POLYTOPES WITH CENTRALLY SYMMETRIC FACES

G. C. SHEPHARD
In honour of Professor H.S. M. Coxeter
on his sixtieth birthday

Introduction. If a convex polytope P is centrally symmetric, and has the property that all its faces (of every dimension) are centrally symmetric, then P is called a zonotope. Zonotopes have many interesting properties which have been investigated by Coxeter and other authors (see (4, §2.8 and §13.8) and (5) which contains a useful bibliography). In particular, it is known (5, §3) that a zonotope is completely characterized by the fact that all its twodimensional faces are centrally symmetric. The purpose of this paper is to generalize these results, investigating the properties of polytopes all of whose j-dimensional faces are centrally symmetric for some given value of j. We shall prove four theorems, the statements of which will be given in this introductory section; proofs will appear in later sections of the paper.

For brevity we shall write d-polytope to mean a d-dimensional closed convex polytope in Euclidean space $E^{n}(n \geqslant d), j$-face to mean a (closed) j-dimensional face of such a polytope, and r-flat to mean an r-dimensional affine subspace of E^{n}. Our first theorem generalizes a result of A. D. Alexandrov (1):

Theorem 1. If every j-face of a d-polytope P is centrally symmetric, where j is some integer satisfying $2 \leqslant j \leqslant d$, then the k-faces of P are also centrally symmetric for all k such that $j \leqslant k \leqslant d$.

Here we are regarding P as a d-face of itself, so the theorem implies that, under the given conditions, P is a centrally symmetric polytope.

Let P be any given d-polytope in E^{d}, and R be any r-flat passing through the origin o. Let π_{R} denote orthogonal projection on to R, so that $\pi_{R}(P)$ is an r-polytope in R. Then since, for each j satisfying $0 \leqslant j \leqslant r-1$, the j-faces of $\pi_{R}(P)$ are the images under π_{R} of faces of P whose dimension is at least j, we deduce the following: If j and r are given integers satisfying $2 \leqslant j \leqslant r \leqslant d$, and if P is a d-polytope with centrally symmetric j-faces, then the j-faces of $\pi_{R}(P)$ are also centrally symmetric. However, for certain r-flats R we can assert much more:

Theorem 2. If every j-face of a d-polytope $P \subset E^{d}$ is centrally symmetric, where j is some integer satisfying $2 \leqslant j \leqslant d$, and R is a $(d-j+1)$-flat orthogonal to any $(j-1)$-face F^{j-1} of P, then $\pi_{R}(P)$ is a zonotope.

In the proof of this theorem we shall show that the vertices of $\pi_{R}(P)$ are the images under π_{R} of $(j-1)$-faces of P, each of which is either congruent to F^{j-1} or to the reflection of F^{j-1} in a point. In this way it can be shown that the $(d-1)$-faces of P lie in a number of "zones" analogous to the zones of faces of zonotopes.

The next theorem relates to projection on to r-flats which are not orthogonal to any face of P. Let Q represent the set of j-flats through $o \in E^{d}$ which are parallel to the j-faces of $P \subset E^{d}$ for all j satisfying $1 \leqslant j \leqslant d-1$. Then an s-flat $S(0 \leqslant s \leqslant d-1)$ through o is said to be in general position with respect to P if S meets each j-flat of Q in a flat of $\max (0, s+j-d)$ dimensions. If R is an r-flat $(1 \leqslant r \leqslant d)$, following the terminology of (8), we shall call $\pi_{R}(P)$ a regular r-projection of P if and only if the $(d-r)$-flat through o which is orthogonal to R is in general position with respect to P. (In the important special case $r=d-1$, a regular projection results if the line orthogonal to R is not parallel to any proper face of P.) The polytope P is called r-equipro$j e c t i v e$ if, for $0 \leqslant j \leqslant r-1$, the number $f_{j}\left(\pi_{R}(P)\right)$ of j-faces of $\pi_{R}(P)$ has the same value for all regular projections $\pi_{R}(P)$. For example, it is a familiar fact that every regular 2 -projection of a 3 -cube C^{3} is a hexagon, so C^{3} is 2 -equiprojective. Less familiar is the fact (which, so far as the author is aware, has not previously been mentioned in the literature) that every d-dimensional zonotope is r-equiprojective for each value of r satisfying $1 \leqslant r \leqslant d$ (compare $\mathbf{(1 0 , § 4)) . ~ I t ~ i s ~ t h i s ~ p r o p e r t y ~ o f ~ z o n o t o p e s ~ w h i c h ~ w e ~ g e n e r a l i z e . ~}$
Theorem 3. If every r-face of a d-polytope P is centrally symmetric, wherer is some integer satisfying $2 \leqslant r \leqslant d$, then P is r-equiprojective.

This theorem cannot be strengthened. If P has centrally symmetric j-faces, and $j>r$, then in general P will not be r-equiprojective. For example, the regular 24 -cell Q^{4} has centrally symmetric 3 -faces (octahedra) and so is 3 -equiprojective, a fact that is illustrated by the models of the regular 3-projections shown in (4, Plate VI). On the other hand its 2 -faces (triangles) are not centrally symmetric and it is not 2 -equiprojective since some regular 2 -projections are hexagons (see (4, Fig. 14.3c)) and others are 12 -gons.

Theorems 1 and 2 imply that if for some value of $j(2 \leqslant j \leqslant d)$ the j-faces of P are centrally symmetric, then P will be r-equiprojective for all r satisfying $j \leqslant r \leqslant d$. This is a special property of polytopes which have centrally symmetric faces, for it is not generally true that j-equiprojective polytopes are also r-equiprojective for all $r \geqslant j$. For example, if T_{1} and T_{2} are two triangles in E^{4} such that $T_{1} \cap T_{2}$ is a point in the relative interior of each triangle, then the "prism" $T_{1}+T_{2}$ (vector addition) is 2 -equiprojective because all its regular 2 -projections are hexagons, but it is not 3 -equiprojective since some of its regular 3 -projections have eight vertices and others have nine vertices.

The concept of equiprojectivity is of some intrinsic interest, since no characterization of r-equiprojective d-polytopes is known, even for $r=2, d=3$. Further, it has recently been shown ($8, \S 3 ; \mathbf{1 0}, \S 4$) that the angles of equi-
projective polytopes have interesting invariance properties. We recall that with each j-face F^{j} of a d-polytope $P(0 \leqslant j \leqslant d-1)$ is associated a well-defined real number $\phi\left(P, F^{j}\right)$ called the interior angle of P at the face F^{j}. (For a formal definition, see (8, §2).) If we sum the interior angles at all the j-faces of P, we obtain the j th angle sum of P, denoted by $\phi_{j}(P)$. This angle sum is affine invariant if $\phi_{j}(P)=\phi_{j}(T P)$ for all non-singular affine transformations T of E^{d}. It is known ($8, \S 3$) that all the angle sums $\phi_{j}(P)(0 \leqslant j \leqslant d-1)$ of P are affine invariant if and only if P is $(d-1)$-equiprojective. For example, since a 3 -cube C^{3} is 2 -equiprojective, its angle sums $\phi_{0}\left(C^{3}\right)=1, \phi_{1}\left(C^{3}\right)=3, \phi_{2}\left(C^{3}\right)=3$ are affine invariants, leading to familiar facts about the vertex angles and dihedral angles of a parallelepiped in E^{3}. Since a regular 24 -cell Q^{4} is 3 -equiprojective, all its angle sums are affine invariant; in fact, using (8, Theorem (10)) we see that $\phi_{0}\left(Q^{4}\right)=3, \phi_{1}\left(Q^{4}\right)=24, \phi_{2}\left(Q^{4}\right)=32$, and $\phi_{3}\left(Q^{4}\right)=12$. These figures enable us to calculate the interior angles of Q^{4} in a very simple manner.

If the d-polytope P is $(d-2)$-equiprojective, then it is known that its angle deficiencies are affine invariant (see (10) for the definitions and proof). In the case of polytopes with centrally symmetric faces, a more powerful assertion is possible, which is given in the final theorem:

Theorem 4. If, for some value of j satisfying $2 \leqslant j \leqslant d-1$, all the j-faces of a d-polytope P are centrally symmetric, then for any k-face F^{k} of $P(j<k \leqslant d)$, all the angle sums $\phi_{j}\left(F^{k}\right)(0 \leqslant j \leqslant k-1)$ are affine invariant.

Theorem 4 is an immediate consequence of the above assertions and of Theorem 3 applied to each k-face F^{k} of P. We shall now give proofs of the first three theorems.

Proof of Theorem 1. We begin by recalling the following classical result:
Lemma 1. If all the $(d-1)$-faces of a d-polytope $P(d \geqslant 3)$ are centrally symmetric, then P is centrally symmetric.

The first proof of this lemma was given by A. D. Alexandrov in 1933 (1) for the case $d=3$, and he states that his proof "extends easily to any number of dimensions" without giving any details. Other proofs for the case $d=3$ will be found in $(3 ; 4 ; 5)$. Here a new proof will be given for the general case, which is, even for $d=3$, simpler than each of the proofs just mentioned.

Let R be any $(d-1)$-flat in E^{d} which does not intersect the given polytope $P \subset E^{d}$. A $(d-1)$-face F^{d-1} of P will be said to be remote from R if the line segment joining any relative interior point z of F^{d-1} to $\pi_{R}(z)$ intersects the interior of P. It is clear that this definition is independent of the choice of z, and that $\pi_{R}(P)$ is the union of the images under orthogonal projection on to R of all those $(d-1)$-faces of P which are remote from R. For any F^{d-1}, the polytope $\pi_{R}\left(F^{d-1}\right) \subset \pi_{R}(P)$ is centrally symmetric, so $\pi_{R}(P)$ is the union of centrally symmetric ($d-1$)-polytopes which are non-overlapping, that is, two
such polytopes intersect in at most boundary points of each. By a theorem of Minkowski $(7, \S 6)$ this is sufficient to establish that $\pi_{R}(P)$ is centrally symmetric. Thus $\pi_{R}(P)$ is centrally symmetric for each R, and by a theorem of Blaschke and Hessenberg $(2, \S 61 ; 9)$ this implies that P is centrally symmetric. Thus the lemma is proved.

The proof of Theorem 1 now follows immediately. If the j-faces of P are centrally symmetric, then since they are the j-faces of the $(j+1)$-faces of P, the lemma shows that the $(j+1)$-faces of P are centrally symmetric. Thus $k-j$ applications of the lemma will establish that, for $j \leqslant k \leqslant d$, all the k-faces of P are centrally symmetric, and so Theorem 1 is proved.

Proof of Theorem 2. We require the following lemma:
Lemma 2. Let P be a convex polytope in E^{d} with centrally symmetric j-faces for some value of $j \geqslant 2$, and R be a $(d-j+1)$-flat perpendicular to some $(j-1)$ face F^{j-1} of P. Then if $\pi_{R}(P)$ is a $(d-j+1)$-polytope, it has the property that for $j-1 \leqslant s \leqslant d$ each of its $(s-j+1)$-faces is the image under π_{R} of some s-face of P. In particular, P is a d-polytope.

Proof. The proof is by induction on d.
If $d=j, P$ is a centrally symmetric d-polytope and $\pi_{R}(P)$ is a line segment (1-polytope). Clearly the two vertices of $\pi_{R}(P)$ (the end points of the line segment) are the images under π_{R} of F^{j-1} and of the face ${ }^{*} F^{d-1}$ which is the image of F^{j-1} under reflection in the centre of P. Hence the lemma is true in this case.

Now assume, as inductive hypothesis, that the lemma is true for polytopes in E^{d-1} with centrally symmetric j-faces for some value of j satisfying

$$
2 \leqslant j \leqslant d-1
$$

Let P be a convex polytope in E^{d} with centrally symmetric j-faces, F^{j-1} be the chosen $(j-1)$-face of P, and T be the $(j-1)$-flat containing F^{j-1} and perpendicular to the $(d-j+1)$-flat R. Let H be any $(d-j)$-flat in R which supports $\pi_{R}(P)$, contains the vertex $\pi_{R}\left(F^{j-1}\right)$, and intersects $\pi_{R}(P)$ in a ($d-j$)-face G^{d-j}. Then H is perpendicular to T, and the $(d-1)$-flat spanned by H and T supports P and so intersects P in some face $F \supset F^{j-1}$. The inductive hypothesis shows that every $(s-j+1)$-face of G^{d-j} is, for $j-1 \leqslant s \leqslant d-1$, the image under π_{R} of an s-face of F (and so, in particular, F is a $(d-1)$-face of P). Thus every vertex of G^{d-j} is the image under π_{R} of a $(j-1)$-face of P. Let F_{1}^{j-1} be one of these faces. Then repeating the above argument using $F_{1}{ }^{j-1}$ instead of F^{j-1}, and some $(d-j)$-face $G_{1}{ }^{d-j}$ of $\pi_{R}(P)$ which contains $\pi_{R}\left(F_{1}{ }^{j-1}\right)$ other than G^{d-j}, we see that the properties of G^{d-j} established above are true for $G_{1}{ }^{d-j}$ also. In particular, this shows that P contains two ($d-1$)faces which do not lie in the same $(d-1)$-flat, and so P is d-dimensional. If we now repeat the same argument $f_{d-j}\left(\pi_{R}(P)\right)$ times (once for each $(d-j)$-face
of $\pi_{R}(P)$), we see that for $j-1 \leqslant s \leqslant d-1$ every $(s-j+1)$-face of $\pi_{R}(P)$ is the image under π_{R} of some s-face of P. Finally $\pi_{R}(P)$ is the image under π_{R} of the d-polytope P, so the statement is true for $s=d$ also. Hence the induction is completed and the lemma is true generally.

Theorem 2 is now proved by noticing that every face of $\pi_{R}(P)$ whose dimension is at least 2 is the image under π_{R} of some face of P whose dimension is at least $j+1$. Thus every face of $\pi_{R}(P)$ is centrally symmetric and therefore $\pi_{R}(P)$ is a zonotope.

If G^{1} is any edge of $\pi_{R}(P)$, then the end points of G^{1} are the images under π_{R} of two $(j-1)$-faces $F_{1}{ }^{j-1}$ and $F_{2}{ }^{j-1}$ of P. These are parallel faces of the j-face F^{j} of P such that $\pi_{R}\left(F^{j}\right)=G^{1}$. Hence $F_{2}{ }^{j-1}$ is the image of $F_{1}{ }^{j-1}$ under reflection in the centre of F^{j}. Thus the $(j-1)$-faces of P that project into the vertices of $\pi_{R}(P)$ are either congruent to F^{j-1} or to the reflection of F^{j-1} in a point, as asserted in the Introduction. A typical zone on P consists of those ($d-1$)-faces which project into the $(d-j)$-faces of $\pi_{R}(P)$. In particular, we have proved that the number of $(d-1)$-faces in any zone on P is equal to the number of ($d-j$)-faces of a $(d-j+1)$-dimensional zonotope. The latter can be calculated from projective diagrams as described in (9).

Proof of Theorem 3. The following lemma corresponds to the case $r=d-1$ of the theorem:

Lemma 3. If every $(d-1)$-face of the d-polytope P is centrally symmetric, then P is $(d-1)$-equiprojective.

Proof. Since P is centrally symmetric, its ($d-1$)-faces fall into

$$
\frac{1}{2} f_{d-1}(P)=s+1
$$

parallel pairs which may be denoted by $F_{0}{ }^{d-1},{ }^{*} F_{0}{ }^{d-1} ; F_{1}{ }^{d-1},{ }^{*} F_{1}{ }^{d-1} ; \ldots$; $F_{s}{ }^{d-1},{ }^{*} F_{s}{ }^{d-1}$, where ${ }^{*} F_{i}{ }^{d-1}$ is the reflection of $F_{i}{ }^{d-1}$ in the centre of P. Each pair $F_{i}{ }^{d-1}, * F_{i}^{d-1}$ defines a unique $(d-1)$-flat U_{i} through the origin o and parallel to each of these $(d-1)$-faces. U_{0}, \ldots, U_{s} intersect the unit $(d-1)$-sphere centred at o in $s+1$ "great spheres" which form the boundaries of the spherical polytopes of a honeycomb on S^{d-1}. The interiors of these spherical polytopes will be called regions and will be denoted by J_{1}, \ldots, J_{t}. The set Q associated with P that was defined in the Introduction consists of U_{0}, \ldots, U_{s}, together with some of the intersections of these $(d-1)$-flats. From this it will be apparent that a projection $\pi_{H}(P)$ on to a $(d-1)$-flat H is regular if and only if the unit normal n of H belongs to one of the regions J_{i} (and not to any of the U_{i}). Further, as was shown in (8, §2), a j-face F^{j} of P will project into a j-face G^{j} of $\pi_{H}(P)$ if and only if n lies in a certain (open) spherical polytope on S^{d-1} bounded by parts of the $(d-1)$-flats $U_{i_{1}}, \ldots, U_{i_{k}}$ that are parallel to the $(d-1)$-faces of P incident with F^{j}. In this way we see that for all n in the same region J_{i} (or in the region antipodal to J_{i} on S^{d-1}) the corresponding regular projections
are all combinatorially equivalent; see (8, proof of (10)). Thus if n_{1} and n_{2} belong to the same region J_{i}, and H_{1} and H_{2} denote the $(d-1)$-flats with normals n_{1} and n_{2}, then $f_{j}\left(\pi_{H_{1}}(P)\right)=f_{j}\left(\pi_{H_{2}}(P)\right)$ for $0 \leqslant j \leqslant d-1$. Consequently, in order to prove the lemma, it is only necessary to show that $f_{j}\left(\pi_{H_{1}}(P)\right)=f_{j}\left(\pi_{H_{2}}(P)\right)$ when n_{1} and n_{2} belong to different regions, and it is sufficient to show that this is so when n_{1} and n_{2} belong to adjacent regions, that is, regions which are separated by exactly one of the $(d-1)$-flats, say U_{0}. Further, we may suppose without loss of generality that n_{1} and n_{2}, though lying on opposite sides of U_{0}, are arbitrarily close to one another, and their orthogonal projections on to U_{0} coincide.

Let F_{j} be any j-face of P which is not incident with $F_{0}{ }^{d-1}$ or ${ }^{*} F_{0}{ }^{d-1}$. Then, as remarked above, F^{j} will project into a j-face of $\pi_{H}(P)$ if and only if the normal n of H belongs to a certain spherical polytope Π whose boundary consists of parts of $U_{i_{1}}, \ldots, U_{i_{k}}$ (but not of U_{0}). Since n_{1} and n_{2} are separated only by U_{0}, we deduce that they both belong to $I I$ or neither does so. Thus F^{j} projects into a j-face of $\pi_{H_{1}}(P)$ and a j-face of $\pi_{H_{2}}(P)$, or does not project into a j-face of either. Hence, writing $f_{j}{ }^{(0)}\left(\pi_{H}(P)\right)$ for the number of j-faces of $\pi_{H}(P)$ that are the projections of j-faces of P which are not incident with $F_{0}{ }^{d-1}$ or ${ }^{*} F_{0}{ }^{d-1}$, we deduce that

$$
f_{j}{ }^{(0)}\left(\pi_{H_{1}}(P)\right)=f_{j}{ }^{(0)}\left(\pi_{H_{2}}(P)\right) \quad(0 \leqslant j \leqslant d-2)
$$

On the other hand, suppose F^{j} is a j-face of P and $F^{j} \subset F_{0}{ }^{d-1}$. The case $F^{j} \subset{ }^{*} F_{0}{ }^{d-1}$ can be dealt with in a similar manner. Let us choose a relative interior point of F^{j} as origin, and suppose U_{0} has the equation $\left\langle x, u_{0}\right\rangle=0$ with u_{0} chosen as the inward normal so that P lies in the half-space $\left\langle x, u_{0}\right\rangle \geqslant 0$. Let v be any vector in U_{0} such that the ($d-1$)-flat $\langle x, v\rangle=0$ supports $F_{0}{ }^{d-1}$, intersects it in F^{j}, and $F_{0}{ }^{d-1}$ lies in the half-space $\langle x, v\rangle \geqslant 0$. We shall show that F^{j} projects into a j-face of $\pi_{H_{1}}(P)$ if and only if v can be chosen to satisfy the above conditions and so that $\left\langle n_{1}, u_{0}\right\rangle \neq 0$ and $\left\langle n_{1}, v\right\rangle \neq 0$ are of opposite sign. To establish this we consider two cases:
I. Let $\left\langle n_{1}, u_{0}\right\rangle,\left\langle n_{1}, v\right\rangle$ be of opposite sign. Then define $\epsilon>0$ by the equation $\left\langle n_{1}, u_{0}+\epsilon v\right\rangle=0$. We have remarked that n_{1} may be taken arbitrarily close to U_{0} (so that $\left\langle n_{1}, u_{0}\right\rangle$ can be made arbitrarily small) and so we may suppose, without loss of generality, that $0<\epsilon<\beta / 2 \alpha$, where

$$
\begin{aligned}
& \beta=\min \left\{\left\langle x, u_{0}\right\rangle: x \in \operatorname{vert} P \backslash \text { vert } F_{0}^{d-1}\right\}>0, \\
& \alpha=\max \left\{|\langle x, v\rangle|: x \in \operatorname{vert} P \backslash \text { vert } F_{0}^{d-1}\right\} \geqslant 0 .
\end{aligned}
$$

Here vert P means the set of vertices of P, and $\beta / 2 \alpha$ is to be interpreted as $+\infty$ if $\alpha=0$. Then Grünbaum has shown (6, Theorem 3.1.5) that

$$
\left\langle x, u_{0}+\epsilon \nu\right\rangle=0
$$

is a supporting $(d-1)$-flat of P which intersects P in F^{j}. As this supporting hyperplane also contains n_{1}, we deduce that F^{j} projects into a j-face of $\pi_{H_{1}}(P)$, as was to be shown.
II. Let F^{j} be such that, with u_{0} defined as above, $\left\langle n_{1}, u_{0}\right\rangle$ and $\left\langle n_{1}, v\right\rangle$ have the same sign for all $v \in U_{0}$ such that the ($d-1$)-flat $\langle x, v\rangle=0$ supports F_{0}^{d-1}, intersects $F_{0}{ }^{d-1}$ in F^{j}, and $F_{0}{ }^{d-1}$ lies in the half-space $\langle x, v\rangle \geqslant 0$. Let $\pi_{H_{1}}\left(F^{j}\right)=G^{j}$, and H^{*} be any $(d-2)$-flat in H_{1} through G^{j}. If H is the $(d-1)$-flat spanned by H^{*} and n_{1}, then we shall show that H cannot support P for any choice of H^{*}, and so G^{j} is not a j-face of $\pi_{H_{1}}(P)$.

To begin with, if $H \cap U_{0}$ is not a supporting ($d-2$)-flat of F_{0}^{d-1} in U_{0}, then points of $F_{0}{ }^{d-1}$ will lie on both sides of $H \cap U_{0}$, and hence on both sides of H. Thus H does not support $F_{0}{ }^{d-1}$ and so does not support P.

Secondly, if $H \cap U_{0}$ is a supporting $(d-2)$-flat of $F_{0}{ }^{d-1}$, then it may be written $\langle x, v\rangle=0$, with $F_{0}{ }^{d-1}$ lying in the half-space $\langle x, v\rangle \geqslant 0 . H$ has the equation $\left\langle x, u_{0}+\epsilon v\right\rangle=0$, where ϵ is chosen so that $\left\langle n_{1}, u_{0}+\epsilon v\right\rangle=0$. From the hypothesis that $\left\langle n_{1}, u_{0}\right\rangle$ and $\left\langle n_{1}, v\right\rangle$ are necessarily of the same sign, it follows that $\epsilon<0$. Choose x_{0} as any point of $F_{0}{ }^{d-1} \backslash F^{j}$; then clearly $\left\langle x_{0}, v\right\rangle>0$ and $\left\langle x_{0}, u\right\rangle=0$. Choose any point $y_{0} \in P \backslash F_{0}{ }^{d-1}$; then $\left\langle y_{0}, u\right\rangle>0$. Hence

$$
\left\langle x_{0}, u_{0}+\epsilon \nu\right\rangle=\epsilon\left\langle x_{0}, v\right\rangle<0,
$$

and

$$
\left\langle y_{0}, u_{0}+\epsilon \nu\right\rangle=\left\langle y_{0}, u_{0}\right\rangle+\epsilon\left\langle y_{0}, v\right\rangle .
$$

By choosing n_{1} sufficiently close to U_{0} we may make ϵ arbitrarily small, and since $\left\langle y_{0}, u_{0}\right\rangle>0$, we can ensure that $\left\langle y_{0}, u_{0}+\epsilon \nu\right\rangle>0$. Thus points x_{0} and y_{0} lie on opposite sides of H, and so H does not support P. This completes the proof of assertion II.

Write $f_{j}{ }^{(1)}\left(F_{0}{ }^{d-1}\right)$ for the number of j-faces of $F_{0}{ }^{d-1}$ which satisfy condition I above, and let $f_{j}{ }^{(2)}\left(F_{0}{ }^{d-1}\right)$ be the number of j-faces which satisfy exactly the same condition with n_{1} replaced by n_{2} throughout. Then we have established and that

$$
\begin{aligned}
& f_{j}\left(\pi_{H_{1}}(P)\right)=f_{j}{ }^{(0)}\left(\pi_{H_{1}}(P)\right)+f_{j}{ }^{(1)}\left(F_{0}{ }^{d-1}\right)+f_{j}{ }^{(1)}\left(* F_{0}{ }^{d-1}\right), \\
& f_{j}\left(\pi_{H_{2}}(P)\right)=f_{j}{ }^{(0)}\left(\pi_{H_{2}}(P)\right)+f_{j}{ }^{(2)}\left(F_{0}{ }^{d-1}\right)+f_{j}{ }^{(2)}\left({ }^{*} F_{0}^{d-1}\right)
\end{aligned}
$$

$$
(0 \leqslant j \leqslant d-1) .
$$

By the assumption that n_{1} and n_{2} lie on opposite sides of U_{0} and their projections onto U_{0} coincide, we see that $\left\langle n_{1}, u_{0}\right\rangle,\left\langle n_{2}, u_{0}\right\rangle$ are of opposite sign, and that $\left\langle n_{1}, v\right\rangle=\left\langle n_{2}, v\right\rangle$ for all $v \in U_{0}$. Thus if, for example, $\left\langle n_{1}, u_{0}\right\rangle<0$, then $f_{j}{ }^{(1)}\left(F_{0}{ }^{d-1}\right)$ is the number of j-faces of $F_{0}{ }^{d-1}$ for which we can choose v so that $\left\langle n_{1}, v\right\rangle>0$, and by central symmetry of F_{0}^{d-1}, this is exactly equal to the number of j-faces of $F_{0}{ }^{d-1}$ for which v can be chosen so that $\left\langle n_{1}, v\right\rangle=\left\langle n_{2}, v\right\rangle<0$. Since $\left\langle n_{2}, u_{0}\right\rangle>0$, we deduce that $f_{j}^{(1)}\left(F_{0}^{d-1}\right)=f_{j}^{(2)}\left(F_{0}{ }^{d-1}\right)$. Similarly, $f_{j}{ }^{(1)}\left({ }^{*} F_{0}^{d-1}\right)=f_{j}{ }^{(2)}\left({ }^{*} F_{0}^{d-1}\right)$. We have already shown that $f_{j}{ }^{(0)}\left(\pi_{H_{1}}(P)\right)=$ $f_{j}{ }^{(0)}\left(\pi_{H_{2}}(P)\right)$ and so we deduce that $f_{j}\left(\pi_{H_{1}}(P)\right)=f_{j}\left(\pi_{H_{2}}(P)\right)$. This is true for all j satisfying $0 \leqslant j \leqslant d-1$; therefore P is $(d-1)$-equiprojective, and the lemma is proved.

To prove the theorem for $r<d-1$, we take any two r-flats R, R_{*} in E^{d} such that $\pi_{R}(P)$ and $\pi_{R *}(P)$ are regular projections. Let S_{1}, \ldots, S_{t} be any
sequence of $(r+1)$-flats such that $R \subset S_{1}, R_{*} \subset S_{t}$, and $S_{i} \cap S_{i+1}=R_{i}$ is an r-flat. It is easy to see that such a sequence may always be constructed, and further that we may do so in such a way that $\pi_{S_{i}}(P)(i=1, \ldots, t)$ and $\pi_{R i}(P)(i=1, \ldots, t-1)$ are also regular projections. (If, for example, one of the $\pi_{S_{i}}(P)$ is not regular, then it may be made so by an arbitrarily small displacement of S_{i}.) Write $R=R_{0}$ and $R_{*}=R_{t}$. Noticing that for $i=1, \ldots, t, \pi_{S_{i}}(P)$ is an $(r+1)$-polytope with centrally symmetric r-faces, and that

$$
\pi_{R i-1}(P)=\pi_{R i-1}\left(\pi_{S i}(P)\right) \quad \text { and } \quad \pi_{R i}(P)=\pi_{R i}\left(\pi_{S_{i}}(P)\right)
$$

we deduce from Lemma 3 that

$$
f_{j}\left(\pi_{R_{i}-1}(P)\right)=f_{j}\left(\pi_{R_{i}}(P)\right)
$$

for $i=1, \ldots, t$ and $j=0, \ldots, r-1$. Thus

$$
f_{j}\left(\pi_{R}(P)\right)=f_{j}\left(\pi_{R *}(P)\right)
$$

for $j=0, \ldots, r-1$. Since this applies to any two r-flats R and R_{*} for which the projections $\pi_{R}(P)$ and $\pi_{R *}(P)$ are regular, we deduce that P is r-equiprojective. This completes the proof of Theorem 3.

References

1. A. D. Alexandrov, A theorem on convex polyhedra, Trudy Mat. Inst. Steklov, Sect. Math., 4 (1933), 87 (in Russian) (Kraus Reprint Ltd., Vaduz, 1963).
2. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper (Berlin, 1934; Reprint, New York, 1948).
3. J. J. Burckhardt, Über konvexe Körper mit Mittelpunkt, Vierteljschr. Natur. Ges. Zürich, 85 (1940), 149-154.
4. H. S. M. Coxeter, Regular polytopes (New York, 1948; 2nd ed., 1963).
5. -The classification of zonohedra by means of projective diagrams, J. de Math., 41 (1962), 137-156.
6. B. Grünbaum, Convex polytopes (London, New York, and Sydney, in press).
7. H. Minkowski, Allgemeine Lehrsätze eüber die konvexen Polyëder, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1897), 198-219; Gesammelte Abhandlungen, Vol. 2 (Leipzig and Berlin, 1911), pp. 103-121.
8. M. A. Perles and G. C. Shephard, Angle sums of convex polytopes, Math. Scand. (to be published).
9. C. A. Rogers, Sections and projections of convex bodies, Portugal. Math., 24 (1965), 99-103.
10. G. C. Shephard, Angle deficiencies of convex polytopes, J. London Math. Soc. (to be published).

University of East Anglia, England

