

On the Continuity of the Eigenvalues of a Sublaplacian

Amine Aribi, Sorin Dragomir, and Ahmad El Soufi

Abstract. We study the behavior of the eigenvalues of a sublaplacian Δ_b on a compact strictly pseudoconvex CR manifold M, as functions on the set \mathcal{P}_+ of positively oriented contact forms on M by endowing \mathcal{P}_+ with a natural metric topology.

1 Introduction

Let *M* be a compact strictly pseudoconvex CR manifold, of CR dimension *n*, without boundary. Let \mathcal{P} be the set of all C^{∞} pseudohermitian structures on *M*. Every $\theta \in \mathcal{P}$ is a contact form on *M*, *i.e.*, $\theta \wedge (d\theta)^n$ is a volume form. Let \mathcal{P}_{\pm} be the sets of $\theta \in \mathcal{P}$ such that the Levi form G_{θ} is positive definite (respectively, negative definite). For $\theta \in \mathcal{P}_{+}$, let Δ_b be the sublaplacian

(1)
$$\Delta_b u = -\operatorname{div}(\nabla^H u)$$

of (M, θ) acting on smooth real valued functions $u \in C^{\infty}(M, \mathbb{R})$. As Δ_b is a subelliptic operator (of order 1/2) it has a discrete spectrum

$$0 = \lambda_0(\theta) < \lambda_1(\theta) \le \lambda_2(\theta) \le \dots \uparrow +\infty$$

(the eigenvalues of Δ_b are counted with their multiplicities). Each eigenvalue $\lambda_{\nu}(\theta)$, $\nu = 0, 1, 2, \ldots$, is thought of as a function of $\theta \in \mathcal{P}_+$. We shall deal mainly with the following problem: *Is there a natural topology on* \mathcal{P}_+ *such that each eigenvalue function* $\lambda_{\nu} \colon \mathcal{P}_+ \to \mathbb{R}$ *is continuous*? The analogous problem for the spectrum of the Laplace–Beltrami operator on a compact Riemannian manifold was solved by S. Bando and H. Urakawa [2], and our main result is imitative of their Theorem 2.2 (cf. [2, p. 155]). We shall establish the following.

Corollary 1 For every compact strictly pseudoconvex CR manifold M, the space of positively oriented contact forms \mathcal{P}_+ admits a natural complete distance function $d: \mathcal{P}_+ \times$ $\mathcal{P}_+ \to [0, +\infty)$ such that each eigenvalue function $\lambda_k: \mathcal{P}_+ \to \mathbb{R}$ is continuous relative to the d-topology.

By a result of J. M. Lee [8], for every $\theta \in \mathcal{P}_+$ there is a Lorentzian metric $F_{\theta} \in$ Lor(C(M)) (the Fefferman metric) on the total space C(M) of the canonical circle

Received by the editors April 23, 2012.

Published electronically September 21, 2012.

AMS subject classification: **32V20**, 53C56.

Keywords: CR manifold, contact form, sublaplacian, Fefferman metric.

bundle $S^1 \to C(M) \xrightarrow{\pi} M$. Also, if \Box is the Laplace–Beltrami operator of F_{θ} (the wave operator), then $\sigma(\Delta_b) \subset \sigma(\Box)$. Therefore the eigenvalues λ_k may be thought of as functions $\lambda_k^{\uparrow} \colon \mathcal{C} \to \mathbb{R}$ on the set $\mathcal{C} = \{F_{\theta} \in \text{Lor}(C(M)) : \theta \in \mathcal{P}_+\}$ of all Fefferman metrics on C(M). On the other hand, Lor(C(M)) may be endowed with the distance function d_g^{∞} considered by P. Mounoud [10] (associated to a fixed Riemannian metric g on C(M)), and hence $(\mathcal{C}, d_g^{\infty})$ is itself a metric space. It is then a natural question whether λ_k^{\uparrow} are continuous functions relative to the d_g^{∞} -topology.

The paper is organized as follows. In Section 2, we recall the needed material on CR and pseudohermitian geometry. The distance function *d* (in Corollary 1) is built in Section 3. In Section 4, we establish a Max-Mini principle (*cf.* Proposition 2) for the eigenvalues of a sublaplacian. Then Corollary 1 follows from Theorem 1 in Section 5. In Section 6, we prove the continuity of the eigenvalues with respect to the Fefferman metric (*cf.* Corollary 2), though only as functions on $C_+ = \{e^{u \circ \pi} F_{\theta_0} : u \in C^{\infty}(M, \mathbb{R}), u > 0\}.$

2 Review of CR and Pseudohermitian Geometry

Let $(M, T_{1,0}(M))$ be a CR manifold, of CR dimension *n*, where $T_{1,0}(M) \subset T(M) \otimes \mathbb{C}$ is its CR structure, *cf.*, *e.g.*, [5, pp. 3–4]. The *Levi distribution* is

$$H(M) = \Re\{T_{1,0}(M) \oplus T_{1,0}(M)\}.$$

The Levi distribution carries the complex structure $J: H(M) \rightarrow H(M)$ given by $J(Z-\overline{Z}) = i(Z-\overline{Z})$ for any $Z \in T_{1,0}(M)$ (here $i = \sqrt{-1}$). A pseudohermitian *structure* is a globally defined nowhere zero section $\theta \in C^{\infty}(H(M)^{\perp})$ in the conormal bundle $H(M)^{\perp} \subset T^*(M)$. Pseudohermitian structures do exist by the mere assumption that M be orientable. Let \mathcal{P} be the set of all pseudohermitian structures on M. As $H(M)^{\perp} \to M$ is a real line bundle for any $\theta, \theta_0 \in \mathcal{P}$ there is a C^{∞} function $\lambda: M \to \mathbb{R} \setminus \{0\}$ such that $\theta = \lambda \theta_0$. Given $\theta \in \mathcal{P}$ the *Levi form* is $G_{\theta}(X,Y) = (d\theta)(X,JY)$ for every $X,Y \in \mathfrak{X}(M)$. Then $G_{\lambda\theta_0} = \lambda G_{\theta_0}$. The CR manifold *M* is *strictly pseudoconvex* if G_{θ} is positive definite (write $G_{\theta} > 0$) for some $\theta \in \mathcal{P}$. If M is strictly pseudoconvex then each $\theta \in \mathcal{P}$ is a contact form, *i.e.*, $\Psi_{\theta} = \theta \wedge (d\theta)^n$ is a volume form on M. Clearly, if G_{θ} is positive definite then $G_{-\theta}$ is negative definite. Hence \mathcal{P} admits a natural orientation \mathcal{P}_+ ($G_\theta > 0$ for each $\theta \in \mathcal{P}_+$). Let M be a strictly pseudoconvex CR manifold and $\theta \in \mathcal{P}_+$. The *Reeb vector* field is the globally defined, nowhere zero, tangent vector field $T \in \mathfrak{X}(M)$, transverse to H(M), determined by $\theta(T) = 1$ and $(d\theta)(T, X) = 0$ for any $X \in \mathfrak{X}(M)$ (cf. [5, Proposition 1.2, p. 8]). The Webster metric is the Riemannian metric g_{θ} on M given by

$$g_{\theta}(X,Y) = G_{\theta}(X,Y), \quad g_{\theta}(X,T) = 0, \ g_{\theta}(T,T) = 1,$$

for every $X, Y \in H(M)$. Let $S^1 \to C(M) \xrightarrow{\pi} M$ be the canonical circle bundle (*cf.* [5, Definition 2.9, p. 119]). For every $\theta \in \mathcal{P}_+$ there is a Lorentzian metric F_θ on C(M) (the *Fefferman metric*, *cf.* [5, Definition 2.15, p. 128]) such that the set $\mathcal{C} = \{F_\theta : \theta \in \mathcal{P}_+\}$ of all Fefferman metrics is given by $\mathcal{C} = \{e^{u \circ \pi} F_\theta : u \in C^\infty(M, \mathbb{R})\}$ for

each fixed contact form $\theta \in \mathcal{P}_+$ (by a result of Lee [8], or [5, Theorem 2.3, p. 128]). \mathcal{C} is also referred to as the *restricted conformal class* of F_{θ} and it is a CR invariant.

If $u \in C^{\infty}(M, \mathbb{R})$ then the *horizontal gradient* $\nabla^{H}u \in C^{\infty}(H(M))$ is given by $\nabla^{H}u = \Pi_{H}\nabla u$. Here $\Pi_{H}: T(M) \to H(M)$ is the projection relative to the decomposition $T(M) = H(M) \oplus \mathbb{R}T$ and ∇u is the gradient of u with respect to the Webster metric, *i.e.*, $g_{\theta}(\nabla u, X) = X(u)$ for any $X \in \mathfrak{X}(M)$. The divergence operator div: $\mathfrak{X}(M) \to C^{\infty}(M, \mathbb{R})$ is meant with respect to the volume form Ψ_{θ} , *i.e.*, $\mathcal{L}_{X}\Psi_{\theta} = \operatorname{div}(X)\Psi_{\theta}$ for any $X \in \mathfrak{X}(M)$. The *sublaplacian* Δ_{b} of (M, θ) is then the formally self-adjoint, second order, degenerate elliptic (in the sense of J. M. Bony [4]) operator given by $\Delta_{b}u = -\operatorname{div}(\nabla^{H}u)$ for any $u \in C^{\infty}(M, \mathbb{R})$. A systematic application of functional analysis methods to the study of sublaplacians (on domains in strictly pseudoconvex CR manifolds) was started in [3]. By a result following essentially from work in [9] (*cf.* also [12]), if M is compact, then Δ_{b} has a discrete spectrum $\sigma(\Delta_{b}) = \{\lambda_{\nu}: \nu \geq 0\}$ such that $\lambda_{0} = 0$ and $\lambda_{\nu} \uparrow +\infty$ as $\nu \to \infty$.

3 A Topology on the Space of Oriented Contact Forms

Let $\{U_{\lambda}\}_{\lambda \in \Lambda}$ be a finite open covering of M such that the closure of each U_{λ} is contained in a larger open set V_{λ} which is both the domain of a local frame $\{X_a : 1 \leq a \leq 2n\} \subset C^{\infty}(V_{\lambda}, H(M))$ with $X_{\alpha+n} = JX_{\alpha}$ for any $1 \leq \alpha \leq n$, and a coordinate neighborhood with the local coordinates (x^1, \ldots, x^{2n+1}) . For each point $x \in M$, let P_x (respectively S_x) be the set of all symmetric positive definite (respectively merely symmetric) bilinear forms on $T_x(M)$. Let us consider the anti-reflexive partial order relation on S_x defined by

$$\varphi < \psi \iff \psi - \varphi \in P_x, \quad \varphi, \psi \in S_x.$$

Next let $\rho''_x : P_x \times P_x \to [0, +\infty)$ be the distance function given by

$$\rho_x''(\varphi,\psi) = \inf\{\delta > 0 : \exp(-\delta)\varphi < \psi < \exp(\delta)\varphi\}$$

for any $\varphi, \psi \in P_x$. Then (P_x, ρ''_x) is a complete metric space (by [2, Lemma 1.1 (iii), p. 158]).

Let \mathcal{M} be the set of all Riemannian metrics on M, so that $g_{\theta} \in \mathcal{M}$ for every $\theta \in \mathcal{P}_+$. Following [2], one may endow \mathcal{M} with a complete distance function ρ . Indeed, as M is compact, one may set

$$ho^{\prime\prime}(g_1,g_2) = \sup_{x\in M}
ho^{\prime\prime}_x(g_{1,x},g_{2,x}), \quad g_1,g_2\in \mathfrak{M}.$$

Also let *S*(*M*) be the space of all C^{∞} symmetric (0, 2)-tensor fields on *M*, organized as a Fréchet space by the family of seminorms $\{ |\cdot|_k : k \in \mathbb{N} \cup \{0\} \}$, where

$$|g|_k = \sum_{\lambda \in \Lambda} |g|_{\lambda,k}, \quad |g|_{\lambda,k} = \sup_{x \in \overline{U}_\lambda} \sum_{|lpha| \leq k} |D^{lpha} g_{ij}(x)|,$$

where

$$D^{lpha}=\partial^{|lpha|}/\partial(x^1)^{lpha_1}\cdots\partial(x^{2n+1})^{lpha_{2n+1}},\quad g_{ij}=g(\partial/\partial x^i,\partial/\partial x^j)\in C^\infty(V_\lambda,\mathbb{R}),$$

for any $g \in S(M)$. The topology of S(M) as a locally convex space is compatible to the distance function

$$ho'(g_1,g_2) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{|g_1 - g_2|_k}{1 + |g_1 - g_2|_k}, \quad g_1,g_2 \in S(M).$$

In particular $(S(M), \rho')$ is a complete metric space. If

$$\rho(g_1, g_2) = \rho'(g_1, g_2) + \rho''(g_1, g_2)$$

then (\mathcal{M}, ρ) is a complete metric space (cf. [2, Proposition 2, p. 158]). Each metric $g \in \mathcal{M}$ determines a Laplace–Beltrami operator Δ_g , hence the eigenvalues of Δ_g may be thought of as functions of g and as such the eigenvalues are (by [2, Theorem 2.2, p. 161]) continuous functions on (\mathcal{M}, ρ) . To deal with the similar problem for the spectrum of a sublaplacian, we start by observing that the natural counterpart of \mathcal{M} in the category of strictly pseudoconvex CR manifolds is the set \mathcal{M}_H of all sub-Riemannian metrics on (M, H(M)). Nevertheless, only a particular sort of sub-Riemannian metric gives rise to a sublaplacian, *i.e.*, Δ_b is associated to $G_{\theta} \in \mathcal{M}_H$ for some positively-oriented contact form $\theta \in \mathcal{P}_+$. Of course $\mathcal{P}_+ \subset \Omega^1(M)$ and one may endow $\Omega^1(M)$ with the C^{∞} topology. One may then attempt to repeat the arguments in [2] (by replacing S(M) with $\Omega^1(M)$). The situation at hand is however much simpler since, once a contact form $\theta_0 \in \mathcal{P}_+$ is fixed, all others are parametrized by $C^{\infty}(M,\mathbb{R})$, *i.e.*, for any $\theta \in \mathcal{P}_+$ there is a unique $u \in C^{\infty}(M,\mathbb{R})$ such that $\theta = e^u \theta_0$. We may then use the canonical Fréchet space structure (and corresponding complete distance function) of $C^{\infty}(M,\mathbb{R})$. Precisely, for every $u \in C^{\infty}(M,\mathbb{R}), \lambda \in \Lambda$ and $k \in \mathbb{N} \cup \{0\}$ we set

$$p_{\lambda,k}(u) = \sup_{x \in \overline{U}_k} \sum_{|\alpha| \le k} |D^{\alpha}u(x)|,$$
$$p_k(u) = \sum_{\lambda \in \Lambda} p_{\lambda,k}(u), \quad |u|_{C^{\infty}} = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{p_k(u)}{1 + p_k(u)}.$$

If $\theta_0 \in \mathcal{P}_+$ is a fixed contact form then we set

$$d'(\theta_1, \theta_2) = |u_1 - u_2|_{C^{\infty}}, \quad \theta_1, \theta_2 \in \mathcal{P}_+,$$

where $u_i \in C^{\infty}(M, \mathbb{R})$ are given by $\theta_i = e^{u_i}\theta_0$ for any $i \in \{1, 2\}$. The definition of d' doesn't depend upon the choice of $\theta_0 \in \mathcal{P}_+$.

Lemma 1 (\mathcal{P}_+, d') is a complete metric space.

Proof Let $\{\theta_{\nu}\}_{\nu\geq 1}$ be a Cauchy sequence in (\mathcal{P}_{+}, d') . If $u_{\nu} \in C^{\infty}(M, \mathbb{R})$ is the function determined by $\theta_{\nu} = e^{u_{\nu}}\theta_{0}$ then (by the very definition of d') $\{u_{\nu}\}_{\nu\geq 1}$ is a Cauchy sequence in $C^{\infty}(M, \mathbb{R})$. Here $C^{\infty}(M, \mathbb{R})$ is organized as a Fréchet space by the (countable, separating) family of seminorms $\{p_{k} : k \in \mathbb{N} \cup \{0\}\}$. Hence there is

 $u \in C^{\infty}(M, \mathbb{R})$ such that $|u_{\nu} - u|_{C^{\infty}} \to 0$ as $\nu \to \infty$. Finally if $\theta = e^{u}\theta_{0} \in \mathcal{P}_{+}$ then $d'(\theta_{\nu}, \theta) \to 0$ as $\nu \to \infty$.

Let $S(H) \subset H(M)^* \otimes H(M)^*$ be the subbundle of all bilinear symmetric forms on H(M). For every $G \in C^{\infty}(S(H))$, $k \in \mathbb{Z}$, $k \ge 0$, and $\lambda \in \Lambda$ we set

$$|G|_{\lambda,k} = \sup_{x \in \overline{U}_{\lambda}} \sum_{|\alpha| \le k} \sum_{a,b=1}^{2n} |D^{\alpha}G_{ab}(x)|,$$
$$G|_{k} = \sum_{\lambda \in \Lambda} |G|_{\lambda,k}, \quad |G|_{C^{\infty}} = \sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{|G|_{k}}{1+|G|_{k}},$$

where $G_{ab} = G(X_a, X_b) \in C^{\infty}(V_{\lambda}, \mathbb{R})$. Moreover we set

$$\rho'_H(G_1, G_2) = |G_1 - G_2|_{C^{\infty}}, \quad G_1, G_2 \in C^{\infty}(S(H)).$$

Lemma 2 $\{ |\cdot|_k : k \in \mathbb{N} \cup \{0\} \}$ is a countable separating family of seminorms organizing $\mathfrak{X} = C^{\infty}(S(H))$ as a Fréchet space. In particular (\mathfrak{X}, ρ'_H) is a complete metric space.

Proof For each $k \in \mathbb{N} \cup \{0\}$ and $N \in \mathbb{N}$ we set

(2)
$$V(k,N) = \{G \in \mathfrak{X} : |G|_k < 1/N\}.$$

Let \mathcal{B} be the collection of all finite intersections of sets (2). Then \mathcal{B} is (*cf.*, *e.g.*, [11, Theorem 1.37, p. 27]) a convex balanced local base for a topology τ on \mathfrak{X} that makes \mathfrak{X} into a locally convex space such that every seminorm $|\cdot|_k$ is continuous and a set $E \subset \mathfrak{X}$ is bounded if and only if every $|\cdot|_k$ is bounded on *E*. The topology τ is compatible with the distance function ρ'_H . Let $\{G_m\}_{m\geq 1} \subset \mathfrak{X}$ be a Cauchy sequence relative to ρ'_H . Thus, for every fixed $k \in \mathbb{N} \cup \{0\}$ and $N \in \mathbb{N}$ one has $G_m - G_p \in V(k, N)$ for *m*, *p* sufficiently large. Consequently

$$egin{aligned} &|D^{lpha}(G_m)_{ab}(x) - D^{lpha}(G_p)_{ab}(x)| < 1/N, \ &x \in \overline{U}_{\lambda}, \; \lambda \in \Lambda, \; |lpha| \leq k, \; 1 \leq a, b \leq 2n. \end{aligned}$$

It follows that each sequence $\{D^{\alpha}(G_m)_{ab}\}_{m\geq 1}$ converges uniformly on \overline{U}_{λ} to a function G_{ab}^{α} . In particular for $\alpha = \mathbf{0}$ one has $(G_m)_{ab}(x) \to G_{ab}^{\mathbf{0}}(x)$ as $m \to \infty$, uniformly in $x \in \overline{U}_{\lambda}$. If $\lambda, \lambda' \in \Lambda$ are such that $U_{\lambda} \cap U_{\lambda'} \neq \emptyset$ and

$$X'_{b} = A^{a}_{b}X_{a}, \quad A \equiv [A^{a}_{b}] \colon U_{\lambda} \cap U_{\lambda'} \to \operatorname{GL}(2n, \mathbb{R}),$$

is a local transformation of the frame in H(M) then

$$(G_m)'_{ab} = A^c_a A^d_b (G_m)_{cd}$$
 on $U_\lambda \cap U_{\lambda'}$

so that (for $m \to \infty$) $G'^{\mathbf{0}}_{ab} = A^c_a A^d_b G^{\mathbf{0}}_{cd}$ on $U_\lambda \cap U_{\lambda'}$. Thus $G^{\mathbf{0}}_{ab} \in C^{\infty}(U_\lambda)$ glue up to a (globally defined) bilinear symmetric form $G^{\mathbf{0}}$ on H(M) and $G_m \to G^{\mathbf{0}}$ in \mathfrak{X} as $m \to \infty$.

For each point $x \in M$, let $P(H)_x$ be the set of all symmetric positive definite bilinear forms on $H(M)_x$. We endow $S(H)_x$ with the anti-reflexive partial order relation

$$\varphi < \psi \iff \psi - \varphi \in P(H)_x, \quad \varphi, \psi \in S(H)_x.$$

Next let $\rho_x'': P(H)_x \times P(H)_x \to [0, +\infty)$ be given by

$$\rho_x''(\varphi,\psi) = \inf\{\delta > 0 : \exp(-\delta)\varphi < \psi < \exp(\delta)\varphi\}$$

for any $\varphi, \psi \in P(H)_x$.

Lemma 3 $\rho_x^{\prime\prime}$ is a distance function on $P(H)_x$.

Proof As $e^{-\delta}\varphi < \psi < e^{\delta}\varphi$ is equivalent to $e^{-\delta}\psi < \varphi < e^{\delta}\psi$, it follows that ρ''_x is symmetric. To prove the triangle inequality we assume that $\rho''_x(\varphi, \psi) > \rho''_x(\varphi, \chi) + \rho''(\chi, \psi)$ for some $\varphi, \psi, \chi \in P(H)_x$. Then

$$\rho_x''(\varphi,\psi) - \rho_x''(\varphi,\chi) > \inf\{\delta > 0 : \exp(-\delta)\chi < \psi < \exp(\delta)\chi\},\$$

hence there is $\delta_2 > 0$ such that $e^{-\delta_2}\chi < \psi < e^{\delta_2}\chi$ and $\rho''_x(\varphi, \psi) - \rho''_x(\varphi, \chi) > \delta_2$. Similarly,

$$\rho_x''(\varphi,\psi) - \delta_2 > \inf\{\delta > 0 : \exp(-\delta)\varphi < \chi < \exp(\delta)\varphi\}$$

yields the existence of a number $\delta_1 > 0$ such that $e^{-\delta_1}\varphi < \chi < e^{\delta_1}\varphi$ and $\rho''_x(\varphi, \psi) - \delta_2 > \delta_1$. Let us set $\delta \equiv \delta_1 + \delta_2$. The inequalities written so far show that $e^{-\delta}\varphi < \psi < e^{\delta}\varphi$ and $\rho''_x(\varphi, \psi) > \delta$, a contradiction. Finally, let us assume that $\rho''_x(\varphi, \psi) = 0$, so that for any $k \in \mathbb{N}$,

$$\inf\{\delta > 0 : \exp(-\delta)\varphi < \psi < \exp(\delta)\varphi\} < 1/k$$

i.e., there is $\delta_k > 0$ such that $e^{-\delta_k}\varphi < \psi < e^{\delta_k}\varphi$ and $\delta_k < 1/k$. Thus $\lim_{k\to\infty} \delta_k = 0$ and $\psi - e^{-\delta_k}\varphi \in P(H)_x$ shows (by passing to the limit with $k \to \infty$ in $\psi(v, v) - e^{-\delta_k}\varphi(v, v) > 0$, $v \in H(M)_x \setminus \{0\}$) that $\varphi < \psi$. Similarly $e^{\delta_k}\varphi - \psi \in P(H)_x$ yields $\psi < \varphi$ in the limit, and we may conclude that $\varphi = \psi$. Vice versa, if $\varphi \in P(H)_x$ then

$$\{\delta > 0: (1 - e^{-\delta})\varphi, (e^{\delta} - 1)\varphi \in P(H)_x\} = (0, +\infty),$$

hence $\rho_x^{\prime\prime}(\varphi,\varphi) = 0.$

Lemma 4

(i) $(P(H)_x, \rho''_x)$ is a complete metric space.

(ii) Let $\{\varphi_j\}_{j\in\mathbb{N}} \subset P(H)_x$ such that $\lim_{j\to\infty} \varphi_j = \varphi \in P(H)_x$ in the ρ''_x -topology. Then $\lim_{j\to\infty} \varphi_j(v,w) = \varphi(v,w)$ for any $v, w \in H(M)_x$.

Proof (i) Let $\{\varphi_j\}_{j\in\mathbb{N}} \subset P(H)_x$ be a Cauchy sequence in the ρ''_x -topology, *i.e.*, for any $\epsilon > 0$ there is $j_{\epsilon} \in \mathbb{N}$ such that $\rho''_x(\varphi_{j+p}, \varphi_j) > \epsilon$ for any $j \ge j_{\epsilon}$ and any $p = 1, 2, \ldots$. Hence there is $\delta_{\epsilon} > 0$ such that $e^{-\delta_{\epsilon}}\varphi_j < \varphi_{j+p} < e^{\delta_{\epsilon}}\varphi_j$ and $\delta_{\epsilon} < \epsilon$. Consequently

$$\left|\log \varphi_{j+p}(v,v) - \log \varphi_j(v,v)\right| < \delta_{\epsilon} < \epsilon$$

for any $v \in H(M)_x \setminus \{0\}$. Therefore if

$$\xi_j \equiv \left(\log \varphi_j(v, v), \dots, \log \varphi_j(v, v)\right) \in \mathbb{R}^{2n}$$

then $\{\xi_i\}_{i\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R}^{2n} . Let then $\xi = \lim_{i\to\infty} \xi_i$ and let

$$\varphi \colon H(M)_x \times H(M)_x \to \mathbb{R}$$

be the bilinear form given by $\varphi(v, v) = \exp(\xi^a)$ for any $v \in H(M)_x \setminus \{0\}$ followed by polarization. Here $\xi = (\xi^1, \dots, \xi^{2n})$. Then $\varphi \in P(H)_x$ and $\lim_{j\to\infty} \varphi_j = \varphi$ in the ρ''_x -topology.

(ii) If $\varphi_j \to \varphi$ as $j \to \infty$ then $\log \varphi_j(v, v) \to \log \varphi(v, v)$ as $j \to \infty$, for any $v \in H(M)_x \setminus \{0\}$. Then $\lim_{j\to\infty} \varphi_j(v, v) = \varphi(v, v)$ uniformly in v and statement (ii) follows by polarization.

As M is compact we may set

$$\begin{aligned} \rho_{H}^{\prime\prime}(G_{1},G_{2}) &= \sup_{x \in M} \rho_{x}^{\prime\prime}(G_{1,x},G_{2,x}), \\ \rho_{H}(G_{1},G_{2}) &= \rho_{H}^{\prime}(G_{1},G_{2}) + \rho_{H}^{\prime\prime}(G_{1},G_{2}), \quad G_{1},G_{2} \in \mathcal{M}_{H}. \end{aligned}$$

Also let *d* be the distance function on \mathcal{P}_+ given by

$$d(heta_1, heta_2) = d'(heta_1, heta_2) +
ho_H''(G_{ heta_1},G_{ heta_2}), \quad heta_1, heta_2 \in \mathbb{P}_+.$$

Proposition 1

(i) (\mathcal{M}_H, ρ_H) is a complete metric space.

(ii) The map $\theta \in \mathbb{P}_+ \mapsto G_{\theta} \in \mathbb{M}_H$ of (\mathbb{P}_+, d) into (\mathbb{M}_H, ρ_H) is continuous.

(iii) (\mathcal{P}_+, d) is a complete metric space.

Proof (i) Let $\{G_j\}_{j\geq 1}$ be a Cauchy sequence in (\mathcal{M}_H, ρ_H) . Then $\{G_j\}_{j\geq 1}$ is a Cauchy sequence in both (\mathfrak{X}, ρ'_H) and $(\mathcal{M}_H, \rho''_H)$. Yet (\mathfrak{X}, ρ'_H) is complete (by Lemma 2). Thus $\rho'_H(G_j, G) \to 0$ as $j \to \infty$ for some $G \in \mathfrak{X}$. In particular

$$\lim_{j\to\infty}G_{j,x}(\nu,w)=G_x(\nu,w)$$

for every $x \in M$ and $v, w \in H(M)_x$. On the other hand, as $\{G_j\}_{j\geq 1}$ is Cauchy in $(\mathcal{M}_H, \rho''_H)$, for every $\epsilon > 0$ there is $N_\epsilon \geq 1$ such that

$$\rho_x''(G_{i,x}, G_{j,x}) \le \rho_H''(G_i, G_j) < \epsilon$$

for every $i, j \ge N_{\epsilon}$ and $x \in M$. Thus $\{G_{j,x}\}_{j\ge 1}$ is Cauchy in the complete (by Lemma 4) metric space $(P(H)_x, \rho''_x)$ so that $\rho''_x(G_{j,x}, \varphi) \to 0$ as $j \to \infty$ for some $\varphi \in P(H)_x$. Then (by (iii) in Lemma 4) $\lim_{j\to\infty} G_{j,x}(v,w) = \varphi(v,w)$ for every $v, w \in H(M)_x$, hence $G_x = \varphi$, yielding $G \in \mathcal{M}_H$.

(ii) Let $\{\theta_{\nu}\}_{\nu\geq 1} \subset \mathcal{P}_{+}$ such that $d(\theta_{\nu}, \theta) \to 0$ for $\nu \to \infty$ for some $\theta \in \mathcal{P}_{+}$. If $\theta_{\nu} = e^{u_{\nu}}\theta_{0}$ and $\theta = e^{u}\theta_{0}$, then $|u_{\nu} - u|_{C^{\infty}} \to 0$ as $\nu \to \infty$. Then $G_{\theta_{\nu}} = e^{u_{\nu}}G_{\theta_{0}}$ and $G_{\theta} = e^{u}G_{\theta_{0}}$. Since $D^{\alpha}u_{\nu} \to D^{\alpha}u$ as $\nu \to \infty$, uniformly on \overline{U}_{λ} , for any $\lambda \in \Lambda$, $|\alpha| \leq k$, and $k \in \mathbb{N} \cup \{0\}$, it follows that $D^{\alpha}(G_{\theta_{\nu}})_{ab} \to D^{\alpha}(G_{\theta})_{ab}$ as $\nu \to \infty$, uniformly on \overline{U}_{λ} for any $1 \leq a, b \leq 2n$. Hence $G_{\theta_{\nu}} \to G_{\theta}$ in \mathfrak{X} so that (by the very definition of d and ρ_{H}) $\rho_{H}(G_{\theta_{\nu}}, G_{\theta}) \to 0$.

(iii) If $\{\theta_{\nu}\}_{\nu\geq 1}$ is a Cauchy sequence in (\mathcal{P}_{+}, d) then $\{u_{\nu}\}_{\nu\geq 1}$ is Cauchy in (\mathcal{P}_{+}, d') as well. Yet (by Lemma 1) (\mathcal{P}_{+}, d') is complete, hence $d'(\theta_{\nu}, \theta) \to 0$ for some $\theta \in \mathcal{P}_{+}$. Then, as a byproduct of the proof of statement (ii), one has $G_{\theta_{\nu}} \to G_{\theta}$ in \mathfrak{X} . Finally, verbatim repetition of the arguments in the proof of statement (i) yields $\rho''_{H}(G_{\theta_{\nu}}, G_{\theta}) \to 0$ so that $d(\theta_{\nu}, \theta) \to 0$.

4 A Max-Mini Principle

For each $k \in \mathbb{N} \cup \{0\}$ we consider a (k + 1)-dimensional real subspace $L_{k+1} \subset C^{\infty}(M, \mathbb{R})$ and set

$$\Lambda_{\theta}(L_{k+1}) = \sup \left\{ \frac{\|\nabla^{H} f\|_{L^{2}}^{2}}{\|f\|_{L^{2}}^{2}} : f \in L_{k+1} \setminus \{0\} \right\}.$$

Here

$$\|f\|_{L^2} = \left(\int_M f^2 \Psi_{\theta}\right)^{\frac{1}{2}}, \quad \|X\|_{L^2} = \left(\int_M g_{\theta}(X, X) \Psi_{\theta}\right)^{\frac{1}{2}},$$

for any $f \in C^{\infty}(M, \mathbb{R})$ and any $X \in \mathfrak{X}(M)$. Let $\{u_{\nu}\}_{\nu \geq 0} \subset C^{\infty}(M, \mathbb{R})$ be a complete orthonormal system relative to the L^2 inner product $(f, g)_{L^2} = \int_M fg\Psi_{\theta}$ such that $u_{\nu} \in \operatorname{Eigen}(\Delta_b; \lambda_{\nu}(\theta))$ for every $\nu \geq 0$. If $f \in C^{\infty}(M, \mathbb{R})$ then $f = \sum_{\nu=0}^{\infty} a_{\nu}(f)u_{\nu}$ $(L^2 \text{ convergence})$ for some $a_{\nu}(f) \in \mathbb{R}$. Let L^0_{k+1} be the subspace of $C^{\infty}(M, \mathbb{R})$ spanned by $\{u_{\nu} : 0 \leq \nu \leq k\}$. Let $(\nabla^H)^*$ be the formal adjoint of ∇^H , *i.e.*,

$$(\nabla^H f, X)_{L^2} = \left(f, (\nabla^H)^* X\right)_{L^2}$$

for any $f \in C^{\infty}(M, \mathbb{R})$ and $X \in C^{\infty}(H(M))$. Mere integration by parts shows that

$$(\nabla^H)^* X = -\operatorname{div}(X), \quad X \in C^\infty(H(M)),$$

implying, by (1), the useful identity

(3)
$$\|\nabla^H f\|_{L^2}^2 = (f, \Delta_b f)_{L^2}, \quad f \in C^\infty(M, \mathbb{R}).$$

Let $f \in L^0_{k+1} \setminus \{0\}$ so that $f = \sum_{\nu=0}^k a_\nu u_\nu$ for some $a_\nu \in \mathbb{R}$. Then, by (3),

$$\|\nabla^{H} f\|_{L^{2}}^{2} = \sum_{\nu=0}^{k} a_{\nu}^{2} \lambda_{\nu}(\theta) \le \lambda_{k}(\theta) \sum_{\nu=0}^{k} a_{\nu}^{2} = \lambda_{k}(\theta) \|f\|_{L^{2}}^{2}$$

hence

(4)
$$\Lambda_{\theta}(L^0_{k+1}) \le \lambda_k(\theta).$$

Our purpose in this section is to establish the following.

Proposition 2 Let M be a compact strictly pseudoconvex CR manifold and $\theta \in \mathcal{P}_+$ a positively oriented contact form. Then

$$\lambda_k(\theta) = \inf_{L_{k+1}} \Lambda_\theta(L_{k+1})$$

where the infimum is taken over all subspaces $L_{k+1} \subset C^{\infty}(M, \mathbb{R})$ with $\dim_{\mathbb{R}} L_{k+1} = k+1$.

So far, by (4), $\lambda_k(\theta) \geq \Lambda_{\theta}(L_{k+1}^0) \geq \inf_{L_{k+1}} \Lambda_{\theta}(L_{k+1})$. The proof of Proposition 2 is by contradiction. We assume that $\lambda_k(\theta) > \inf_{L_{k+1}} \Lambda_{\theta}(L_{k+1})$, *i.e.*, there is a (k + 1)dimensional subspace $L_{k+1} \subset C^{\infty}(M, \mathbb{R})$ such that $\Lambda_{\theta}(L_{k+1}) < \lambda_k(\theta)$. Then $\Lambda_{\theta}(L_{k+1})$ is finite and

$$||f||_{L^2}^2 \Lambda_{\theta}(L_{k+1}) \ge ||\nabla^H f||_{L^2}^2, \quad f \in L_{k+1}.$$

Then, by (3),

$$\sum_{\nu=0}^{\infty}a_{\nu}(f)^{2}\Lambda_{\theta}(L_{k+1})\geq \sum_{\nu=0}^{\infty}\lambda_{\nu}(\theta)a_{\nu}(f)^{2},$$

so that

(5)
$$\sum_{\Lambda_{\theta}(L_{k+1}) \ge \Lambda_{\nu}(\theta)} a_{\nu}(f)^{2} [\Lambda_{\theta}(L_{k+1}) - \lambda_{\nu}(\theta)] \ge \sum_{\Lambda_{\theta}(L_{k+1}) < \lambda_{\nu}(\theta)} a_{\nu}(f)^{2} [\lambda_{\nu}(\theta) - \Lambda_{\theta}(L_{k+1})].$$

Let $\Phi: L_{k+1} \to C^{\infty}(M, \mathbb{R})$ be the linear map given by

$$\Phi(f) = \sum_{\nu=0}^m a_\nu(f)u_\nu, \quad f \in L_{k+1},$$

where $m = \max\{\nu \ge 0 : \lambda_{\nu}(\theta) \le \Lambda_{\theta}(L_{k+1})\}$. Note that $0 \le m \le k - 1$ (by the contradiction assumption). We claim that

(6)
$$\operatorname{Ker}(\Phi) \neq (0).$$

Of course (6) is only true within the contradiction loop. The statement follows from $\dim_{\mathbb{R}} \Phi(L_{k+1}) \leq m+1 \leq k < k+1$ (hence Φ cannot be injective). Using (6), let $f_0 \in L_{k+1}$ such that $\Phi(f_0) = 0$ and $f_0 \neq 0$. Then $a_{\nu}(f_0) = 0$ for any $0 \leq \nu \leq m$, *i.e.*, whenever $\Lambda_{\theta}(L_{k+1}) \geq \lambda_{\nu}(\theta)$. Applying (5) to $f = f_0$ yields $a_{\nu}(f_0) = 0$ whenever $\Lambda_{\theta}(L_{k+1}) < \lambda_{\nu}(\theta)$. Thus $f_0 = 0$, a contradiction.

On the Continuity of the Eigenvalues of a Sublaplacian

5 Continuity of Eigenvalues

The scope of this section is to establish the following.

Theorem 1 Let *M* be a compact strictly pseudoconvex CR manifold. If $\delta > 0$ and $\theta, \hat{\theta} \in \mathcal{P}_+$ are two contact forms on *M* such that $d(\theta, \hat{\theta}) < \delta$ then $e^{-\delta}\lambda_k(\theta) \leq \lambda_k(\hat{\theta}) \leq e^{\delta}\lambda_k(\theta)$ for any $k \geq 0$.

Proof For any $x \in M$

$$\delta > \inf\{\epsilon > 0: e^{-\epsilon}G_{\theta,x} < G_{\hat{\theta},x} < e^{\epsilon}G_{\theta,x}\}$$

i.e., there is $0 < \epsilon < \delta$ such that $G_{\hat{\theta},x} - e^{-\epsilon}G_{\theta,x} \in P(H)_x$ and $e^{\epsilon}G_{\theta,x} - G_{\hat{\theta},x} \in P(H)_x$. There is a unique $u \in C^{\infty}(M, \mathbb{R})$ such that $\hat{\theta} = e^u \theta$. Consequently

(7)
$$\hat{\theta} \wedge (d\hat{\theta})^n = e^{(n+1)u} \theta \wedge (d\theta)^n.$$

On the other hand $e^{-\delta}G_{\theta,x}(v,v) < G_{\hat{\theta},x}(v,v) < e^{\delta}G_{\theta,x}(v,v)$ for any $v \in H(M)_x \setminus \{0\}$ implies $|u| < \delta$. Then for every $f \in C^{\infty}(M)$, by (7),

(8)
$$e^{-(n+1)\delta} \int_{M} f^{2} \Psi_{\theta} \leq \int_{M} f^{2} \Psi_{\hat{\theta}} \leq e^{(n+1)\delta} \int_{M} f^{2} \Psi_{\theta}.$$

Moreover,

(9)
$$\hat{\nabla}^H f = e^{-u} \nabla^H f,$$

where $\hat{\nabla}^H f$ is the horizontal gradient of f with respect to $\hat{\theta}$. Thus, by (9), $\|\hat{\nabla}^H f\|_{\hat{\theta}}^2 = e^{-u} \|\nabla^H f\|_{\hat{\theta}}^2 < e^{\delta} \|\nabla^H f\|_{\hat{\theta}}^2$ so that, by (7),

$$e^{-(n+2)\delta} \int_M \|\nabla^H f\|_{\theta}^2 \Psi_{\theta} \le \int_M \|\hat{\nabla}^H f\|_{\theta}^2 \Psi_{\hat{\theta}} \le e^{(n+2)\delta} \int_M \|\nabla^H f\|_{\theta}^2 \Psi_{\theta}.$$

Finally, by (8)–(9),

$$e^{-\delta} \frac{\|\nabla^H f\|_{L^2}^2}{\|f\|_{L^2}^2} \leq \frac{\int_M \|\hat{\nabla}^h f\|_{\hat{\theta}}^2 \Psi_{\hat{\theta}}}{\int_M f^2 \Psi_{\hat{\theta}}} \leq e^{\delta} \frac{\|\nabla^H f\|_{L^2}^2}{\|f\|_{L^2}^2},$$

so that (by the Max-Mini principle)

(10)
$$e^{-\delta}\lambda_k(\theta) \le \lambda_k(\hat{\theta}) \le e^{\delta}\lambda_k(\theta).$$

Theorem 1 is proved. Corollary 1 follows from (10).

6 Spectra of Δ_b and \Box

Let F_{θ} be the Fefferman metric of (M, θ) and \Box the corresponding wave operator (the Laplace–Beltrami operator of $(C(M), F_{\theta})$). We set $\mathfrak{M} = C(M)$ for simplicity. Let g be a fixed Riemannian metric on \mathfrak{M} . The space $S(\mathfrak{M})$ of all symmetric tensor fields may be identified with the space of all fields of endomorphisms of $T(\mathfrak{M})$ which are symmetric with respect to g, *i.e.*, for each $h \in S(\mathfrak{M})$ let $\tilde{h} \in C^{\infty}(\operatorname{End}(T(\mathfrak{M})))$ be given by

$$g(hX, Y) = h(X, Y), \quad X, Y \in \mathfrak{X}(\mathfrak{M}).$$

From now on we assume that M is compact. Then \mathfrak{M} is compact as well (as \mathfrak{M} is the total space of a principal bundle with compact base and compact fibres) and we endow $S(\mathfrak{M})$ with the distance function

$$d_g^{\infty}(h_1, h_2) = \sup_{z \in \mathfrak{M}} [\operatorname{trace}(\varphi_z^2)]^{1/2}, \quad h_1, h_2 \in S(\mathfrak{M}),$$

where $\varphi = \tilde{h}_1 - \tilde{h}_2$ and $\varphi_z^2 = \varphi_z \circ \varphi_z$. The set Lor(\mathfrak{M}) of all Lorentz metrics on \mathfrak{M} is an open set of $(S(\mathfrak{M}), d_g^{\infty})$ and for any pair g_1, g_2 of Riemannian metrics on \mathfrak{M} the distance functions d_{g_1} and d_{g_2} are uniformly equivalent (*cf.*, *e.g.*, [10, p. 49]). We shall use the topology induced by d_g^{∞} on Lor(\mathfrak{M}) (and therefore on $\mathfrak{C} \subset \text{Lor}(\mathfrak{M})$). By a result of [8], the sublaplacian Δ_b of (M, θ) is the pushforward of the wave operator, *i.e.*, $\pi_* \Box = \Delta_b$. In particular $\sigma(\Delta_b) \subset \sigma(\Box)$. Thus each $\lambda_k \colon \mathcal{P}_+ \to \mathbb{R}$ may be thought of as a function $\lambda_k^{\uparrow} \colon \mathfrak{C} \to \mathbb{R}$ such that $\lambda_k^{\uparrow} \circ F = \lambda_k$ for every $k \ge 0$, where $F \colon \mathcal{P}_+ \to \mathfrak{C}$ is the map given by $F(\theta) = F_{\theta}$ for every $\theta \in \mathcal{P}_+$. As another consequence of Theorem 1 we establish the following.

Corollary 2 Let M be a compact strictly pseudoconvex CR manifold and let g be an arbitrary Riemannian metric on $\mathfrak{M} = C(M)$. Let $\theta_0 \in \mathfrak{P}_+$ be a fixed contact form and $\mathfrak{P}_{++} = \{e^u\theta_0 : u \in C^{\infty}(M, \mathbb{R}), u > 0\}$. If $\mathfrak{C}_+ = \{F_\theta : \theta \in \mathfrak{P}_{++}\}$ then for every $k \in \mathbb{N} \cup \{0\}$ the function $\lambda_k^{\perp} : \mathfrak{C}_+ \to \mathbb{R}$ is continuous relative to the d_{σ}^{∞} -topology.

Proof Let $\theta_i \in \mathcal{P}_+$, $i \in \{1, 2\}$, and let us set $\varphi = \tilde{F}_{\theta_1} - \tilde{F}_{\theta_2}$. Let $\{E_p : 1 \le p \le 2n+2\}$ be a local *g*-orthonormal frame on $T(\mathfrak{M})$, defined on the open set $\mathcal{U} \subset \mathfrak{M}$. Then

trace
$$(\varphi^2) = \sum_{p=1}^{2n+2} g(\varphi^2 E_p, E_p) = \sum_p \{F_{\theta_1}(\varphi E_p, E_p) - F_{\theta_2}(\varphi E_p, E_p)\}$$

on U. On the other hand if $\varphi E_p = \varphi_p^q E_q$ then $\varphi_p^q = F(\theta_1)(E_p, E_q) - F(\theta_2)(E_p, E_q)$ hence

(11)
$$\operatorname{trace}(\varphi^2) = (e^{u_1 \circ \pi} - e^{u_2 \circ \pi})^2 \|F_{\theta_0}\|_g^2,$$

where $u_i \in C^{\infty}(M, \mathbb{R})$ is given by $\theta_i = e^{u_i}\theta_0$ and $||F_{\theta_0}||_g$ is the norm of F_{θ_0} as a (0, 2)-tensor field on \mathfrak{M} with respect to g. Then, by (11),

$$d_g^{\infty}(F_{\theta_1},F_{\theta_2}) = \sup_{\mathfrak{M}} |e^{u_1 \circ \pi} - e^{u_2 \circ \pi}| \, ||F_{\theta_0}||_g.$$

As \mathfrak{M} is compact, $a = \inf_{z \in \mathfrak{M}} \|F_{\theta_0}\|_{g,z} > 0$. Indeed, by compactness, $a = \|F_{\theta_0}\|_{g,z_0}$ for some $z_0 \in \mathfrak{M}$. If a = 0 then $F_{\theta_0,z_0} = 0$, a contradiction (as F_{θ_0} is Lorentzian, and hence nondegenerate). Let $\epsilon > 0$ such that $d_g^{\infty}(F_{\theta_1}, F_{\theta_2}) < \epsilon$. Then $|e^{u_1} - e^{u_2}| < \epsilon/a$ everywhere on M. As both $u_1 > 0$ and $u_2 > 0$ it follows that $|u_1 - u_2| < \log(1 + \epsilon/a)$. Indeed $e^{u_1} - e^{u_2} < \epsilon/a$ is equivalent to $e^{u_1 - u_2} < 1 + (\epsilon/a)e^{-u_2}$ hence (as $u_2 > 0$)

$$u_1 - u_2 < \log[1 + (\epsilon/a)e^{-u_2}] < \log(1 + \epsilon/a).$$

Therefore

$$(1 + \epsilon/a)^{-1}G_{\theta_{1},x}(v,v) < G_{\theta_{2},x}(v,v) < (1 + \epsilon/a)G_{\theta_{1},x}(v,v)$$

for any $v \in H(M)_x \setminus \{0\}$ and any $x \in M$. Consequently $\rho''_H(G_{\theta_1}, G_{\theta_2}) < \log(1 + \epsilon/a)$. The arguments in Section 5 then yield

$$(1 + \epsilon/a)^{-1}\lambda_k^{\uparrow}(F_{\theta_1}) \le \lambda_k^{\uparrow}(F_{\theta_2}) \le (1 + \epsilon/a)\lambda_k^{\uparrow}(F_{\theta_1})$$

and Corollary 2 follows. The problem of the behavior of $\lambda_k^{\uparrow} \colon \mathcal{C} \to \mathbb{R}$ is open. So does the more general problem of the behavior of the spectrum of the wave operator on \mathfrak{M} with respect to a change of $F \in \text{Lor}(\mathfrak{M})$. Further work (*cf.* [1]) on the behavior of $\sigma(\Delta_b)$ under analytic 1-parameter deformations $\{\theta(t)\}_{t\in\mathbb{R}}$ of a given contact form $\theta_0 \in \mathcal{P}_+$ builds on the Riemannian counterpart in [6] and the functional analysis results in [7].

References

- [1] A. Aribi, S. Dragomir, and A. El Soufi, *Sublaplacian eigenvalue functionals and contact structure deformations on compact CR manifolds.* In preparation.
- [2] S. Bando and H. Urakawa, Generic properties of the eigenvalues of the Laplacian for compact Riemannian manifolds. Tohoku Math. J. 35(1983), 155–172. http://dx.doi.org/10.2748/tmj/1178229047
- [3] E. Barletta and S. Dragomir, Sublaplacians on CR manifolds. Bull. Math. Soc. Sci. Math. Roumanie 52(2009), 3–32.
- [4] J. M. Bony, Principe du maximum, inégalité de Harnak et unicité du problème de Cauchy pour les opérateurs elliptiques dégénéré. Ann. Inst. Fourier Grenoble 19(1969), 277–304. http://dx.doi.org/10.5802/aif.319
- [5] S. Dragomir and G. Tomassini, *Differential Geometry and Analysis on CR manifolds*. Progr. Math. 246, Birkhäuser, Boston–Basel–Berlin, 2006.
- [6] A. El Soufi and S. Ilias, Laplacian eigenvalue functionals and metric deformations on compact manifolds. J. Geom. Phys. 58(2008), 89–104. http://dx.doi.org/10.1016/j.geomphys.2007.09.008
- [7] A. Kriegl and P. Michor, Differentiable perturbation of unbounded operators. Math. Ann. 327(2003), 191–201. http://dx.doi.org/10.1007/s00208-003-0446-5
- [8] J. M. Lee, The Fefferman metric and pseudohermitian invariants. Trans. Amer. Math. Soc. 296(1986), 411–429.
- [9] A. Menikoff and J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235(1978), 55–85. http://dx.doi.org/10.1007/BF01421593
- P. Mounoud, Some topological properties of the space of Lorentz metrics. Differential Geom. Appl. 15(2001), 47–57. http://dx.doi.org/10.1016/S0926-2245(01)00039-0
- [11] W. Rudin, *Functional analysis*. Internat. Ser. Pure Appl. Math., McGraw-Hill, Inc., New York–London–Paris, 1991.
- [12] J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators. IV. Ann. Inst. Fourier (Grenoble) 30(1980), 109–169.

A. Aribi, S. Dragomir, and A. El Soufi

[13] H. Urakawa, *How do eigenvalues of Laplacian depend upon deformations of Riemannian metrics*? In: Spectra of Riemannian manifolds, Kaigai Publications, Tokyo, 1983, 129–137.

Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, France e-mail: amine.aribi@lmpt.univ-tours.fr

Dipartimento di Matematica e Informatica, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano 10, Campus Macchia Romana, 85100 Potenza, Italy e-mail: sorin.dragomir@unibas.it

Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, France e-mail: Ahmad.Elsoufi@Impt.univ-tours.fr