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Soluble linear groups

M. Frick and M.F. Newman

The least upper bound for the nilpotent lengths of soluble

linear groups of degree n is calculated. For each n it is

k + 2r(n)

where r(n) = [log_(2«-l)A] and [x] is the integral part of

1. Introduction

Ma I 'cev [4] proved that a soluble linear group G has normal

subgroups N, A with USA such that N is nilpotent, A/N is abelian

and G/A is finite. Moreover, if G has degree n , then the nilpotency

class of N is at most n - 1 and there is a bound on the order of G/A

depending only on n . This implies that there are bounds on the soluble

length and the nilpotent length of a soluble linear group of degree n

which depend only on n . An explicit bound for the soluble length has

been obtained by Huppert and by Dixon [/] (this latter contains an error,

see [5]). It is also of interest to obtain an explicit bound for the

nilpotent length. For instance Makan [31 used such a bound in his work on

finite soluble groups with a given number of conjugacy classes of maximal

nilpotent subgroups.

Before stating the main result we recall the definition of nilpotent

length and introduce some notation which is used extensively.

A chain G = N > N >. .. . > N = E (the identity subgroup) of normal

subgroups of a group G such that each section N. 1/N. [i (. {l, ..., u})
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32 M. Frick and M.F. Newman

is nilpotent is a nilpotent chain of G of length u ; the first and last

sections of the chain are "Q/"-, a n d # -,/# respectively. A group G

which has a nilpotent chain has a shortest nilpotent chain. The length of

a shortest nilpotent chain of G is the nilpotent length of G ; it will

be denoted v(G) .

THEOREM A.

(i) A soluble linear group of degree n has nilpotent length at

most

a(n) = h + 2r(n) + [(2n-l)/8.3r(n)]

where r(n) = [log (2n-l)A] .

i

(ii) There is a soluble linear group of degree n with nilpotent

length a(n) .

Note that a(l) = 1 , a(2) = 3 and, for n > 2 , a(w+l) = a(n)

unless n = 2, 2.3 or 1*.3 when a(n+l) = a(n) + 1 ; this hinges

on the observation that [(2n-l)/8.3 ] is 0 or 1 according as

n < k.3rM or „ > lt.3
r(") for 2n - 1 < U . 3 ^

( " ) + 1 < l6. 3
r ( n ) .

The two parts of the theorem are proved in Sections 2 and 3

respectively.

2. An upper bound

The first part of Theorem A will be proved as a consequence of similar

results on soluble permutation groups (Theorem B) and on completely

reducible soluble linear groups (Theorem C). We begin with two lemmas on

nilpotent chains.

LEMMA 1. If a soluble group G has a nilpotent chain C of length

u j then G has a nilpotent chain V consisting of characteristic

subgroups of G which is similar to C in the sense that V also has

length u s and if the first or last section of C is a finite p-group,

so is the corresponding section of V .

Proof. Let C be the nilpotent chain
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0 1 u

{ 9 1

N. : 9 € autC> for each i € {0, . . . . w} , and le t P be the1 J
chain

G = N* > N^ > . . . ± N* = E .

Clearly each N*. is characteristic in G . For each i , N*./N*. . is

isomorphic to a subgroup of the direct product of the Nt/NtnN. taken
If "V t - ' 1

over all 9 in autG , and Wl/NtnN. is isomorphic to N. N*./N. .
A fi

which is a subgroup of N./N. which is isomorphic to N./N. . Hence

each N*./H*.+. is nilpotent and so V is a nilpotent chain of length u .

If the last section of C is a finite p-group, then clearly so is that of

V . If the first section of C is a finite p-group, then the

intersection defining Nt needs only finitely many automorphisms and it

follows, as above, that G/N* is a finite p-group.

The following is an easy consequence of this.

LEMMA 2. Let G be an extension of a soluble group A by a soluble

group B . If A has a nilpotent chain of length u and B has a

nilpotent chain of length v , then G has a nilpotent chain of length

u + v . If, moreover, the first section of A and the last section of B

are finite p-groups for the same prime p , then G has a nilpotent chain

of length u + V - 1 .

THEOREM B. A soluble permutation group of degree n has a nilpotent

chain of length 3(n) = 2e(n) + [nA.3 ~ J where s{n) = [log- n]

whose first section is a 2-group for n < 7-3 and whose last

section is a 2-group for n > 1».3 ~ .

REMARK. More explicitly this says:

for 3.38 5 n < U.38 , there is a nilpotent chain of length

28(n) whose first section is a 2-group;

https://doi.org/10.1017/S0004972700044233 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044233


34 M. Frick and M.F. Newman

for It.3S £ « < 7.3S , there is a nilpotent chain of length
2s(n) + 1 whose f i r s t and las t sections are 2-groups;

for T.3S < n < 9.3S , there is a nilpotent chain of length
2e(n) + 1 whose l as t section is a 2-group.

THEOREM C. A completely reducible soluble linear group of degree n

has a nilpotent chain of length y(n) = 3 + 2t{n) + [nA.3 ] where

t(n) = [log- n/2] whose first section is a finite 2-group except possibly

when n . is 1 or 3 .

REMARK. Note that Y(l) = 1 . Y(2) = 3 and, for n > 3 ,

Y(n) = Y(n-D unless n = 2.3t(n) or l*.3t(n) when y(n) = Y(«-l) + 1 .

In particular Y ( « ) £ rc + 1 and y(n) + 1 £ Y(2n) for all n .

At one point in the following proof we need Theorem A (i) , so we now

prove that, if Theorem C holds up to degree n , then so does Theorem A

(i).

Proof of Theorem A (i) from Theorem C. Let G be a soluble linear

group of degree n . If G is completely reducible, then

V(G) £

= 3 + 2t(n) + [n/h.3tM] ,

£ it + 2r(n) + [(2n-l)/8.3r(n)]

because either t(n) = r(n) when the result is obvious or t{n) = r(n) + 1

when 12.3*"^ = lt.3*^ £ 2n , so 8.3r("^ £ 2n - 1 and the result

follows; hence v(G) £ C((rc) .

If G is not completely reducible, then n 2 2 and G contains a

nilpotent normal subgroup N such that G/N is isomorphic to a completely

reducible but not irreducible group of degree n ([I], Lemma l). Hence

£ 1 + \>(G/N) ,

£ 1 + Y ( « - 1 ) . because G/N is not irreducible,

£ U + 2t(n-l) + [(n-l)/h.3t{n'l)'\ ,

£ It + 2r(n) + [(2n-l)/8.3r(n^] , because t(n-l) £ r(n) ,
£ a(n) .
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Theorems B and C are proved by (a somewhat indirect) induction on the

degree n . Theorem B is clearly true for n € {l, 2, 3, k] and Theorem C

is true for n = 1 . Two inductive statements are proved:

I. For n i 5 , Theorem B is true provided it is true for all

integers less than n and Theorem C is true for all integers less than

n - 3 ;

II. For n 2 2 , Theorem C is true provided it, and therefore also

Theorem A (i), is true for all integers less than n and Theorem B is true

for all integers less than n + 3 •

Proof of I. Let G be a soluble permutation group of degree n ,

n i 5 • It is sufficient to consider the case when G is transitive, and

then there are two cases.

(I.I). If G is imprimitive and G has k sets of imprimitivity

(l < k < n) of degree m = n/k , then G is isomorphic to a subgroup of

the permutational wreath product M wr K , where M and K are soluble

permutation groups of degrees m and k respectively ([Z], Satz II.1.2).

Hence G is an extension of a direct product of copies of M by K .

Therefore, by Lemma 2, G has a nilpotent chain of length ( )

and one of length 3(fe) + $(m) - 1 when k > U-3 and

7i < 7.3 . Moreover there is such a chain whose first section is a

2-group whenever k < 7.3 and whose last section is a 2-group

_ 1 _s(m)-l
whenever » i l 3

There are nine cases which may be summed up in the table on page 36.

If a group has a nilpotent chain of length u , then it also has a

nilpotent chain of length u + 1 whose first (or last) section is a

(trivial) 2-group. This observation is used without further comment

below.

In Case 1 of the table, n 5 3 8^' + s ^ m ^ s o e( M) > 8(fc) + e( m) ^

the result follows. In Cases 2, h, 5, n > ^^sW+eM-1 a n d G has &

nilpotent chain of length 2s(k) + 2s(m) + 1 whose first and last sections

are 2-groups as required. The result follows similarly in Cases 3, 7.
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„ _ oe(fc)+s(m)-lbecause n 2: 7.3

and in Case 9 because n > 1*.3'

n £ 3
e(fc)+S(m)+l

1

2

3

k

5

6

7

8

9

[3, k)

[h, 7)

[7, 9)

m

[3, U)

[»», 7)

[7, 9)

[3, h)

[h, 7)

[7, 9)

[3, k)

[h, 7)

[7, 9)

G has.

of length

2sW+2sW
2s(k)+2sM+l

2sU)+2s(m)+l

2e(fe)+28(m)

2e(fe)+2e(m)+l

2s(fe)+2e(m)+2

2s(fe)+2s(m)+l

2s(fe)+2s(m)+2

> a nilpotent chain

whose first
section is a

2-group

2-group

2-group

2-group

2-group

2-group

whose last
section is a

2-group

2-group

2-group

2-group

2-group

2-group

Here [a, b) in the column headed k indicates

R(lf)-"\

3
R

a.3
£ k < fc.3 , and similarly for the column headed m .

(1.2). If G is 'primitive, then n = p for some prime p and

positive integer k and G has a self-centralizing minimal normal

subgroup A of order p . Thus G/A can be regarded as a subgroup of

autd in the usual way, that is, G/A is isomorphic to an irreducible

subgroup of GL(fc, p) . (See [2], Satz II.3.2 or [/], p. 151*.)

Since k S n - h (because n i 5) , it follows by the induction

hypothesis that G has a nilpotent chain of length Y(&) + 1 whose first

section is a 2-group when k f 1, 3 .

If k = 1 , then G/A is abelian, so G has a nilpotent chain of

length 2 . Since 6(7) = 3 and &(n) el* for n > 7 , G has a

nilpotent chain of length 8(n) whose last section is a 2-group when

n > 7 and whose first and last sections are 2-groups when n > 7 , so the
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result is proved for n 2 7 . If n = 5 , then G/4 is isomorphic to a

subgroup of autC,. , so G/A is a 2-group; hence G has a nilpotent

chain of length 3 whose first and last sections are 2-groups, as

required.

If k > 2 and p i 3 , then 3* S n < 3
s ( " ) + 1 , s o fc £ s(n) .

Therefore y(fe) + 1 5 k + 2 £ 2 k £ 2e(rt) , and the result follows.

If p = 2 , then 4 is a 2-group, so the result will follow whenever

+ 1 £ 3(n) . Now 2 k = n < 3
s ( n + l ) , hence

k < (s(n)+l) log2 3 < 5(eCw)+l}/3 , therefore k < 2sM when s(n) > 2 ,

that is, when k > 1* . When fc > U , then y(k) < k - 1 and hence

y(k) + 1 < k < 2e(n) < 3(n) , so the result follows when k > k . When

k = h , however, the result also follows, since y(h) + 1 = 5 = 6(2 ) .

The only case, then, that remains to be considered is the case

n = 2 . In this case A is of order 8 and G/A acts as a permutation

group on the seven non-identity elements of A . Hence, by the induction

hypothesis, G/A has a nilpotent chain of length 3 whose last section is

a 2-group. Since A is also a 2-group, it follows by Lemma 2 that G

has a nilpotent chain of length 3 whose last section is a 2-group, as

required.

Proof of II. Let G be a completely reducible linear group of degree

n , n > 1 . We may assume that the underlying field is algebraically-

closed (remark after Lemma 2 of [1]). It is enough to consider the case

when G is irreducible, and then there are two cases.

(II.I). If G ie imprirrri.ti.ve with a system of imprimitivity

consisting of k (l < k £ n) subspaces of dimension m = n/k , then G

has a normal subgroup N which is isomorphic to a subgroup of a direct

product of completely reducible soluble linear groups of degree m and

G/N is a soluble permutation group of degree k (see [/], p. 155). Since

k £ n and m < n , Theorems B and C may now be invoked to give information

about the nilpotent chains of N and G/N . The result follows by a

routine checking of cases, in essentially the same manner as in (l.l).
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ki kh
(11.2). If G is primitive, let n = p " ... p, be the canonical

prime factorization of n . E(y a result of Suprunenko ([6], Theorems 9 and

ll), G has a nilpotent normal subgroup A such that

(i) G/A is isomorphic to a subgroup of the direct product of the

symplectic groups Spfefc., p.) , i i {l, ..., h] ;

(ii) A/Z(G) is a direct product of abelian groups of order

2.1.

Pi * . « « fi « ; o < Z£ 5 ̂  .

Jf fc > 2 , set fe = max k. . Then n > 2 .3 and hence 2k < n , so

i t follows by the induction hypothesis that G has a nilpotent chain of

length a(2/c) + 1 . The resul t in this case follows by observing that

+ 2 < Y ( « ) ; because a(2) + 2 < y(2.3) and, for k > 1 ,

If h = 1 , then n = p , say. In th is case A/Z{G) i s a p-group

and G/A i s isomorphic to a subgroup of Sp(2?c, p) . Therefore G/A

contains a normal p-group B/A such that G/B i s isomorphic to a

completely reducible subgroup of GL(2k, p) ( [7 ] , Lemma l ) . Since B/Z(.G)
o

is a p-group, £ is nilpotent. Consequently, if n # 2, 2 (so that

2k < n ), it follows that G has a nilpotent chain of length Y(2fe) + 1

whose first section is a 2-group.

If Y(2fe) + 1 £ Y(p ) , then

Y(2fe+2) + 1 £ Y(2fc) + 2 £ Y(P ) + 1 £ Y(p + ) ;

but Y(8) + 1 £ y{2k) , Y C O + 1 £ Y(32) and Y(2) + 1 £ Y(p) for

p i 5 . So Y(2fe) + 1 £ Y(p ) and the result follows except for

2 3
n = 2, 3, 2 , 2 . We consider these remaining cases separately.

(i) n = 2 ; In this case G/A is isomorphic to a subgroup of

Sp(2, 2) , and the result follows since Sp(2, 2) is a group of order 6 .

(ii) n = 3 ; The result is immediate since Sp(2, 3) has nilpotent

length 2 .
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(iii) n = k : Since Sp(t, 2) is isomorphic to S, ([2], Satz

II.9.21), G has a nilpotent chain of length 8(6) + 1 = k , whose first

section is a 2-group, as required.

(iv) n = 8 : In this case G/B is isomorphic to a completely

reducible subgroup G of GL(6, 2) . It suffices to show that G has a

nilpotent chain of length 1* whose first section is a 2-group. Let F

be the algebraic closure of GF(2) .

If G is reducible over F , the result follows immediately since

y(n) 5 h for n < 6 .

If G is irreducible and primitive, Suprunenko's result implies that

G has a nilpotent normal subgroup A such that G/A is isomorphic to a

subgroup of Sp(2, 2) x Sp(2, 3) . Such a subgroup has nilpotent length

2 . The result follows.

If G is irreducible and vmprvmitive, then G has a normal subgroup

ff which is isomorphic to a subgroup of a direct product of completely

reducible soluble linear groups of degree m = 1, 2 or 3 and G/N is a

soluble permutation group of degree 6, 3 or 2 respectively. If m = 1

or 3 , the result comes at once for Y(l) + 3(6) = Y(3) + B(2) = h and

the corresponding chains have first section a finite 2-group. A

completely reducible soluble linear group of degree 2 over an

algebraically closed field of characteristic 2 is either reducible and

then abelian or irreducible and then metabelian ([/], p. 156). The result

follows as before.

3. Examples

LEMMA 3. Let A be a finite soluble group of nilpotent length u

and B a finite soluble permutation group of nilpotent length v . Let G

be the permutational wreath product of A by B .

(i) v(C) = u + v or u + v - 1 .

(ii) v(G) = u + v - 1 if and only if A has a nilpotent chain of

length u whose first section is a p-group and B has a nilpotent chain

of length v whose last section is a p-group for the same prime p .

Proof. 3y Lemma 2 , v(C) < u + V and v(G) 5 u + v - 1 when the
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conditions in (ii) hold. So i t remains to show

(a) v(G) > u + v - 1 and

(b) v(G) = u + v - 1 implies the conditions in (ii) hold.

(a). The upper nilpotent series of a finite group H will be written

E = FQ(H) < F^H) £ ... 5 *\(ff) < ...

where F. (H)/P.(H) is the Fitting radical of H/F.(H) . Let Z? be the

base group of G ; then D = A^. x ... x ,4 where fe is the degree of B

and each A. is an isomorphic copy of A . We show first that

i;'u_1(G) = FU_±(.
D) - Since £> 3 G , it follows that

F AG) n D = F AD) . Now suppose a « F ,(£)£> n B and a ̂  1 .

Without loss of generality we may assume 10 = 2 . Since V(/})=« , there

is an element a in A\F (A) . Let a. be the copy of a in A. ;

then a. f Fw - 1 (4^) and a° = a . Take d f D , so ad € F AG) . Then

a^orf)^1 = (od)afcq1 € ̂ ^ ( C ) . Hence a ^ 1 € ̂ ( O n D = ̂ ( O •

But

so a € F J . T C ' O • This contradiction implies F ^(G)/? n B = E and

hence F AG) = F (Z3) . Since D has n i lpotent length u ,

D < F (C) . Put V = V(C) . The chain

G/Z? = FA.O/D > F^O/D > ... > Fu(G)/D > E

i s a n i lpotent chain of length V - u + 1 . Since G/D i s isomorphic to

B and v(B) = i> , i t follows that v - u + 1 > y and so v > w + y - l

as required.

(b) . If V = M + y - 1 , then ^M(G) * D because v(B) = v . Now

Fw(G) = D[FAG)nB) , so the nilpotent group Fu(G)/F^_A.G) i s isomorphic

t o the semidirect product [D/Fu_A.G)) [Fti(G)cB) (with the action on
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D/F (G) induced from that on D ) . Hence D/F (D) and ** (£) n B

are p-groups for the same prime p . Therefore A/F (A) and F (G) n B

are p-groups for the same prime p . Thus

A >Fu_1(A) >Fu_2(A) > ... >E

and

B > ?v_1(<?) n B > ... > F M ( G ) n B > E

are nilpotent chains of the required kind.

We now construct examples to show the bounds in Theorems B and C are

best possible and use these to prove Theorem A (ii).

For every positive integer s , the iterated wreath product

S vr 5 wr ... wr 5 (s factors)

is a soluble permutation group of degree 3 which, by Lemma 3, has

nilpotent length 2s ; and the group

5, wr 5 wr ... wr 5 (s factors)

s—1
is a soluble permutation group of degree i*.3 with nilpotent length

2s + 1 . The length bound of Theorem B is therefore best possible. The

first of these examples has no nilpotent chain of length 2s whose last

section is a 2-group. Let D be the non-abelian group of order 21

considered as a permutation group of degree 7 . The group

S^ wr ... wr S wr D (e factors)

has no nilpotent chain of length 2e + 1 with first and last sections

2-groups. Thus the other conditions are also best possible.

If M is an irreducible linear group of degree m and K a

transitive permutation group of degree k , then the permutational wreath

product M vr K is an irreducible linear group of degree mk : for let W

be the underlying linear space of M and put V = ( / © . . . © W, where

each W. is a copy of W ; each element 0 of K can be regarded as an

element of autP by setting U.a = w. for all w. in W. and all i ;
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for each m in M let WK be the element of aut7 such that for all

w. in W.
3 3

w. for j t i
3

w m . = •
3 i

{wm). for 3 = i i
3

then M wr K = <m., a : m € M, i € {l, . .., k), a d K) ; since M acts

irreducibly on W and if is transitive, M wr X acts irreducibly on 7 .

Let t be a positive integer. The linear group GL(2, 3) has only-

one nilpotent chain of length 3 and its first section is a 2-group.

Hence

GL(2, 3) wr S wr ... wr 5 (t+1 factors)

is an irreducible linear group of degree 2.3 with nilpotent length

2t + 3 . Such an example can be constructed over many fields because

GL(2, 3) has a faithful irreducible representation of degree 2 over

every field in which there is a primitive fourth root of unity and a square

root of 2 . Let M be any linear group of degree 1 which is not a

2-group; then

M wr 5, wr S wr . .. wr S (t+2 factors )

is an irreducible linear group of degree 4.3 with nilpotent length

2t + h . These examples show that the bound in Theorem C is best possible.

Theorem A (ii) is an immediate consequence of the above examples and

the corollary to the following lemma.

LEMMA 4. Let G be an irreducible linear group of degree n .

There is a linear group H of degree n + 1 containing a non-trivial

abelian normal subgroup A such that Hi A is isomorphio to G and every

nilpotent normal subgroup of H is contained in A .

COROLLARY. If there is an irreducible soluble linear group of degree

n and nilpotent length t , then there is a soluble linear group of degree

n + 1 and nilpotent length t + 1 .

Proof of Lemma 4. Let F denote the field and W the linear space
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underlying G . Put V = F © W . For each 0 € W* (the dual of W ) and

g i G define the map (a, g) : V •* V by

(/, w)(a, g) = (/+wa, ug) for all (/, w) € 7 .

Then ff = {(a, g) : a € (/*, 3 € £} is a subgroup of autP and so linear

of degree n + 1 . Clearly 4 = {(a, e) : o € V } is an abelian normal

subgroup of H such that H/A is isomorphic to G . Let tf be a normal

subgroup of H not contained in A . The space

U = {u-wx : u € V, (a, x) € ff} is a non-trivial G-invariant subspace of

W . Since G is irreducible on W , U = U . Thus, for every non-trivial

element (T, e) of A there is a W in W and a (a, x) in tf such

that (wx~ -w)i 4- 0 . Hence the commutator

[(T, e ) , (a, x)] = (x~ T-T, e) * (0, e) . This can be repeated to give a

sequence [oQ, xQ), (a , x.), ... of elements of N such that

[(T, e), (aQ, xQ) (ô ., â .J] ̂  (0, «)

for all j . Thus HA is not nilpotent and therefore N is not

nilpotent.
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