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ON THE ASYMPTOTIC BEHAVIOUR OF THE JACKKNIFE
FOR STOCHASTIC PROCESSES

P.N. KOKIC AND N.C. WEBER

The limiting behaviour of the Jm jackknife estimator for

parameters associated with stochastic processes is shown to

depend on the nature of the underlying process through the

asymptotic behaviour of the estimator being jackknifed. In

particular, the jackknifed versions of certain estimators

associated with renewal processes are shown to have an asymptotic

normal distribution.

1. Introduction

Although the original motivation for considering the jackknifing

technique was bias reduction, it is the asymptotic properties of the jack-

knife that make it a useful general tool in data analysis. Gray, Watkins

and Adams [3] extended the jackknife technique to estimation problems for

certain parameters associated with stochastic processes. They developed

the J estimator by partitioning the observed sample path into n

segments and then applying the standard jackknifing procedure to the

estimates based on the resulting segments. They proved that if the under-

lying process was sufficiently well behaved then the bias reduction

properties of the jackknife improved as the partition was made finer and

this led them to propose the ^ jackknife estimator.

Gray et al [3] developed the asymptotic theory for the J estimator

when the underlying stochastic process has stationary independent
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increments. The purpose of this paper is to show that the behaviour of the

Jm estimator depends on the underlying stochastic process through the

behaviour of the estimator being jackknifed. This result is then used to

obtain some asymptotic results for the Jm estimator when the underlying

process is a renewal process.

2. Notation

Let {X(t) : t € [a, b]} be a stochastic process and suppose that the

probability law of X(t) depends on the parameter 9 for every

t € [a, b] . Then if b > t > t > a define 9(t , t ) to be an

estimator of 0 of the form

where {l(t) : t € [a, b]} i s a stochastic process determined by the

process {X{t) : t (. [a, b]} , such tha t almost every r ea l i s a t i on of

{!"(£)} i s piecewise continuous. The reader i s referred to Gray and

Schucany [ 2 ] , Chapter k, for examples of such est imators . For the purpose

of discussing asymptotic r e s u l t s we wi l l take {X(t)} defined for a l l

t > a .

If the process {X(t)} is observed for t € [a, a+T] and we are

interested in _f(8) for some real valued function / then we construct

the J jackknifed estimator for f(9) as follows. Let t . = a + iT/n ,

•L = 0, 1, . . . , n and set 9 = 0(a, a+T) and

&l = [n§-§(*. , , t . ) ] / ( n - l ) , i = 1, 2 , . . . , n .

Define the estimator J (/(§)) by

J ifCe)) = « f ( 6 ) - (n-l)n"1 I ftf) .
n i=i n

By analogy with jackknife estimation results for independent random

samples, an estimator for the variance of J (/(9)) is

|
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Another statistic we need to consider is

n, a+j/n)-8(a, a+tn

where [nT] denotes the largest integer not exceeding nT . If

var 8(a, a+l) = a and the process {j(t)} has stationary independent

increments then it is easy to show that 0 is a consistent estimator
n ,1

for a2 , as T -> » .

Now let F be the set of possible non-zero jump sizes for the process

{!(*)} • For each y € Y let W denote the number of jumps of size y

occurring in I(t) for t (. [a, a+T] . Set N = £ ff . Following Gray

et aE [3] define the statistics

(i) Jjf(h) = f(h - I # [f(e-(Y/?'))-/(e)+(YW(e)] ,

4 = I N[f{Uy/T))-f(h)2

and

a2 = l/T I y2N ,
ytT T

where f'(x) denotes the first derivative of f at x . Note that if the

observed sample path is continuous then ^(/(S)) = /(0) and so the Jm

statistic coincides with the original estimator for /(6) . For a

discussion of the bias properties of J (/(§)) , ̂ (/(Q)) and the simple

n

estimator /(6) the reader is referred to Gray and Schucany [2].

The following resul t , proved by Watkins [4] , provides sufficient

conditions for the convergence of J (/(9)J , s , and a „ as n -*• °°

and is included for completeness.

THEOREM 1. Let f be a real valued differentiable function.
Suppose il(t) : t € [a, a+T]} defined above is such that almost every
realisation is piecewise continuous and of bounded variation on [a, a+T] .

https://doi.org/10.1017/S0004972700025843 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025843


3 3 2 P . N . N o k i c a n d N . C . W e b e r

Further, suppose that for each t (. [a, a+T] , I(t) is continuous at t
with probability 1 . Then

lim Jn[f(Q)) = Ja[f(.Q)) almost surely,

2 2
lim s _ = s almost surely

and

/\2 ^2
lim a _, = a almost surely.

3. Asymptotic behaviour of the J estimator

We will now investigate the distribution of J^ifi.Q)) as the record
length T becomes larger.

THEOREM 2. Suppose that 9 -&-*• 9 and there is a random variable X

and a non-negative function g(T) such that

g(T)(Q-d) - 2* X as T •* <*> .

If f is a real valued function with bounded second derivative in a

neighbourhood of 6 , T is a bounded set and o_g(T)/r -^-* 0 as T •*• » s

then

f'(Q)x as

Proof. Since / has a continuous derivative in a neighbourhood of 9
i t follows that

^ f'(Q)X as T -• » .

So from equation (l) and Slutsky's Theorem i t is sufficient to show that

» [f(9-(y/2'))-f(9)+(Y/2')/'(9)] - ^ 0 as T - » .

Suppose tha t | / " ( t ) | < M for a l l t € (9-26, 9+26) where 6 > 0

and l e t YQ
 = sup{|y | : Y € ?} . Then given e > 0 , there ex i s t s a T

such t h a t , for T > T ,
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P(9 € (8-6, 8+6)) > 1 - e and yQ/T < 6

Thus, for T > T , with probability at least 1 - e ,

f[B-(y/T)) = /(e) -

where If"(8 )\ < M . So, for T > T£ ,

with probability greater than 1 - £ and the result follows since

o .

Thus the asymptotic behaviour of Jm[f(Q)) depends on the underlying

process through the limiting distribution of the estimator 9 . It is now

possible to obtain limit results for ^(/(S)) when the underlying process

{I(t)} does not have stationary independent increments. One immediate

consequence of Theorem 2 is the following.

COROLLARY 1. Let f be a real valued function with bounded second

derivative in a neighbourhood of 9 and suppose T is a bounded set. If

9 -2* 8 and apT -2+ o as T •* » then

<Uf(§)) -^ /(0) as T - m •

That is, provided aJT -&-*• 0 , if 6 is a consistent estimator for 9

then Jm(f(d)) is consistent for f(6) .

The next result gives a consistent estimator for /'(9) based on

2
s

THEOREM 3. Suppose 8 -2+ 8 and a™ -2+ n as T •+<*>, for some

constant n . If f is a real valued function with continuous first

derivative at 8 and T is a bounded set then

n(/'(8))2 as T
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Proof. Let YQ = sup{|y| : Y € F} and suppose f'{t) is continuous

for t e (6-26 , 9+26 ) , where 6 > 0 . So given 6 > 0 there is a

6 , 0 < 6 < 6 , such that

if | t - 9 |

Since 6 -tL* 9 , given e > 0 there exists a Te such that, for T > T ,

P ( | 9 - 9 | < 6 ) > 1 - e and

Hence, for T > T ,

< 6 3 -

and

< 6 for al l Y € T ,

with probability greater than 1 - e . So with probability at least 1 - e
we have

Ts2-{f(e))2o2\ = (1/TJ I Y\r(/'(eJ)2-(/'(e))2l
1 x\ vfr YL Y J

The r e s u l t now follows since &„ is a rb i t ra ry and a -*—+ r\ as T -*•<*>.

We can now apply the above resu l t s to obtain Theorem 6.U of Gray et al

[3] for processes with s t a t ionary independent increments.

COROLLARY 2. Suppose {l(t) : t > a] has stationary independent

increments, E6(a, t) = 9 for t > a and Var 9(a, a+1) = a2 . If f is

a real valued function with bounded second derivative in a neighbourhood of
~2 p 29 j r is a bounded set and a -*-»• a

f r Y /V(0, 1 ) a s 21 •*

Proof. Since {l{t)} has s tat ionary independent increments,
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Var 9(a, a+T) = O2/T . Writing

[T]
6(a, a+T) = T'1 £ %(a+i-l, a+i) + §(a+[T], a+T)(l-[T]/T)

£=1

we have from the classical central limit theorem for independent random

variables and Slutsky's Theorem that

k," «, V ( 2iT (8 -6) —> N{0, a } as T •*• °° .

Also oJT -L~* 0 and so the result follows from Theorems 2 and 3.

In particular, if {j(t)} is a Poisson process with intensity 6

then T = {l} and a2 = N IT -&-+ 6 = Var Q(a, a+l) as T •* °° . Therefore

if / is a real valued function with bounded second derivative in a

neighbourhood of 8 then

(2) : ^-X-^^(0, 1) as T

4. Jackknifing renewal processes

Suppose we have a stochastic process with events occurring at times

where \X , X > •••} a r e independent, non-negative, continuous random

variables. Further l e t X, X , ... have distribution function F(x) and

2
assume that EX = y and Var X = a < <*> . The renewal process

: t 2 0) counts the number of events that have occurred up to time

t and is defined by

I{t) = 0 if X > t

( H

= sup-jn : Y, X- - t\ , otherwise.

In general, {I{t) : t J 0) will not have stationary independent

increments. If X has distribution function F then {/(£)} is an

ordinary renewal process; if X has distribution function
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1 fx

y~ I [l-F(t))dt then {l(t)} is an equilibrium renewal process and has
0

s t a t i o n a r y increments; otherwise {I(t)} i s cal led a modified renewal

process .

Consider 9 = 9(0, T) = I{T)/T , the average number of events per unit

t ime. Since the X. have continuous d i s t r i b u t i o n s , the conditions of

Theorem 1 are s a t i s f i e d and so i f f is a d i f f e ren t i ab le , r ea l valued

funct ion, J (/(6)J i s the almost sure l imi t of J f/(9)) as «-•<*>.
n *

Moreover from Cox [ I ] , Section 3-3, we have that

T*[Q-v~ ) • H[p, 02/\?) as T -»• »

regardless of the distribution of X , and

o | = T'1 Y y \ , = 9 -E-* y"1 as 21 -»• » .

Combining these results with Theorems 2 and 3 we obtain the following

theorem for estimates of functions of the mean waiting time for events.

THEOREM 4. Given {l(t) : t > 0} defined above, if f is a real

valiued function with bounded second derivative in a neighbourhood of y

then

and

Ts\ = ^ ( / ( e -T" 1 ) - / ^ ) ) 2 -EH- y^Cf' (y"1)]2 as r - . .

Jn •particular if the coefficient of variation of the waiting time
distribution o/\i = k , where k is known, then

—>• N[O, k ) as T •* °° .
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