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This thesis presents new explicit results on the distribution of prime numbers. The
results largely fall into the categories of error estimates for the prime number theorem
(PNT) and interval estimates for primes. The error in the PNT can be estimated with
the truncated Riemann–von Mangoldt explicit formula

ψ(x) = x −
∑
|γ|≤T

xρ

ρ
+ E(x, T),

where ρ = β + iγ represents the nontrivial zeros of the Riemann zeta-function. A new
explicit version of Goldston’s estimate for E(x, T) is proved, of order

E(x, T) = O
(x log x log log x

T

)
.

This estimate is used to update two short-interval results: we prove that there are
primes between cubes, that is, in intervals (n3, (n + 1)3) for all n ≥ exp(exp(32.537)),
and primes between n155 and (n + 1)155 for all n ≥ 1. These results are published in [1].
The proof follows the original method of Ingham and builds on work of Dudek [6]. We
also use, and prove, updated versions of Bertrand’s postulate of primes in (n, 2n − 2)
for integers n > 3. This work is published in [4], with corrections in [5]. The methods
of Ramaré and Saouter [8] and Kadiri and Lumley [7] are used to give new pairs (Δ, x0)
for which there exist at least one prime in ((1 − Δ−1)x, x] for all x ≥ x0. For instance,
we can take (x0,Δ) = (e150, 2.07 × 1011). Lastly, new conditional results are proved for
the error in the PNT. Under the Riemann hypothesis (RH), we prove an explicit error
estimate and an explicit mean-value estimate for the PNT in short intervals. The former
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is published in [2] and the latter is in the preprint [3]. The mean-value estimate is based
on Selberg’s work [9], and is of particular interest for its applications, of which two
are given. We first prove that under the RH, there is a prime in (y, y + 37 log2 y] for at
least half the y ∈ [x, 2x] and all x ≥ 2. The second application is to Goldbach numbers:
we prove that under the RH, there is a Goldbach number in (x, x + 864 log2 x] for all
x ≥ 2.
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