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This note contains extensions of the Abelian ergodic theorems in [3] and [6] to functions
which take their values in a Banach space. The results are based on an adaptation of Rota's
maximal ergodic theorem for Abel limits [8]. Convergence theorems for continuous para-
meter semigroups are deduced by the approximation technique developed in [3], [6]. A direct
application of the resolvent equation also enables us to deduce a convergence theorem for
pseudo-resolvents.

Let (fl, p, n) denote a a-finite complete measure space and let X be a Banach space. As in
[6], we call an operator T with domain dense in Lx = Z-^Q, p\ n, X) a Dunford-Schwartz
operator if \\T\\i ̂  1 and \\T\\n ̂  1. By the Riesz-Thorin convexity theorem [2, Chapter V]
we may then extend T to a contraction on each space Lp

x{\ ^ p ^ oo). We shall deal ex-
00

clusively with Dunford-Schwartz operators. The operator Rp = Y pkTk(0 ^ p < 1) is
fc = 0

again Dunford-Schwartz and the discussion in [3] of measurable representations of the map
/ -+ Rpf(fe Lx) extends easily to this situation.

Similarly we may consider a class (£) semigroup (see [5]) {T,: t ^ 0} of Dunford-Schwartz
operators on Lx and adapt the discussion in [3] of admissible measurable representations of
the map/-» JJ= \™e~x'T,fdt to the present case. Thus the symbol {J>f)(w) will denote a
well-defined element of A"for each I > 0 and for almost all w eQ.

1. Maximal ergodic theorems. Let T be a Dunford-Schwartz operator on Lx. Given
/ e L£ and a > 0, define

THEOREM 1.

Proof. Let h0 e U and suppose that e0 is a strongly measurable function from fi into
the unit ball of X. Define sequences {hn} and {en} by setting, for « ^ 0,

0 , when T(Ken)=O

T(Ken)
, otherwise
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Neveu [7] proved that

(i) [h ~ }„ decreases in IP,

(ii) {J jA^} n decreases, where H = (J {w: hn(w) > 0}.
nfeO

Hence we obtain

f MA* ^ 0- (1)

Now for each m ^ 0 consider the identity

-h~+i)em+i, (2)

which follows from the definition of hm+1. Fix p e (0, 1) and, for each m, multiply both sides
of (2) by p m + 1 and add the resulting equations for m = 0,1,2, We obtain

£ p"Kek = h+e0- f; />*(/!*-_,-&;>*• (3)

Now apply this equation with ho(.) = |/(.)| |x—aand

to obtain

By telescoping the sum of the last two terms in (4) has norm (in X) less than or equal to a
for almost all w e fi. Hence

Using this estimate in (4) we find that

" , . . s U {^: Z P*(ft*+«*)(w) ^ o j s H.
0 l ( fc 0 J0<p<l

AsQ/i(I 2 {w: \\f(w)\\x > a) we have proved that
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REMARK. By Theorem 1, the function/* = sup ((l-p)||-KP/||x) is a.e. (11) finite for
0<p<i

each/eZ,£. (cf. [2, VIII. 6.5]). Almost everywhere convergence of (1— p)(Rpf)(w) is easily
obtained on the set L = Lt © L2, where Lt is the set of fixed points of T and L2 = {g e Lx :
g = gt — Tgt for gteLx n I,*}. If X is reflexive, The Yosida-Kakutani mean ergodic theorem
implies that L is dense in Lx (cf. [1]). Hence, by the Banach convergence theorem, Theorem 1
implies the a.e. (ft) convergence of the averages (1 - p)(Rpf)(w) as p f 1, for a\lfeLx, 1 ^ p
< oo.

A continuous-parameter version of Theorem 1 can be obtained for class (Co) semi-
groups by the approximation arguments of [3], [6]. We omit the proof.

THEOREM 2. Let Xbe a Banach space andlet {T,},^obe a class(C0) semigroup of Dunford-
Schwartz operators on L](. If a > 0,feLx, 1 ^ p ^ oo, and ifX2*>a = {w: sup ||(^/)(M7)||x>

X>0

a}, then ia'J\\f(w)\\x-a)dfi £ 0.
Finally, Theorem 2 leads to the following convergence theorem by the technique developed

in [3]:

THEOREM 3. If X is reflexive and iffe Lx, then the averages (XJj)(w) converge in X as
k I 0, for almost all weQ.

2. Convergence of pseudo-resolvents. Let {̂ }̂̂ >o be a pseudo-resolvent (cf. [5]) on
Lx. The operators {Rx} satisfy the first resolvent equation:

v (5)

It is well-known that the {Rx} have a common range and kernel and commute pairwise.
Putting n = 1 in (5) we obtain immediately

a* = I ( l - * ) * * i + 1 fo r O < A < 1 . (6)
* = 0

(This was first used in [4].)
. In order to discuss the a.e. convergence of (/?^/)(w) for/eZ.£, we may adapt the usual

discussion of measurable representations of the map X -»• i^ /and choose the representation
to

H(X, w) = Y (1 — X\k(R\+1f)(w). We wish our representation to include the previous de-
*=o

finition of ( /^(w). The following simple lemma shows that our choice of H is then ju-
essentially unique.

LEMMA. Let X -> G(X) be Bochner-integrable on (0, 1], with values in Lx, andlet Hx andH2

denote two measurable representations of X -> G(X). Suppose that Ht and H2 are continuous
on (0, 1] for almost all w e fi. Then there is a \i-null set N with H^X, w) = H2(X, w) for all
Xe(0, l~\andweCl\N.
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THEOREM 4. Suppose that X is reflexive. If{Rx}o<xzi *s a pseudo-resolvent on L\ such
that Rx is a Dunford-Schwartz operator, then for allfe LPX, the family (XRxf)(w) converges to an
element of Xfor almost all w e Cl, as X [ 0.

QO

Proof. Let X = 1-p, RJ'= g; then (XRxf)(w) = (1-p) £ Pk(R\g){w), and the con-

vergence assertion is a consequence of the remark following Theorem 1.
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