POLYTOPES WITH CENTRALLY SYMMETRIC FACES

G. C. SHEPHARD

In honour of Professor H. S. M. Coxeter on his sixtieth birthday

Introduction. If a convex polytope P is centrally symmetric, and has the property that all its faces (of every dimension) are centrally symmetric, then P is called a *zonotope*. Zonotopes have many interesting properties which have been investigated by Coxeter and other authors (see (4, §2.8 and §13.8) and (5) which contains a useful bibliography). In particular, it is known (5, §3) that a zonotope is completely characterized by the fact that all its two-dimensional faces are centrally symmetric. The purpose of this paper is to generalize these results, investigating the properties of polytopes all of whose *j*-dimensional faces are centrally symmetric for some given value of *j*. We shall prove four theorems, the statements of which will be given in this introductory section; proofs will appear in later sections of the paper.

For brevity we shall write *d-polytope* to mean a *d*-dimensional closed convex polytope in Euclidean space E^n $(n \ge d)$, *j*-face to mean a (closed) *j*-dimensional face of such a polytope, and *r*-flat to mean an *r*-dimensional affine subspace of E^n . Our first theorem generalizes a result of A. D. Alexandrov (1):

THEOREM 1. If every j-face of a d-polytope P is centrally symmetric, where j is some integer satisfying $2 \leq j \leq d$, then the k-faces of P are also centrally symmetric for all k such that $j \leq k \leq d$.

Here we are regarding P as a d-face of itself, so the theorem implies that, under the given conditions, P is a centrally symmetric polytope.

Let P be any given d-polytope in E^d , and R be any r-flat passing through the origin o. Let π_R denote orthogonal projection on to R, so that $\pi_R(P)$ is an r-polytope in R. Then since, for each j satisfying $0 \leq j \leq r - 1$, the j-faces of $\pi_R(P)$ are the images under π_R of faces of P whose dimension is at least j, we deduce the following: If j and r are given integers satisfying $2 \leq j \leq r \leq d$, and if P is a d-polytope with centrally symmetric j-faces, then the j-faces of $\pi_R(P)$ are also centrally symmetric. However, for certain r-flats R we can assert much more:

THEOREM 2. If every j-face of a d-polytope $P \subset E^d$ is centrally symmetric, where j is some integer satisfying $2 \leq j \leq d$, and R is a (d - j + 1)-flat orthogonal to any (j - 1)-face F^{j-1} of P, then $\pi_R(P)$ is a zonotope.

Received March 28, 1967.

In the proof of this theorem we shall show that the vertices of $\pi_R(P)$ are the images under π_R of (j-1)-faces of P, each of which is either congruent to F^{j-1} or to the reflection of F^{j-1} in a point. In this way it can be shown that the (d-1)-faces of P lie in a number of "zones" analogous to the zones of faces of zonotopes.

The next theorem relates to projection on to r-flats which are not orthogonal to any face of P. Let Q represent the set of *j*-flats through $o \in E^d$ which are parallel to the *j*-faces of $P \subset E^d$ for all *j* satisfying $1 \leq j \leq d - 1$. Then an s-flat S ($0 \leq s \leq d-1$) through o is said to be in general position with respect to P if S meets each j-flat of Q in a flat of $\max(0, s + j - d)$ dimensions. If R is an r-flat $(1 \leq r \leq d)$, following the terminology of (8), we shall call $\pi_R(P)$ a regular r-projection of P if and only if the (d-r)-flat through o which is orthogonal to R is in general position with respect to P. (In the important special case r = d - 1, a regular projection results if the line orthogonal to R is not parallel to any proper face of P.) The polytope P is called *r*-equipro*jective* if, for $0 \leq j \leq r-1$, the number $f_j(\pi_R(P))$ of *j*-faces of $\pi_R(P)$ has the same value for all regular projections $\pi_R(P)$. For example, it is a familiar fact that every regular 2-projection of a 3-cube C^3 is a hexagon, so C^3 is 2-equiprojective. Less familiar is the fact (which, so far as the author is aware, has not previously been mentioned in the literature) that every d-dimensional zonotope is r-equiprojective for each value of r satisfying $1 \le r \le d$ (compare $(10, \S4)$). It is this property of zonotopes which we generalize.

THEOREM 3. If every r-face of a d-polytope P is centrally symmetric, where r is some integer satisfying $2 \leq r \leq d$, then P is r-equiprojective.

This theorem cannot be strengthened. If P has centrally symmetric *j*-faces, and j > r, then in general P will not be *r*-equiprojective. For example, the regular 24-cell Q^4 has centrally symmetric 3-faces (octahedra) and so is 3-equiprojective, a fact that is illustrated by the models of the regular 3-projections shown in (4, Plate VI). On the other hand its 2-faces (triangles) are not centrally symmetric and it is not 2-equiprojective since some regular 2-projections are hexagons (see (4, Fig. 14.3c)) and others are 12-gons.

Theorems 1 and 2 imply that if for some value of j ($2 \le j \le d$) the j-faces of P are centrally symmetric, then P will be r-equiprojective for all r satisfying $j \le r \le d$. This is a special property of polytopes which have centrally symmetric faces, for it is not generally true that j-equiprojective polytopes are also r-equiprojective for all $r \ge j$. For example, if T_1 and T_2 are two triangles in E^4 such that $T_1 \cap T_2$ is a point in the relative interior of each triangle, then the "prism" $T_1 + T_2$ (vector addition) is 2-equiprojective because all its regular 2-projections are hexagons, but it is not 3-equiprojective since some of its regular 3-projections have eight vertices and others have nine vertices.

The concept of equiprojectivity is of some intrinsic interest, since no characterization of *r*-equiprojective *d*-polytopes is known, even for r = 2, d = 3. Further, it has recently been shown (8, §3; 10, §4) that the angles of equi-

projective polytopes have interesting invariance properties. We recall that with each *j*-face F^j of a *d*-polytope P ($0 \le j \le d - 1$) is associated a well-defined real number $\phi(P, F^j)$ called the *interior angle* of P at the face F^j . (For a formal definition, see (8, §2).) If we sum the interior angles at all the *j*-faces of P, we obtain the *jth angle sum* of P, denoted by $\phi_j(P)$. This angle sum is *affine invariant* if $\phi_j(P) = \phi_j(TP)$ for all non-singular affine transformations T of E^d . It is known (8, §3) that all the angle sums $\phi_j(P)$ ($0 \le j \le d - 1$) of P are affine invariant if and only if P is (d - 1)-equiprojective. For example, since a 3-cube C^3 is 2-equiprojective, its angle sums $\phi_0(C^3) = 1, \phi_1(C^3) = 3, \phi_2(C^3) = 3$ are affine invariants, leading to familiar facts about the vertex angles and dihedral angles of a parallelepiped in E^3 . Since a regular 24-cell Q^4 is 3-equiprojective, all its angle sums are affine invariant; in fact, using (8, Theorem (10)) we see that $\phi_0(Q^4) = 3, \phi_1(Q^4) = 24, \phi_2(Q^4) = 32, and \phi_3(Q^4) = 12$. These figures enable us to calculate the interior angles of Q^4 in a very simple manner.

If the *d*-polytope P is (d - 2)-equiprojective, then it is known that its angle deficiencies are affine invariant (see (10) for the definitions and proof). In the case of polytopes with centrally symmetric faces, a more powerful assertion is possible, which is given in the final theorem:

THEOREM 4. If, for some value of j satisfying $2 \leq j \leq d - 1$, all the j-faces of a d-polytope P are centrally symmetric, then for any k-face F^k of P ($j < k \leq d$), all the angle sums $\phi_j(F^k)$ ($0 \leq j \leq k - 1$) are affine invariant.

Theorem 4 is an immediate consequence of the above assertions and of Theorem 3 applied to each k-face F^k of P. We shall now give proofs of the first three theorems.

Proof of Theorem 1. We begin by recalling the following classical result:

LEMMA 1. If all the (d-1)-faces of a d-polytope $P(d \ge 3)$ are centrally symmetric, then P is centrally symmetric.

The first proof of this lemma was given by A. D. Alexandrov in 1933 (1) for the case d = 3, and he states that his proof "extends easily to any number of dimensions" without giving any details. Other proofs for the case d = 3 will be found in (3; 4; 5). Here a new proof will be given for the general case, which is, even for d = 3, simpler than each of the proofs just mentioned.

Let R be any (d-1)-flat in E^d which does not intersect the given polytope $P \subset E^d$. A (d-1)-face F^{d-1} of P will be said to be *remote* from R if the line segment joining any relative interior point z of F^{d-1} to $\pi_R(z)$ intersects the interior of P. It is clear that this definition is independent of the choice of z, and that $\pi_R(P)$ is the union of the images under orthogonal projection on to R of all those (d-1)-faces of P which are remote from R. For any F^{d-1} , the polytope $\pi_R(F^{d-1}) \subset \pi_R(P)$ is centrally symmetric, so $\pi_R(P)$ is the union of centrally symmetric (d-1)-polytopes which are non-overlapping, that is, two

such polytopes intersect in at most boundary points of each. By a theorem of Minkowski (7, §6) this is sufficient to establish that $\pi_R(P)$ is centrally symmetric. Thus $\pi_R(P)$ is centrally symmetric for each R, and by a theorem of Blaschke and Hessenberg (2, §61; 9) this implies that P is centrally symmetric. Thus the lemma is proved.

The proof of Theorem 1 now follows immediately. If the *j*-faces of *P* are centrally symmetric, then since they are the *j*-faces of the (j + 1)-faces of *P*, the lemma shows that the (j + 1)-faces of *P* are centrally symmetric. Thus k - j applications of the lemma will establish that, for $j \leq k \leq d$, all the *k*-faces of *P* are centrally symmetric, and so Theorem 1 is proved.

Proof of Theorem 2. We require the following lemma:

LEMMA 2. Let P be a convex polytope in E^d with centrally symmetric j-faces for some value of $j \ge 2$, and R be a (d - j + 1)-flat perpendicular to some (j - 1)face F^{j-1} of P. Then if $\pi_R(P)$ is a (d - j + 1)-polytope, it has the property that for $j - 1 \le s \le d$ each of its (s - j + 1)-faces is the image under π_R of some s-face of P. In particular, P is a d-polytope.

Proof. The proof is by induction on *d*.

If d = j, P is a centrally symmetric d-polytope and $\pi_R(P)$ is a line segment (1-polytope). Clearly the two vertices of $\pi_R(P)$ (the end points of the line segment) are the images under π_R of F^{j-1} and of the face $*F^{d-1}$ which is the image of F^{j-1} under reflection in the centre of P. Hence the lemma is true in this case.

Now assume, as inductive hypothesis, that the lemma is true for polytopes in E^{d-1} with centrally symmetric *j*-faces for some value of *j* satisfying

$$2 \leqslant j \leqslant d - 1.$$

Let P be a convex polytope in E^d with centrally symmetric j-faces, F^{j-1} be the chosen (j-1)-face of P, and T be the (j-1)-flat containing F^{j-1} and perpendicular to the (d-j+1)-flat R. Let H be any (d-j)-flat in R which supports $\pi_R(P)$, contains the vertex $\pi_R(F^{j-1})$, and intersects $\pi_R(P)$ in a (d-j)-face G^{d-j} . Then H is perpendicular to T, and the (d-1)-flat spanned by H and T supports P and so intersects P in some face $F \supset F^{j-1}$. The inductive hypothesis shows that every (s-j+1)-face of G^{d-j} is, for $j-1 \leq s \leq d-1$, the image under π_R of an s-face of F (and so, in particular, F is a (d-1)-face of P). Thus every vertex of G^{d-j} is the image under π_R of a (j-1)-face of P. Let F_1^{j-1} be one of these faces. Then repeating the above argument using F_1^{j-1} instead of F^{j-1} , and some (d-j)-face G_1^{d-j} of $\pi_R(P)$ which contains $\pi_R(F_1^{j-1})$ other than G^{d-j} , we see that the properties of G^{d-j} established above are true for G_1^{d-j} also. In particular, this shows that P contains two (d-1)faces which do not lie in the same (d-1)-flat, and so P is d-dimensional. If we now repeat the same argument $f_{d-j}(\pi_R(P))$ times (once for each (d-j)-face of $\pi_R(P)$), we see that for $j - 1 \leq s \leq d - 1$ every (s - j + 1)-face of $\pi_R(P)$ is the image under π_R of some s-face of P. Finally $\pi_R(P)$ is the image under π_R of the d-polytope P, so the statement is true for s = d also. Hence the induction is completed and the lemma is true generally.

Theorem 2 is now proved by noticing that every face of $\pi_R(P)$ whose dimension is at least 2 is the image under π_R of some face of P whose dimension is at least j + 1. Thus every face of $\pi_R(P)$ is centrally symmetric and therefore $\pi_R(P)$ is a zonotope.

If G^1 is any edge of $\pi_R(P)$, then the end points of G^1 are the images under π_R of two (j-1)-faces F_1^{j-1} and F_2^{j-1} of P. These are parallel faces of the j-face F^j of P such that $\pi_R(F^j) = G^1$. Hence F_2^{j-1} is the image of F_1^{j-1} under reflection in the centre of F^j . Thus the (j-1)-faces of P that project into the vertices of $\pi_R(P)$ are either congruent to F^{j-1} or to the reflection of F^{j-1} in a point, as asserted in the Introduction. A typical zone on P consists of those (d-1)-faces which project into the (d-j)-faces of $\pi_R(P)$. In particular, we have proved that the number of (d-1)-faces in any zone on P is equal to the number of (d-j)-faces of a (d-j+1)-dimensional zonotope. The latter can be calculated from projective diagrams as described in (9).

Proof of Theorem 3. The following lemma corresponds to the case r = d - 1 of the theorem:

LEMMA 3. If every (d-1)-face of the d-polytope P is centrally symmetric, then P is (d-1)-equiprojective.

Proof. Since P is centrally symmetric, its (d - 1)-faces fall into

$$\frac{1}{2}f_{d-1}(P) = s + 1$$

parallel pairs which may be denoted by F_0^{d-1} , $*F_0^{d-1}$; F_1^{d-1} , $*F_1^{d-1}$; ...; F_s^{d-1} , F_s^{d-1} , where F_i^{d-1} is the reflection of F_i^{d-1} in the centre of P. Each pair F_i^{d-1} , F_i^{d-1} defines a unique (d-1)-flat U_i through the origin o and parallel to each of these (d-1)-faces. U_0, \ldots, U_s intersect the unit (d-1)-sphere centred at o in s + 1 "great spheres" which form the boundaries of the spherical polytopes of a honeycomb on S^{d-1} . The interiors of these spherical polytopes will be called *regions* and will be denoted by J_1, \ldots, J_t . The set Q associated with P that was defined in the Introduction consists of U_0, \ldots, U_s , together with some of the intersections of these (d-1)-flats. From this it will be apparent that a projection $\pi_H(P)$ on to a (d-1)-flat H is regular if and only if the unit normal *n* of *H* belongs to one of the regions J_i (and not to any of the U_i). Further, as was shown in (8, §2), a *j*-face F^{j} of P will project into a *j*-face G^{j} of $\pi_{H}(P)$ if and only if n lies in a certain (open) spherical polytope on S^{d-1} bounded by parts of the (d-1)-flats U_{i_1}, \ldots, U_{i_k} that are parallel to the (d-1)-faces of P incident with F^{j} . In this way we see that for all n in the same region J_{i} (or in the region antipodal to J_i on S^{d-1}) the corresponding regular projections

are all combinatorially equivalent; see (8, proof of (10)). Thus if n_1 and n_2 belong to the same region J_i , and H_1 and H_2 denote the (d-1)-flats with normals n_1 and n_2 , then $f_j(\pi_{H_1}(P)) = f_j(\pi_{H_2}(P))$ for $0 \le j \le d-1$. Consequently, in order to prove the lemma, it is only necessary to show that $f_j(\pi_{H_1}(P)) = f_j(\pi_{H_2}(P))$ when n_1 and n_2 belong to different regions, and it is sufficient to show that this is so when n_1 and n_2 belong to adjacent regions, that is, regions which are separated by exactly one of the (d-1)-flats, say U_0 . Further, we may suppose without loss of generality that n_1 and n_2 , though lying on opposite sides of U_0 , are arbitrarily close to one another, and their orthogonal projections on to U_0 coincide.

Let F_j be any *j*-face of P which is not incident with F_0^{d-1} or $*F_0^{d-1}$. Then, as remarked above, F^j will project into a *j*-face of $\pi_H(P)$ if and only if the normal n of H belongs to a certain spherical polytope II whose boundary consists of parts of U_{i_1}, \ldots, U_{i_k} (but not of U_0). Since n_1 and n_2 are separated only by U_0 , we deduce that they both belong to II or neither does so. Thus F^j projects into a *j*-face of $\pi_{H_1}(P)$ and a *j*-face of $\pi_{H_2}(P)$, or does not project into a *j*-face of either. Hence, writing $f_j^{(0)}(\pi_H(P))$ for the number of *j*-faces of $\pi_H(P)$ that are the projections of *j*-faces of P which are not incident with F_0^{d-1} or $*F_0^{d-1}$, we deduce that

$$f_j^{(0)}(\pi_{H_1}(P)) = f_j^{(0)}(\pi_{H_2}(P)) \qquad (0 \le j \le d-2).$$

On the other hand, suppose F^j is a *j*-face of P and $F^j
ightharpoondown F_0^{d-1}$. The case $F^j
ightharpoondown F_0^{d-1}$ can be dealt with in a similar manner. Let us choose a relative interior point of F^j as origin, and suppose U_0 has the equation $\langle x, u_0 \rangle = 0$ with u_0 chosen as the inward normal so that P lies in the half-space $\langle x, u_0 \rangle \ge 0$. Let v be any vector in U_0 such that the (d-1)-flat $\langle x, v \rangle = 0$ supports F_0^{d-1} , intersects it in F^j , and F_0^{d-1} lies in the half-space $\langle x, v \rangle \ge 0$. We shall show that F^j projects into a *j*-face of $\pi_{H_1}(P)$ if and only if v can be chosen to satisfy the above conditions and so that $\langle n_1, u_0 \rangle \ne 0$ and $\langle n_1, v \rangle \ne 0$ are of opposite sign. To establish this we consider two cases:

I. Let $\langle n_1, u_0 \rangle$, $\langle n_1, v \rangle$ be of opposite sign. Then define $\epsilon > 0$ by the equation $\langle n_1, u_0 + \epsilon v \rangle = 0$. We have remarked that n_1 may be taken arbitrarily close to U_0 (so that $\langle n_1, u_0 \rangle$ can be made arbitrarily small) and so we may suppose, without loss of generality, that $0 < \epsilon < \beta/2\alpha$, where

$$\beta = \min\{\langle x, u_0 \rangle \colon x \in \text{vert } P \setminus \text{vert } F_0^{d-1}\} > 0,$$

$$\alpha = \max\{|\langle x, v \rangle| \colon x \in \text{vert } P \setminus \text{vert } F_0^{d-1}\} \ge 0.$$

Here vert P means the set of vertices of P, and $\beta/2\alpha$ is to be interpreted as $+\infty$ if $\alpha = 0$. Then Grünbaum has shown (6, Theorem 3.1.5) that

$$\langle x, u_0 + \epsilon v \rangle = 0$$

is a supporting (d-1)-flat of P which intersects P in F^j . As this supporting hyperplane also contains n_1 , we deduce that F^j projects into a j-face of $\pi_{H_1}(P)$, as was to be shown.

G. C. SHEPHARD

II. Let F^j be such that, with u_0 defined as above, $\langle n_1, u_0 \rangle$ and $\langle n_1, v \rangle$ have the same sign for all $v \in U_0$ such that the (d-1)-flat $\langle x, v \rangle = 0$ supports F_0^{d-1} , intersects F_0^{d-1} in F^j , and F_0^{d-1} lies in the half-space $\langle x, v \rangle \ge 0$. Let $\pi_{H_1}(F^j) = G^j$, and H^* be any (d-2)-flat in H_1 through G^j . If H is the (d-1)-flat spanned by H^* and n_1 , then we shall show that H cannot support P for any choice of H^* , and so G^j is not a j-face of $\pi_{H_1}(P)$.

To begin with, if $H \cap U_0$ is not a supporting (d-2)-flat of F_0^{d-1} in U_0 , then points of F_0^{d-1} will lie on both sides of $H \cap U_0$, and hence on both sides of H. Thus H does not support F_0^{d-1} and so does not support P.

Secondly, if $H \cap U_0$ is a supporting (d-2)-flat of F_0^{d-1} , then it may be written $\langle x, v \rangle = 0$, with F_0^{d-1} lying in the half-space $\langle x, v \rangle \ge 0$. *H* has the equation $\langle x, u_0 + \epsilon v \rangle = 0$, where ϵ is chosen so that $\langle n_1, u_0 + \epsilon v \rangle = 0$. From the hypothesis that $\langle n_1, u_0 \rangle$ and $\langle n_1, v \rangle$ are necessarily of the same sign, it follows that $\epsilon < 0$. Choose x_0 as any point of $F_0^{d-1} \setminus F^j$; then clearly $\langle x_0, v \rangle > 0$ and $\langle x_0, u \rangle = 0$. Choose any point $y_0 \in P \setminus F_0^{d-1}$; then $\langle y_0, u \rangle > 0$. Hence

$$\langle x_0, u_0 + \epsilon v \rangle = \epsilon \langle x_0, v \rangle < 0,$$

and

$$\langle y_0, u_0 + \epsilon v \rangle = \langle y_0, u_0 \rangle + \epsilon \langle y_0, v \rangle$$

By choosing n_1 sufficiently close to U_0 we may make ϵ arbitrarily small, and since $\langle y_0, u_0 \rangle > 0$, we can ensure that $\langle y_0, u_0 + \epsilon v \rangle > 0$. Thus points x_0 and y_0 lie on opposite sides of H, and so H does not support P. This completes the proof of assertion II.

Write $f_j^{(1)}(F_0^{d-1})$ for the number of *j*-faces of F_0^{d-1} which satisfy condition I above, and let $f_j^{(2)}(F_0^{d-1})$ be the number of *j*-faces which satisfy exactly the same condition with n_1 replaced by n_2 throughout. Then we have established and that

$$f_{j}(\pi_{H_{1}}(P)) = f_{j}^{(0)}(\pi_{H_{1}}(P)) + f_{j}^{(1)}(F_{0}^{d-1}) + f_{j}^{(1)}(*F_{0}^{d-1}),$$

$$f_{j}(\pi_{H_{2}}(P)) = f_{j}^{(0)}(\pi_{H_{2}}(P)) + f_{j}^{(2)}(F_{0}^{d-1}) + f_{j}^{(2)}(*F_{0}^{d-1})$$

$$(0 \leq j \leq d-1).$$

By the assumption that n_1 and n_2 lie on opposite sides of U_0 and their projections onto U_0 coincide, we see that $\langle n_1, u_0 \rangle$, $\langle n_2, u_0 \rangle$ are of opposite sign, and that $\langle n_1, v \rangle = \langle n_2, v \rangle$ for all $v \in U_0$. Thus if, for example, $\langle n_1, u_0 \rangle < 0$, then $f_j^{(1)}(F_0^{d-1})$ is the number of *j*-faces of F_0^{d-1} for which we can choose v so that $\langle n_1, v \rangle > 0$, and by central symmetry of F_0^{d-1} , this is exactly equal to the number of *j*-faces of F_0^{d-1} for which v can be chosen so that $\langle n_1, v \rangle = \langle n_2, v \rangle < 0$. Since $\langle n_2, u_0 \rangle > 0$, we deduce that $f_j^{(1)}(F_0^{d-1}) = f_j^{(2)}(F_0^{d-1})$. Similarly, $f_j^{(1)}(*F_0^{d-1}) = f_j^{(2)}(*F_0^{d-1})$. We have already shown that $f_j^{(0)}(\pi_{H_1}(P)) = f_j^{(0)}(\pi_{H_2}(P))$ and so we deduce that $f_j(\pi_{H_1}(P)) = f_j(\pi_{H_2}(P))$. This is true for all *j* satisfying $0 \leq j \leq d - 1$; therefore *P* is (d - 1)-equiprojective, and the lemma is proved.

To prove the theorem for r < d - 1, we take any two r-flats R, R_* in E^d such that $\pi_R(P)$ and $\pi_{R*}(P)$ are regular projections. Let S_1, \ldots, S_t be any

1212

sequence of (r + 1)-flats such that $R \subset S_1$, $R_* \subset S_t$, and $S_i \cap S_{i+1} = R_i$ is an *r*-flat. It is easy to see that such a sequence may always be constructed, and further that we may do so in such a way that $\pi_{S_i}(P)$ $(i = 1, \ldots, t)$ and $\pi_{R_i}(P)$ $(i = 1, \ldots, t - 1)$ are also regular projections. (If, for example, one of the $\pi_{S_i}(P)$ is not regular, then it may be made so by an arbitrarily small displacement of S_i .) Write $R = R_0$ and $R_* = R_i$. Noticing that for $i = 1, \ldots, t, \pi_{S_i}(P)$ is an (r + 1)-polytope with centrally symmetric *r*-faces, and that

 $\pi_{R_{i-1}}(P) = \pi_{R_{i-1}}(\pi_{S_i}(P))$ and $\pi_{R_i}(P) = \pi_{R_i}(\pi_{S_i}(P)),$

we deduce from Lemma 3 that

$$f_{j}(\pi_{R_{i-1}}(P)) = f_{j}(\pi_{R_{i}}(P))$$

for i = 1, ..., t and j = 0, ..., r - 1. Thus

 $f_j(\pi_R(P)) = f_j(\pi_{R*}(P))$

for j = 0, ..., r - 1. Since this applies to any two *r*-flats *R* and *R*_{*} for which the projections $\pi_R(P)$ and $\pi_{R*}(P)$ are regular, we deduce that *P* is *r*-equiprojective. This completes the proof of Theorem 3.

References

- 1. A. D. Alexandrov, A theorem on convex polyhedra, Trudy Mat. Inst. Steklov, Sect. Math., 4 (1933), 87 (in Russian) (Kraus Reprint Ltd., Vaduz, 1963).
- 2. T. Bonnesen and W. Fenchel, *Theorie der konvexen Körper* (Berlin, 1934; Reprint, New York, 1948).
- 3. J. J. Burckhardt, Über konvexe Körper mit Mittelpunkt, Vierteljschr. Natur. Ges. Zürich, 85 (1940), 149–154.
- 4. H. S. M. Coxeter, Regular polytopes (New York, 1948; 2nd ed., 1963).
- 5. The classification of zonohedra by means of projective diagrams, J. de Math., 41 (1962), 137–156.
- 6. B. Grünbaum, Convex polytopes (London, New York, and Sydney, in press).
- H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyëder, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1897), 198–219; Gesammelte Abhandlungen, Vol. 2 (Leipzig and Berlin, 1911), pp. 103–121.
- 8. M. A. Perles and G. C. Shephard, Angle sums of convex polytopes, Math. Scand. (to be published).
- 9. C. A. Rogers, Sections and projections of convex bodies, Portugal. Math., 24 (1965), 99-103.
- 10. G. C. Shephard, Angle deficiencies of convex polytopes, J. London Math. Soc. (to be published).

University of East Anglia, England