
genes: linked M1 genes with high transmissibility and unlinked
smaller-effect M2 genes with lower transmissibility (Figure 1). The
specific parameterizations required included the number and effect
size of the M1 and M2 genes, their transmissibility, and the
crossing over probabilities of the various M1 gene combinations.
Genetic combinations were chosen that gave the best fit to the data
from the glasshouse study of all the options that were trialed. Two
glasshouse-grown generations (EF2 and LF2) described in
Ashworth et al. (2016) reversed the intergenerational shifts in
DFF (Figure 1B) for reasons unknown, and therefore were not
matched with modeled data in this study.

DFF and Fecundity

Goodness of conversion from GDD data in the glasshouse study
(Ashworth et al. 2016) to southern Western Australia DFF
data was assumed, as genetically similar populations grown at
different times of the year had similar DFF after independent
mathematical conversions to autumn germination (results not
shown). Two original Western Australian data sets from Cheam
(1986) and Taghizadeh et al. (2012) were scaled so that they could
be merged (Supplementary Figure S1). A quasi-Poisson function
gave the best fit to the adjusted the best fit to the adjusted curve,
yielding Equation 3 (Akaike information criteria, AIC=2.98) using
nonlinear least-squares multiple regression:

Seeds
Plant

¼ exp �5:117þ 0:299DFF� 0:002DFF2ð Þ [3]

Equation 3 was used to calculate fitness (seeds per plant), based on
DFF for each R. raphanistrum plant in the simulation. Random
selection was then applied in the model to seeds from the
phenotypically selected plants to reflect the seed-selection criteria
used in the glasshouse study (Ashworth et al. 2016).

The Genes of Days to Flowering

A satisfactory fit to the four generations of early-flowering data
(populations EF1, EF3, EF4, and EF5) in the glasshouse study
(Ashworth et al. 2016) was possible using three, four, five, or six
pairs of linked M1 genes (along with the M2 genes described later;
results not shown). However, the wide temporal spread of the late-
selected DFF generations in the long flowering day glasshouse
study (populations LF1 and LF3) could not be duplicated using the
same linked Mendelian-based genetics for any number and
combination of these genes when starting from the same initial G0

population (results for the extensive range of non-fitting modeling
are not shown). For greatest simplicity, three pairs of diploid M1
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genes (initially adding 6 d to DFF per semidominant allele) were
utilized in the next part of this study. The second set of genes, the
M2 genes, were also fit using three pairs, with each semidominant
M2 allele causing a 3-d delay in DFF initiation.

Further expansion to the genetic modeling within SOMEF was
needed to successfully replicate the late-selected DFF data
(populations LF1 and LF3) in the glasshouse study (Ashworth
et al. 2016). Two changes to the behavior of the M1 genes were
instigated. First, there was a need to increase the impact of each
additional M1 allele on a sliding scale from 6 to 15 d per allele
(Figure 2). Second, theM1 genes, which were initially linked (all on

the same chromosome), were given the ability to undergo crossing
over, resulting in an increase in the maximum number of M1
alleles on any chromosome. Crossing over events between paired
chromosomes with similar M1 allelic strength were given an
increased probability (Table 1).

In addition, a small degree of “central tendency” was added to
the model so that the crossing over events that increased the
percentage of plants with the median DFF were slightly more likely
to occur, compared with crossing over events that reduced the
percentage of plants with median DFF (analogous to stabilizing
selection [Donohue 2002]). The crossing over probabilities

Figure 1. Goodness of fit of the modeled data (A) when compared with the recorded glasshouse data (B). Graphs show cumulative days to first flowering (DFF) adaptations in
Raphanus raphanistrum populations as a result of repeated early and late days to flowering selection. In both graphs, the basal population is the black solid line in the center, the
darker lines are the matched generations of early flowering (EF1, EF3, FE4, and EF5; colored orange), and late flowering (LF2 and LF3; colored purple), with and late flowering (LF2
and LF3), with the two unmatched generations (EF2 and LF2) shown in lighter tones. The far-left population (early flowering EF5) displays very little phenotypic variability, whereas
the far-right population (late flowering 3) is very diverse.

Figure 2. The relationship between the number of semidominant larger M1 alleles and days to first flower (DFF), needed to model the long-day selections. Note that six smaller-
effect M2 genes will add another 0 to 18 days to DFF. If each M1 allele added the same amount in the long-day selections, the relationship would be linear.
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introduced here, for creating new linkages betweenM1 genes, were
initially based on the number of possible different forms of each
genotype. However, both these initial recombination probabilities,
and their multiplicative factor were adjusted to enable results to
better match the data in the glasshouse study, thereby yielding the
crossing-over probabilities in Table 1. This expanded genetic
variability, incorporating a sliding scale and crossing over, was able
to replicate all six generations in the glasshouse study without
intermediate adjustment.

Over the short- and long-day selections, the number of M1
alleles per plant varied over the available range, from 0 up to 10,
which resulted in a large adaptative change in flowering times.
In contrast, it was desirable for the M2 alleles to be retained as
long as possible within the short-day selections, as they
smoothed gaps, rather than contributing to significant adaptive
change. Lower heritability in the M2 alleles was determined
(using regression) and resulted in less selection for the M2
alleles. The lower elimination rate of M2 alleles meant that only
three pairs were needed in the initial population, therefore
simplifying the individual-based modeling of these Mendelian-
type inheritances.

Within the glasshouse study (Ashworth et al. 2016), there
was an exceptionally high level of phenotypic change following
just five generations of selection, resulting in flowering time life-
cycle changes that were not present in the initial population of
1,000 plants (Figure 1B). Although the shorter-day selections
were easily duplicated, modeling a long delay in flowering time
using just two types of genes was only successful with the
implementation of genetic crossing over, plus a sliding scale of
effect for the predominant M1 genes. Physical limitations exist
for very early flowering; however, large diversity in flowering
can be found in R. raphanistrum, including cool-season biennial
growth (Singh et al. 2020). This biennial tendency (MBA,
personal observation, 2014) may be a factor in the requirement
for the predominant M1, genes to exhibit crossing over and a
sliding scale of effect. The effect of the sliding scale was to give a
multiplicative rather than an additive effect on flower initiation
date. This sliding scale and multiplicative effect may be
symptomatic of the long-day selections within the newly
designed SOMEF model and cannot be taken as indicative
of any true genetic changes in the glasshouse-based
R. raphanistrum populations.

Heritability

Equation 1 was used to calculate heritability values for each
selection within the glasshouse study (Ashworth et al. 2016). The
four early-flowering (EF1, EF3, EF4, and EF5) generations
replicated here had h2 values of 0.41, 1.10, 0.76, and 0.92,
respectively, with the two late-flowering generations (LF1 and LF3)
having h2 values of 0.92 and 1.45, respectively (in the glasshouse
study). The local success of Equation 2 was confirmed using
sequential applications of Equations 1 and 2 (with these h2 values
replacing T2) to intergenerational data (and assumed genotypes)
based on data from the glasshouse study (results not shown).

Within the SOMEF simulations, the closest fit was achieved
with consistent (stochastically applied) transmissibility values of
0.60 for the more strongly linked M1 genes and 0.45 for the
independently assorting weaker M2 genes. Semidominant M2
alleles were still present in simulated EF5 populations, even after
five generations of selection for early flowering.

The gene type transmissibility values givingbest fit to the data (0.6
and 0.45) were within the range of heritability (h2) calculated for the
2014 to 2016 glasshouse study data (Ashworth et al. 2016) and also
those published in other flowering time studies (Burgess et al. 2007;
Conner and Via 1993; Mazer and Schick 1991) In this study, the
modeled data fit well using consistent transmissibility (T2) values
across the eight generationsof selection,despite the typical real-world
intergenerational variability in theh2 values inAshworth et al. (2016).

The random environmental effect on phenotypic diversity
that best fit the glasshouse data (Ashworth et al. 2016) was
simulated using a new equation (Equation 2), which, as well as
introducing a new variable (T2), also had an unusual configu-
ration. Within Equation 2, a link was created so that larger
intergenerational genetic changes resulted in greater phenotypic
diversity. This resulted in increased phenotypic similarity (or a
central tendency) in populations exhibiting reduced intergener-
ational genetic change and increased phenotypic diversity when
intergenerational genetic change was high. Increased phenotypic
diversity (i.e., increased differences from the genotypes) in highly
selected populations (exposed to stressful selection criteria) may
have an advantageous biological basis. Further investigations into
a link between larger environmental effects (on phenotype) and
stress-induced epigenetic changes (Henderson and Jacobsen
2007) may be warranted.

Table 1. This table can be read similar to a Punnett square and shows the results of chromosomal crossing over of the linked larger-effect M1 alleles. Rates were
determined using concentric program loops to achieve best fita.

Haploid parental genes

0 1 2 3 4 5

(aaa) (Aaa) (AAa) (AAA) (AAAA) (AAAAA)

0
(aaa)

0 0 0.55 0.259 0 0
1,1 1,2

1
(Aaa)

0 0.5 0.235 0.259 0.259 0
0,2 0,3 2,2 2,3

2
(AAa)

0.55 0.235 0.235 0.235 0.55 0.259
1,1 0,3 1,3 1,4 3,3 3,4

3
(AAA)

0.259 0.259 0.235 0.5 0.235 0.55
1,2 2,2 1,4 2,4 2,5 4,4

4
(AAAA)

0 0.259 0.55 0.235 0.5 0
2,3 3,3 2,5 3,5

5
(AAAAA)

0 0 0.259 0.55 0 0
3,4 4,4

aThe diploid parental genes are expressed as counts of M1 alleles on their two haploid chromosomes, one chromosome presented vertically and the other horizontally. The gamete alleles within
the table are counts of M1 alleles in their haploid form after chromosomal crossing over. For example, in the shaded squares, the parental genotype “1,3” (e.g., Aaa and AAA) can generate the two
reproductive haploid chromosomes “2,2” (e.g., AaA and AAa) at a comparative rate of 0.259. These comparative rates were reduced by a factor of 10 for use in the simulations.
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This study clearly demonstrates that a complex, genetically
controlled phenotypic trait such as flowering time can be
significantly simplified and modeled to replicate measured data
(from Ashworth et al. [2016]). This modeling included a new
derived constant: “transmissibility,” useful in modeling polygenic
change. Transmissibility is designed to moderate the effect of
predicted genotypes on each plant’s phenotype, so that phenotypic
characteristics can be used for selection. Weed population
responses can be modeled by using the modeling methodology
outlined in this study, weed population responses can be modeled
to predict the rate and scale of phenotypic change in the field. For
example, genetic change in response to the repetitive use of novel
weed control tactics such as HWSC (Walsh et al. 2022). Predictions
such as those derived from using the SOMEF model can help
optimize the application of integrated weed management
programs, to ensure important weed control techniques remain
effective.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/wsc.2023.76
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