
JFP 13 (3): 509–543, May 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004604 Printed in the United Kingdom

509

Specification and correctness of lambda lifting�

ADAM FISCHBACH and JOHN HANNAN

Department of Computer Science and Engineering,

The Pennsylvania State University, University Park, PA 16802, USA

(e-mail: {fischbac, hannan}@cse.psu.edu)

Abstract

We present a formal and general specification of lambda lifting and prove its correctness

with respect to a call-by-name operational semantics. We use this specification to prove

the correctness of a lambda lifting algorithm similar to the one proposed by Johnsson.

Lambda lifting is a program transformation that eliminates free variables from functions

by introducing additional formal parameters to function definitions and additional actual

parameters to function calls. This operation supports the transformation from a lexically-

structured functional program into a set of recursive equations. Existing results provide

specific algorithms and only limited correctness results. Our work provides a more general

specification of lambda lifting (and related operations) that supports flexible translation

strategies, which may result in new implementation techniques. Our work also supports a

simple framework in which the interaction of lambda lifting and other optimizations can be

studied and from which new algorithms might be obtained.

1 Introduction

Lambda lifting is a program transformation that eliminates free variables from

functions by introducing additional formal parameters to function definitions and

additional actual parameters to function calls. The operation finds application in the

implementation of functional languages, where functions without free variables can

be implemented more easily than those with free variables (Johnsson, 1985; Clinger

& Hansen, 1994). Another application for lambda lifting is partial evaluation, where

recursive equations (the result of completely lambda lifting a program) provide a

convenient representation (Bondorf & Danvy, 1991).

In general, lambda lifting and its inverse, lambda dropping (Danvy & Schultz,

2000), are operations that modify the way in which the implementation of a function

accesses the variables occurring in the body of the function and, consequently, the

representation of data, including parameters and closures, used by the implement-

ation. The particular choice of lexical structure of a program has no significant

importance with respect to the meaning of a program, and we often assume that it

has no consequence on the efficiency of the program. Lambda lifting and dropping,

� This material is based upon work supported by the National Science Foundation under Grant
No. 9900918.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

510 A. Fischbach and J. Hannan

in part, provide the flexibility that allows an implementation to be indifferent to the

choice of structure made by the programmer.

The essential aspects of lambda lifting can be summarized by the following two

operations:

1. Remove free variables from functions by inserting additional parameters into

the definitions of these functions;

2. Apply these lifted functions to these additional parameters.

Descriptions of lambda lifting, as originally presented by Johnsson (1985) and

Hughes (1982), and later by Peyton Jones (1987) and Peyton Jones & Lester (1992),

start with these simple concepts and then use algorithms, based on a kind of flow

analysis, to fill in the details.

Because these are algorithms, they make specific decisions regarding which

variables to lift from a function (all free variables occurring in the function body)

and where to lift applications (at each occurrence of the function name). These

decisions reflect both the practical considerations of lambda lifting (in the context

of compilation) and the limitations of a simple flow-based approach. These works

do not provide general principles of lambda lifting from which specific algorithms

can be derived and proved correct. They also do not accommodate different design

choices (regarding what to lift and where to lift it) and their implications.

Our goal is to provide a foundation, via a high-level, declarative specification,

for lambda lifting and related operations. Such a presentation should be devoid of

particular implementation or algorithmic decisions. Instead it should support the

justification of any operation reasonably based on the informal description given

by the two statements above. Proving this specification correct (with respect to a

semantics for the language) justifies any operation or algorithm which conforms to

this specification. That is, for any given algorithm, we need only prove it correct

with respect to the specification, rather than with respect to the semantics of the

language.

We wish not only to explicate existing notions of lambda lifting, but also to explore

alternatives which might provide better solutions in some applications. We intend

to provide a specification which allows for experimenting with flexible strategies of

lambda lifting. Also, we wish to provide a framework for exploring the interaction

of lambda lifting and related operations including unCurrying (Hannan & Hicks,

2000), closure conversion (Hannan, 1995), arity raising (Hannan & Hicks, 1998),

and useless-variable elimination (Fischbach & Hannan, 2001).

The rest of the paper is organized as follows. In the next section we introduce a

simple functional language and the basic concepts of lambda lifting. In section 3

we give a formal specification of lambda lifting as a deductive system. In section 4

we prove the correctness of our specification with respect to the type system and

operational semantics of the language. In section 5 we present a lambda lifting

algorithm similar to the one proposed by Johnsson and use our specification to

prove it correct. In section 6 we enhance our specification by introducing dependent

types for parameter lifting. Introducing polymorphic types into our language is

discussed in section 7, and in section 8 we conclude.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 511

Γ(x) = τ

Γ � x : τ

Σ(c) = τ

Γ � c : τ

Γ{x : τ1} � e : τ

Γ � λx.e : τ1 → τ

Γ � e1 : τ1 → τ Γ � e2 : τ1

Γ � e1 @ e2 : τ

Γ∗ = Γ{fi:τi} Γ∗ � ei : τi Γ∗ � e : τ i ∈ {1..n}
Γ � letrec fi = ei in e : τ

Fig. 1. Type system.

2 Overview of lambda lifting

Lambda lifting is a transformation on lexically-scoped programs that provides a

means for eliminating free variables from function definitions. The operation was

developed independently by Hughes (1982) and Johnsson (1985), both in the context

of compiling functional languages. Peyton Jones later provided a careful development

of the operation (1987) and Peyton Jones & Lester (1992) in the larger context of

language implementation. Lambda dropping, the inverse of lambda lifting was more

recently proposed by Danvy & Schultz (2000) as an operation to restore the lexical

block structure of programs following lambda lifting. In all cases the presentation of

these operations is mostly algorithmic and restricted in their application to higher-

order functions. With respect to correctness, only some preliminary results by Danvy

(1998) exist.

We present here an overview of the operations of lambda lifting and dropping

described in these works, but we do not discuss the algorithms given there.

2.1 The language

We present our specification of lambda lifting for a small higher-order functional

language. The grammar for expressions and types for this language is

e :: = c | x | λx.e | e1 @ e2 | letrec fi = ei in e

τ :: = ι | τ → τ

Both x and f are expression variables in our language. We let c range over the

set of pre-defined constants. We use the @ symbol to explicitly represent function

application. Mutually recursive functions can be defined using letrec. Throughout

the paper we use the notation fi = ei to represent the simultaneous declarations

f1 = e1 . . . fn = en. We let ι and τ → τ range over base types and function types,

respectively.

The type system given in figure 1 axiomatizes the judgment Γ � e : τ relating an

expression e to its simple type τ given a context Γ mapping variables to types. We

assume a pre-defined signature Σ mapping each constant to its type. In the rule for

letrec, Γ{fi : τi} extends the context Γ to include mappings for all fi declared in the

letrec, and n is the number of simultaneous declarations.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

512 A. Fischbach and J. Hannan

c ↪→ c

λx.e ↪→ λx.e

e1 ↪→ λx.e e[e2/x] ↪→ v

e1 @ e2 ↪→ v

e[(letrec fi = ei in ej)/fj] ↪→ v i, j ∈ {1..n}
letrec fi = ei in e ↪→ v

Fig. 2. Operational semantics.

We use a call-by-name operational semantics for our language. The rules in

figure 2 axiomatize the judgment e1 ↪→ e2, which reads “expression e1 evaluates

to e2.” The notation e[e′/x] represents the operation of substituting expression e′

for each occurrence of free variable x in e. For mutual recursion, it is necessary

to replace (in e) each occurrence of the variable fj with letrec fi = ei in ej , for

all fj declared in the letrec. We use a substitution-based semantics as opposed to

one involving variable environments and function closures in order to facilitate the

proof of operational correctness in section 4.

In this paper, we consider only a call-by-name language, in keeping with the

original presentation of lambda lifting. However, call-by-value languages can also

benefit from lambda lifting by reducing the number of variables in closures.

2.2 The basics of lambda lifting

Lambda lifting has been described as a two step process, based on Johnsson’s

algorithm (Danvy & Schultz, 2000):

1. Parameter Lifting. Free variables of a function are eliminated by introducing

additional parameters to the function. Call sites of the function are corres-

pondingly supplied with these variables as additional arguments.

2. Block Floating. Local function definitions with no free variables can be floated

outwards through the block structure of the program until they become global

definitions.

The block floating step is trivial once all free variables have been eliminated from

functions. More generally, function definitions (possibly containing free variables)

can be floated outwards (or inwards) as long as the function is not moved (outwards)

outside the scope of the free variables or moved (inwards) inside the scope of a

declaration of a variable with the same name as a free variable occurring in the

function. The practical aspects of block floating have been studied by Peyton Jones

et al. (1996). The correctness of this operation is nearly trivial, and we do not

address it here. Our results do not support any new notions of block floating and

so we do not discuss it further.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 513

The parameter lifting step is a more subtle operation and care must be taken to

ensure correctness. When we insert a lifted (actual) parameter x, we must ensure

that x is in the scope of its intended declaration (and not shadowed by another

declaration of x).

Consider the following expression. In this and subsequent examples we use

the expression let x = e1 in e2 end for the beta redex (λx.e2) @ e1 for

readability. We also assume that our language supports the addition operation

for the presentation of the examples. Lifted variables are identified by bold-italicized

type.

let x = e0

in letrec f = λy.y + x

in let x = e1

in f @ x end

end

end

Naively applying the description of parameter lifting above yields the following

incorrect translation:

let x = e0

in letrec f = λx.λy.y + x

in let x = e1

in f @ x @ x end

end

end

The lifted parameter has been captured by a subsequent declaration of x.

Consider a second example:

let x = e0

in letrec f = λy.y + x;

h = λk.k @ 5

in h @ f end

end

Existing lambda lifting strategies require the lifted parameters to be inserted at

each occurrence of the lifted function, giving the following as the only possible

translation:

let x = e0

in letrec f = λx.λy.y + x;

h = λk.k @ 5

in h @ (f @ x) end

end

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

514 A. Fischbach and J. Hannan

However, in this simple example we can see that the following is a correct

translation:

let x = e0

in letrec f = λx.λy.y + x;

h = λx.λk.k @ x @ 5

in h @ x @ f end

end

At this point in the discussion we are not concerned whether this is a useful

alternative, only that it is a possible translation. We want to ensure that our

specification can handle such a translation.

Such handling of higher-order functions is fraught with pitfalls, however. Consider

another example:

let g = let x = e0

in letrec f = λy.y + x

in f end

in g @ e1

end

Naively performing parameter lifting which delays the application of f to its lifted

parameter yields incorrect results:

let g = let x = e0

in letrec f = λx.λy.y + x

in f end

in g @ x @ e1

end

The lifted parameter x has escaped its scope. Simply being in scope is not sufficient

since it could be the wrong scope. Consider the expression:

let g = let x = e0

in letrec f = λy.y + x

in f end

in let x = e2

in g @ e1

end

which, again naively, could be incorrectly lifted to

let g = let x = e0

in letrec f = λx.λy.y + x

in f end

in let x = e2

in g @ x @ e1

end

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 515

even though the lifted parameter is inserted in a context in which it is in the scope

of a declaration for x.

The problems of such higher-order lifting are further complicated by the need

to ensure that all constraints of lifted functions are met. Consider the following

example:

let x = e0

in letrec f = λy.y + x;

g = λy.y + 3;

h = λk.k @ 5

in (h @ f) + (h @ g) end

end

In this case, lifting f and delaying the application to x until the body of h is possible,

but only if we also perform the vacuous lifting of x from g:

let x = e0

in letrec f = λx.λy.y + x;

g = λx.λy.y + 3;

h = λx.λk.k @ x @ 5

in (h @ x @ f) + (h @ x @ g) end

end

The problem in the first example can easily be avoided by assuring that no

variable declaration occurs in the scope of a variable of the same name. The

problems in the other examples have not been an issue in previous descriptions of

lambda lifting because the algorithms given in those works require that if f is the

name of the lifted function then f must be applied directly to the lifted parameters.

As suggested by these examples, extending previous work to handle higher-order

functions in the manner above requires specifying and solving constraints among

function declarations and calls.

In describing lambda lifting of higher-order programs Danvy & Schultz (2000)

limit themselves to first-order function applications. They state that extending the

operation to higher-order function applications would require a control-flow analysis

(Shivers, 1991). However, a type-based analysis provides a suitable, and perhaps

preferable, framework for incorporating higher-order features. This is the kind of

analysis we present in section 3.

2.3 Lambda dropping

The inverse of lambda lifting has been called lambda dropping by Danvy & Schultz

(2000). As the inverse of lifting, they describe it via two steps: block sinking and

parameter dropping. They provide a definition of dropped programs and give an

algorithm for lambda dropping. While the relation to lambda lifting is apparent,

the authors only conjecture that lifting and dropping are inverses. Because previous

works have presented lambda lifting and dropping algorithmically, this inverse

correspondence has been obscured. If, instead, a specification of lambda lifting is

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

516 A. Fischbach and J. Hannan

given as a binary relation (between an input term and a lifted form of the term),

then the specification also describes lambda dropping.

3 Specification of parameter lifting

We give a formal specification of parameter lifting as a deductive system that

axiomatizes a relation between two terms. The second term is a parameter-lifted

form of the first. (Equivalently, the first term is a parameter-dropped form of the

second.) As our goal is to provide a general description of these operations we

will not enforce any particular strategy of which parameters to lift or where to lift

them. The system is non-deterministic in the sense that a given term can possibly

be related to many lifted forms. We use type information to provide constraints

between terms and to direct the definition of the relation between terms. Most of

the inference rules follow the structure of a traditional type system for simple types,

but the specification also contains additional rules unique to the problem of lambda

lifting.

3.1 Singleton types

Because every lifting of a parameter in a function declaration must be accompanied

by the appropriate application of a term to that parameter, we need to generate

constraints between terms. As already demonstrated, the names of variables have

particular importance in these constraints and we must be careful with names.

We extend the traditional definition of simple types we presented in section 2 to

include singleton types (Aspinall, 1995) that provide information regarding lifted

parameters:

τ :: = ι | τ → τ | {e}τ → τ

The type τ1 → τ2 denotes the traditional function type, while the type {e}τ1
→ τ2

denotes the type of a function obtained by lifting the expression e out of the

body of a function of type τ2. The only term that inhabits the singleton type {e}τ1

is the expression e of type τ1. In the grammar we have presented here, e is an

arbitrary expression. The lambda lifting specification we present in the following

subsection restricts this expression to be a variable (i.e. only variables can be lifted).

However, the more general specification in section 4 does allow the lifting of arbitrary

expressions, which enables full laziness (Peyton Jones, 1987).

3.2 Parameter lifting

The specification in figure 3 axiomatizes the relation for parameter lifting. The

specification uses a judgment Γ � e : τ ⇒ e′ in which e and e′ are terms, Γ is a

context mapping variables to types, and τ is a type that may include singleton types.

We read this judgment as stating that under the assumption of Γ, expression e can

be lifted to e′ of type τ. We assume that the signature Σ does not contain any

singleton types.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 517

Γ(x) = τ

Γ � x : τ ⇒ x
(var)

Σ(c) = τ

Γ � c : τ ⇒ c
(const)

Γ{y:τ1} � e : τ ⇒ e′ y �∈ dom(Γ) FV (τ1 → τ) ⊆ dom(Γ)

Γ � λy.e : τ1 → τ ⇒ λy.e′ (abs)

Γ(x) = τ1 Γ � λy.e : τ ⇒ λz.e′

Γ � λy.e : {x}τ1 → τ ⇒ λx.λz.e′ (lift-abs)

Γ � e1 : τ1 → τ ⇒ e′
1 Γ � e2 : τ1 ⇒ e′

2

Γ � e1 @ e2 : τ ⇒ e′
1 @ e′

2

(app)

Γ � e : {x}τ1 → τ ⇒ e′ Γ(x) = τ1

Γ � e : τ ⇒ e′ @ x
(lift-app)

Γ∗ = Γ{fi : τi} Γ∗ � ei : τi ⇒ e′
i

Γ∗ � e : τ ⇒ e′ fi �∈ dom(Γ) FV (τ) ⊆ dom(Γ) i ∈ {1..n}

Γ � letrec fi = ei in e : τ ⇒ letrec fi = e′
i in e′

(letrec)

Fig. 3. Parameter lifting.

The rules (const), (var), (app), (abs), and (letrec) are simple extensions to the

traditional typing rules in figure 1. The types in these rules do range over the types

defined above, but make no use of singleton types. (In the rules (app) and (abs),

however, τ1 may not be a singleton type.) The rules (abs) and (letrec) do include

constraints to ensure that the introduction of a variable name does not shadow

an existing declaration of the same name. (This ensures that we avoid one of the

problems introduced in section 2.) These two rules also include conditions to ensure

that lifted parameters (occurring free in types) do not escape their scope. We use

FV (τ) to denote the set of expression variables appearing as singleton types in τ.

Only the rules (lift-abs) and (lift-app) make explicit use of singleton types,

and these are the rules that introduce formal parameters and actual parameters,

respectively. The rule (lift-abs) supports the parameter lifting of any variable x that

is currently in scope (x ∈ dom(Γ)). The argument type of the resulting expression

is a singleton type including the name of the lifted parameter. In the conclusion of

(lift-abs) the subject expression is a function, and this ensures that we only parameter

lift at the point of function definitions. Observe that this same subject expression

appears in the antecedent of the rule. This allows multiple parameters to be lifted

from a function definition (which is the reason why we use z instead of y in the

translated term).

The rule (lift-app) complements (lift-abs) by supporting the introduction of a new

application to any term of the appropriate type. The rule ensures that x ∈ dom(Γ)

to avoid one of the problems illustrated in section 2. Observe that the rule (lift-app)

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

518 A. Fischbach and J. Hannan

allows any term of type {x}τ1
→ τ (not just a variable) to be applied to lifted

parameters.

3.3 Examples

Some simple examples illustrate the kinds of parameter lifting supported by this

specification. Consider the term

let x = e1

in letrec f = λy.y + x

in letrec g = λh.λz.h @ (h @ z)

in g @ f @ e2 end

end

end

Using our specification, we can parameter lift this expression to the following:

1. We can immediately apply the lifted function to the parameter x:

let x = e1

in letrec f = (λx.λy.y + x) @ x

in letrec g = λh.λz.h @ (h @ z)

in g @ f @ e2 end

end

end

2. We can apply f to the parameter x:

let x = e1

in letrec f = λx.λy.y + x

in letrec g = λh.λz.h @ (h @ z)

in g @ (f @ x) @ e2 end

end

end

3. We can apply h (which is bound to f) to the parameter x:

let x = e1

in letrec f = λx.λy.y + x

in letrec g = λh.λz.(h @ x @ (h @ x @ z))

in g @ f @ e2 end

end

end

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 519

4. We can apply h (which is bound to f) to the parameter x, and also lift x

from g:

let x = e1

in letrec f = λx.λy.y + x

in letrec g = λx.λh.λz.h @ x @ (h @ x @ z)

in g @ x @ f @ e2 end

end

end

The first translation is the initial method proposed by Johnsson (1985), which he

immediately rejects as useless. The second translation is what is typically performed

by existing parameter lifting algorithms, including those proposed by Johnsson

(Johnsson, 1985), Peyton-Jones (1987) and Danvy (2000). The third and fourth

translations are, to our knowledge, not supported in general by any existing

algorithms. Just as our previous work using type-based systems have extended

results to support higher-order analyses and translations (Hannan & Hicks, 1998,

2000), our specification of parameter lifting also benefits from the nature of type

systems. The argument for choosing the third or fourth translation over the second

translation can arise due to consideration of unCurrying. If our language supported

unCurrying, we could unCurry the definition of f (and also g) and the corresponding

applications:

let x = e1

in let f = λ[x,y].y + x

in let g = λ[x,h,z].h @ [x,h @ [x,z]]

in g @ [x,f,e2] end

end

end

This unCurrying is not possible using the second translation.

In the presence of separate compilation, we must ensure that no parameters are

lifted out of any function that is visible outside of the current compilation unit.

This restriction can be enforced in our system by preventing singleton types from

appearing in the types of exportable functions.

4 Correctness

Having specified lambda lifting we now demonstrate its correctness by providing

appropriate relationships between our specification and static and dynamic (opera-

tional) semantics for the language.

4.1 Type correctness

We show that the system in figure 3 derives judgments over exactly the terms typable

by the rules in figure 1. Additionally, we show that every typable source term can

be related to some target term.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

520 A. Fischbach and J. Hannan

To prove these properties we first define two translations from the types defined in

section 3 (including singleton types) to the types defined in section 2 (not including

singleton types):

Definition 1

For any type τ, let |τ| and ||τ|| be defined as

|ι| = ι

|τ1 → τ2| = |τ1| → |τ2|
|{x}τ1

→ τ2| = |τ2|

||ι|| = ι

||τ1 → τ2|| = ||τ1|| → ||τ2||
||{x}τ1

→ τ2|| = ||τ1|| → ||τ2||

The type ||τ|| is the erasure of τ and the type |τ| removes the lifting information

from τ. For type contexts, if Γ(x) = τ then ||Γ||(x) = ||τ|| and |Γ|(x) = |τ|.

Theorem 1 (Type Completeness)

If Γ � e : τ then there exists a term e′ such that Γ � e : τ ⇒ e′.

The proof follows by constructing a deduction which performs no parameter

lifting (no uses of (lift-abs) or (lift-app)).

We additionally have that the specification relates only typable terms.

Theorem 2 (Type Correctness)

If Γ � e : τ ⇒ e′ then ||Γ|| � e′ : ||τ|| and |Γ| � e : |τ|.

The proof can be found in Appendix A.

Type correctness tells us that we are, at least, constructing expressions which

satisfy the constraints given by the type system. We still need to demonstrate that

operationally, a parameter-lifted expression is equivalent to the original expression.

4.2 Operational correctness

Before presenting the theorem of operational correctness, we present our lambda

lifting specification using a substitution-based semantics (i.e. without explicit con-

texts).

The rules in figure 4 axiomatize the judgment e : τ ⇒ e′ where e′ has type τ and

is a lambda-lifted form of e. The (app) rule is nearly identical to that in figure 3,

but the others require some comment.

Rather than using an explicit variable rule, we use hypothetical assumptions

(introduced by (abs) and (letrec)) in order to reason about variables. In the rule

(abs), the variables c and c′ are substituted for the variables y and y′ in the source

and target terms, respectively. The universal quantification guarantees that c and c′

are fresh variables, thus avoiding the need for the two constraints required for (abs)

in figure 3. Since these variables are quantified only over the antecedent of the rule,

c′ cannot appear in the type τ → τ1 and hence cannot be lifted outside of its scope.

The (letrec) rule is similar to (abs) except that it must allow for mutual recursion.

Because of the universal quantification, no additional constraints are required here

either.

In figure 3, the (lift-app) rule requires that the lifted variable occur in the context.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 521

e1 : τ2 → τ ⇒ e′
1 e2 : τ2 ⇒ e′

2

e1 @ e2 : τ ⇒ e′
1 @ e′

2

(app)

e2 : τ1 ⇒ e′
2 e1 : {e′

2}τ1 → τ ⇒ e′
1

e1 : τ ⇒ e′
1 @ e′

2

(lift-app)

∀c∀c′(c : τ ⇒ c′ ⊃ e[c/y] : τ1 ⇒ e′[c′/y′])

λy.e : τ → τ1 ⇒ λy′.e′ (abs)

λy.e : τ ⇒ λz.m[e′
1/x

′] e1 : τ1 ⇒ e′
1 x : τ1 ⇒ x′

λy.e : {e′
1}τ1 → τ ⇒ λx′.λz.m

(lift-abs)

∀ci, c′
i(ci : τi ⇒ c′

i ⊃ ej[ci/fi] : τj ⇒ e′
j[c

′
i/f

′
i])

∀ci, c′
i(ci : τi ⇒ c′

i ⊃ e[ci/fi] : τ ⇒ e′[c′
i/f

′
i]) i, j ∈ {1..n}

letrec fi = ei in e : τ ⇒ letrec f′
i = e′

i in e′
(letrec)

Fig. 4. Parameter lifting without contexts.

The same requirement is enforced in the corresponding rule in figure 4 by making

sure that a translation of the lifted term exists.

Finally, (lift-abs) allows any expression to be lifted out of the body of an

abstraction provided that a translation for that expression exists. In fact, this rule

allows any expression to be lifted, not just variables. This is, in fact, more general

than the specification in figure 3. A translated term e′ is lifted out of the body of

the abstraction and replaced with some variable x′. This variable is bound in the

translated abstraction and e′ is included in the singleton type. So, the function must

later be applied to the expression e′.

Theorem 3

For all closed terms e, if · � e : τ ⇒ e′ then e : τ ⇒ e′ is derivable.

The proof requires a generalization to open terms and a correspondence between

open hypotheses and contexts.

Note that because of the generalization of (lift-abs), the converse is not true.

However, we do not need an equivalence between the two systems. If the system in

figure 4 is operationally correct then, because of the soundness theorem above, the

system in figure 3 is operationally correct.

To demonstrate operational correctness we must ensure that the translation of a

term preserves the meaning (value) of a term. Since values can be functions that,

in the translated case, can contain parameter-lifted terms, we can only expect the

values to be related via the translation. Preserving the meaning includes, in general,

termination properties. So we must show that one term has a value iff its translation

(in either direction) has a value.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

522 A. Fischbach and J. Hannan

Theorem 4 (Operational Correctness)

1. If e ↪→ v and e : τ ⇒ e′ are derivable then there exists a v′ such that e′ ↪→ v′

and v : τ ⇒ v′ are derivable ;

2. If e′ ↪→ v′ and e : τ ⇒ e′ are derivable then there exists a v such that e ↪→ v

and v : τ ⇒ v′ are derivable.

The proof can be found in Appendix A.

A simple corollary to the theorem gives us a desired result for closed programs of

base type:

Corollary 1

If e : ι ⇒ e′ then e ↪→ v iff e′ ↪→ v.

5 Simple parameter lifting algorithm

Our specification provides a general, high-level description of parameter lifting that

supports flexibility in the choice of which parameters to lift. Because of this property,

many possible algorithms could be based on this specification. We present in this

section one example of a parameter lifting algorithm closely related to Johnsson’s

algorithm (Johnsson, 1985). We then demonstrate how the specification in figure 3

can be used to prove that this algorithm is correct.

A parameter lifting algorithm must make specific choices as to which parameters

to lift and where to insert applications. We choose the following based on Johnsson’s

approach: all free variables (excluding function names) are lifted from the body of a

named function, and each occurrence of a function name is applied directly to that

function’s lifted parameters.

5.1 Two-phase specification

Following methods successfully employed in previous work (e.g. Hannan & Hicks,

1998, 2000), we first present a two-phase specification for parameter lifting from

which a specific algorithm is more easily derivable than from the general specification

in figure 3.

The first phase of this specification deduces which variables are lifted and where

new applications are inserted. Following Johnsson’s algorithm, we avoid lifting

function names. The reason for this is that, after block floating, all functions will

be global. We will use f to represent function names, and x and y to represent all

other variables. We use ν when the distinction is irrelevant.

The rules in figure 5 define the judgment Λ � e : (τ, θ) ⇒ m in which e is an input

term, τ is the type of e, θ is an ordered set of variables, m is an annotated form of e,

and Λ maps variables to types and ordered sets. The annotated term m is the same

as the input term e except that all variables and letrec expressions are annotated

with sets of lifted parameters. These annotations are then used in the second phase

of the specification, which does the actual lifting of parameters.

The set θ represents all free variables in m (except function names), including all

annotations. In Λ, if a function name f maps to (τ1 → τ2, θ), then θ contains all the

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 523

Σ(c) = τ

Λ � c : (τ, ∅) ⇒ c
(const)

Λ(x) = (τ, ∅)

Λ � x : (τ, {x}) ⇒ x∅
(param)

Λ(f) = (τ, θ)

Λ � f : (τ, θ) ⇒ fθ
(fun-name)

Λ{y : (τ1, ∅)} � e : (τ, θ) ⇒ m y /∈ dom(Λ)

Λ � λy.e : (τ1 → τ, θ − {y}) ⇒ λy.m
(abs)

Λ � e1 : (τ1 → τ, θ1) ⇒ m1 Λ � e2 : (τ1, θ2) ⇒ m2

Λ � e1 @ e2 : (τ, θ1 ∪ θ2) ⇒ m1 @ m2

(app)

Λ∗ = Λ{fi : (τi, θi)}
Λ∗ � λyi.ei : (τi, θi) ⇒ λyi.mi Λ∗ � e : (τ, θ) ⇒ m fi /∈ dom(Λ) i ∈ {1..n}

Λ � letrec fi = λyi.ei in e : (τ,
⋃
θi ∪ θ) ⇒ letrec fi =θi λyi.mi in m

(letrec)

Fig. 5. Parameter lifting annotation phase.

c ⇒t c
(const) y∅ ⇒t y

(var)
ys ⇒t e

yx::s ⇒t e @ x
(var-app)

m ⇒t e

λy.m ⇒t λy.e
(abs)

m1 ⇒t e1 m2 ⇒t e2

m1 @ m2 ⇒t e1 @ e2

(app)

m ⇒t e gi =θi λyi.mi ⇒t gi = ei for i ∈ {1..n}
letrec g1 =θ1 λy1.m1 · · · gn =θn λyn.mn in m ⇒t

letrec g1 = e1 · · · gn = en in e

(letrec)

λy.m ⇒t e

g =∅ λy.m ⇒t g = e
(decl)

g =s λxλy.m ⇒t g = e

g =x::s λy.m ⇒t g = e
(decl-lift)

Fig. 6. Parameter lifting translation phase.

parameters lifted from the function f. Note that if a variable x maps to (τ, θ) then

θ is empty. Since θ is an ordered set, all set operations must be order-preserving.

The rules for variables and letrec in figure 5 are the only rules that actually

annotate terms. In the letrec rule, each θi contains all the free variables occurring

in the corresponding function λyi.mi. These are all the parameters that will be

lifted from the function body. Each function name fi must then map to, and each

declaration within the letrec must be annotated with, the corresponding set θi.

The variable rules force each occurrence of a variable to be annotated with its

corresponding list of lifted parameters.

The translation phase defines the judgment m ⇒t e in which m is an annotated

term and e is the translated (parameter lifted) form of m. The rules for translation

are straightforward and can be found in figure 6.

Again, the only interesting cases are those for variables and letrec. Each variable

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

524 A. Fischbach and J. Hannan

must be applied to all of the lifted parameters occurring in its annotation. Similarly,

all named functions must include bindings for all lifted parameters.

We can prove that this two-phase specification is sound with respect to the more

general specification in figure 3. Observe that the two type systems presented utilize

different mechanisms for conveying parameter lifting. The original lambda lifting

specification characterizes expressions by using annotated types, while the inference-

phase specification characterizes expressions by using sets of variables. To express

a relationship between judgments in the two systems we first require a relation

between these two.

Definition 2

Let (τ, θ) �Λ τ′ be the least relationship closed under the following:

1. (τ, ∅) �Λ τ

2. (τ, y::θ) �Λ τ′ if Λ(y) = (τy, ∅) and ({y}τy → τ, θ) �Λ τ′

Next we define a correspondence between contexts.

Definition 3

Contexts Λ and Γ correspond, written Λ ∼= Γ, iff dom(Λ) = dom(Γ) and for all

ν ∈ dom(Λ), if Λ(ν) = (τ, θ) and Γ(ν) = τ′ then (τ, θ) �Λ τ′.

This relationship focuses on the correspondence between the expression variables

occurring in the sets θ and the expression variables occurring in singleton types.

We introduce a notion of closed contexts that provides a reasonable (and required)

constraint on the sets occurring in contexts.

Definition 4 (Closed Contexts)

A context Λ is closed, written Closed(Λ), iff for all x, f ∈ dom(Λ),

1. if Λ(f) = (τ, θ) then θ ⊆ dom(Λ), and

2. if Λ(x) = (τ, θ) then θ = ∅.

We need only deal with closed contexts because the free variables in a type (of

a function) refer to lifted variables, and these variables must be declared in an

enclosing scope, and hence in the context.

We can then state the soundness property of the two-phase system.

Theorem 5

If Closed(Λ), Λ � e : (τ, θ) ⇒ m, m ⇒t e
′, and Λ ∼= Γ then Γ � e : τ ⇒ e′.

The proof can be found in Appendix A.

5.2 Example algorithm

We can now define a recursive algorithm based on this two-phase specification and

prove its correctness. The algorithm is also partitioned into two phases (figure 7):

PL, which annotates the input term, and translate, which introduces variable

bindings and applies function names to the function’s lifted parameters.

PL takes a context ∆, which maps variables to ordered sets, and an input term e,

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 525

PL(∆, c) = (∅, c)

PL(∆, x) = let

θ = ∆(x)

in ({x}, xθ)

PL(∆, f) = let

θ = ∆(f)

in (θ, fθ)

PL(∆, λy.e) = let

(θ, m) = PL(∆{y : ∅}, e)
in (θ − {y}, λy.m)

PL(∆, e1 @ e2) = let

(θ1, m1) = PL(∆, e1)

(θ2, m2) = PL(∆, e2)

in (θ1 ∪ θ2, m1 @ m2)

PL(∆, letrec gi = λyi.ei in e) = let

∆′ = ∆{g1 : θg1
, . . . , gn : θgn}

(θ1, λy1.m1) = PL(∆′, λy1.e1)
...

(θn, λyn.mn) = PL(∆′, λyn.en)

ε = solve({θg1
= θ1\θg1

, . . . , θgn = θn\θgn
})

(θ, m) = PL(ε∆′, e)

in (ε(θg1
) ∪ . . . ∪ ε(θgn) ∪ θ,

letrec g1 =ε(θg1) λy1.εm1 · · · gn =ε(θgn) λyn.εmn in m)

translate(yx::s) = translate(ys) @ x

translate(y∅) = y

translate(letrec g1 =θ1 λy1.m1 . . . gn =θn λyn.mn in m) =

letrec translate(g1 =θ1 λy1.m1) . . . translate(gn =θn λyn.mn) in translate(m)

translate(g =x::s λy.m) = translate(g =s λx.λy.m)

translate(g =∅ λy.m) = (g = translate(λy.m))

translate(λy.m) = λy.translate(m)

translate(m1 @ m2) = translate(m1) @ translate(m2)

translate(c) = c

Fig. 7. Simple algorithm.

and returns an ordered set θ and an annotated form of e. PL corresponds to the

rules in figure 5. Notice that types in figure 5 do not play a role in computing

annotations. So, if we assume the input term is well-typed, the algorithm can safely

ignore types altogether. We also assume that all variables in the input term are

distinct.

In the third rule, the variable is a function name and so should not be included

in the returned set. This guarantees that function names will not be lifted.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

526 A. Fischbach and J. Hannan

solve({θgi = θgj ∪ θ} ∪ {θgj = θj} ∪ Φ) =

solve({θgi = θj\θgi
∪ θ} ∪ {θgj = θj} ∪ Φ)

solve(Φ) = Φ, if no θgi appears on the RHS of a constraint in Φ.

Fig. 8. Constraint solver.

In the letrec rule, the context ∆′ must include a mapping for each function name

declared in the letrec to handle mutual recursion. Since the sets associated with

these function names have not been computed at this point, the set variables θgi are

used instead.

Each θi returned by a recursive call to PL represents the variables to be lifted

from the function and may include occurrences of set variables. At this point, the

algorithm has enough information to compute the actual sets of lifted parameters.

A constraint is generated for each function gi declared in the letrec equating the set

variable θgi with the set θi and passed to a constraint solver. Note that it is safe, and

in fact necessary, to remove any occurrence of θgi in θi (represented by the operation

θi\θgi).
The constraint solver, defined in figure 8, returns a substitution mapping each

θgi to a set of variables satisfying the constraints. The first rule eliminates a set

variable on the right hand side of a constraint, replacing it with the appropriate set

thus far computed. The second rule returns the set of equalities, which serves as a

substitution, once all set variables (except those introduced by an enclosing letrec)

have been removed from the RHS of all constraints.

The function translate is straightforward. The syntax y :: s represents an ordered

set where y is the first element in the set and s is the remainder of the set.

To prove this algorithm correct, we need to prove that it is sound with respect to

the two-phase specification of the previous subsection. Again, we need to define a

correspondence between different types of contexts:

Definition 5

Let Γ be a context mapping variables to types and ∆ be a context mapping variables

to sets of variables, such that dom(Γ) = dom(∆). Then Γ � ∆ is the context such

that, for all ν ∈ dom(Γ):

(Γ � ∆)(ν) = (Γ(ν),∆(ν))

We can easily extend the notion of closed contexts to ∆:

Definition 6

A context ∆ is closed, written Closed(∆), iff for all ν ∈ dom(∆),

1. if ∆(f) = θ then θ ⊆ dom(∆), and

2. if ∆(x) = θ then θ = ∅.

Note that, for any Γ where dom(Γ) = dom(∆), if Closed(∆), then Closed(Γ � ∆).

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 527

We must also demonstrate the correctness of the constraint solver. The following

results are required by the proof of the soundness theorem below.

Lemma 1

For any finite set of constraints Φ = {θgi = θi\θgi }:

1. solve(Φ) halts, and

2. if solve(Φ) = ε, then εθgi = εθi\θgi for all θgi in Φ.

The proofs of both parts can be found in Appendix A.

We are now prepared to state the soundness of the parameter lifting algorithm.

Theorem 6 (Algorithm Soundness)

1. If Closed(∆), PL(∆, e) = (θ, m), and Γ � e : τ then (Γ � ∆) � e : (τ, θ) ⇒ m.

2. If translate(m) = e then m ⇒t e.

The proof can be found in Appendix A.

Theorem 7 (Algorithm Correctness)

If for some well-typed, closed term e, PL(·, e) = (∅, m) and translate(m) = e′ then

e ↪→ v iff e′ ↪→ v.

The proof follows immediately from Theorem 6, Theorem 5, and Corollary 1.

The computation of the set θ guarantees that all variables (except function names)

are lifted from every named function. Parameter lifting can then be followed by a

block floating transformation that lifts all named functions to the global level. If

we restrict our language such that all functions are named (i.e. only defined using

letrec), then the parameter lifting algorithm guarantees that the only free variables

occurring inside a function body are function names, which are all global.

This algorithm is limited in the fact that function names are applied directly to

lifted variables. Because of this limitation and the simplicity of the source language,

types are essentially ignored. As noted in previous sections, our specification supports

other possible placements of these applications. In these cases, simply mapping the

function name to θ in the context is insufficient. Instead, the set of lifted variables

must be included in the function’s type. In previous work, we studied type systems

for specifying closure conversion (Hannan, 1995), an escape analysis (Hannan, 1998),

and a live-variable analysis (Hannan et al., 1997). In each of these, we use types

annotated with sets of variables corresponding to the variables needed by a function.

We can adapt these specifications to capture the set of variables we need to lift from

function definitions.

In the case of higher-order functions, judicious placement of applications can

avoid the introduction of new function calls. To ensure that lifting inserts no new

function-call sites requires, at least, that parameter lifting be intertwined with block

floating to avoid lifting parameters outside of their scope.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

528 A. Fischbach and J. Hannan

6 Dependent types for parameter lifting

Consider the following program fragment which contains v and w free:

letrec f = λx.x+v;

g = λy.y*w;

h = λk.k @ 5

in (h @ f) + (h @ g)

This expression can be parameter lifted via Johnsson-style algorithms to

letrec f = λv.λx.x+v

g = λw.λy.y*w

h = λk.k 5

in (h @ (f @ v)) + (h @ (g @ w))

in which f and g are partially applied to their arguments, and hence cannot be

unCurried.

As already suggested, our specification supports a higher-order form of parameter

lifting in which the names of parameter lifted functions can still be passed as

arguments, allowing for unCurrying:

letrec f = λv.λw.λx.x+v

g = λv.λw.λy.y*w

h = λv.λw.λk.k @ v @ w @ 5

in (h @ v @ w @ f) + (h @ v @ w @ g)

In this example we must lift parameters v and w from both f and g since both

functions occur as the third argument to h. This is a kind of parameter lifting

not supported by Johnsson-style algorithms. (Johnsson-style algorithms can lift out

parameters not occurring free in a function but only when these parameters are

needed by functions occurring in some call chain in which this function occurs.)

Observe that the type of both f and g, as determined by our specification, is

{v}int → {w}int → int → int.

Another possibility exists for parameter lifting which still supports the unCurrying

of functions f and g:

letrec f = λv.λx.x+v

g = λw.λy.y*w

h = λa.λk.k @ a @ 5

in (h @ v @ f) + (h @ w @ g)

This version exploits the fact that f and g each have one, though not identical, lifted

parameter. Our specification of parameter lifting does not support the translation

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 529

of the original program to this one. We cannot give the same type to f and g, which

is required for them both to occur as the second argument to h.

To understand how to support this translation, consider the required types for the

two occurrences of h. The first occurrence must have type

int → ({v}int → int → int) → int

while the second occurrence must have type

int → ({w}int → int → int) → int.

Observe that the type of the second argument to h depends on the first argument

to h. This suggests dependent types which, in fact, provide a solution. We can enrich

our type system with dependent types as follows

τ :: = · · · | Πx:τ.τ

(A dependent type Πx:τ1.τ2 denotes a function with formal parameter x : τ1 and

whose result type depends of the actual parameter v : τ1 supplied at each function

call. If f has type Πx:τ1.τ2 and v has type τ1 then (f @ v) has type τ2[v/x].)

Dependent types extend the notion of function types when expression variables can

appear free in types. (If x does not occur free in τ2 then Πx:τ1.τ2 is equivalent to

τ1 → τ2.) Since expression variables can appear free in our parameter lifting types,

our use of dependent types is non-trivial.

We introduce the following rules which are adapted from the rules (lift-app) and

(lift-abs) to use dependent types:

Γ � e : Πx:τ1.τ ⇒ e′ Γ(y) = τ1

Γ � e : τ[y/x] ⇒ e′ @ y
(Π-lift-app)

x �∈ dom(Γ) Γ{x:τ1} � λy.e : τ ⇒ λz.e′

Γ � λy.e : Πx:τ1.τ ⇒ λx.λz.e′ (Π-lift-abs)

Adding these rules to our system now allows us to translate the original program to

the third translation above. The function h can be given type

Πa:int.({a}int → int → int) → int

and the expressions (h @ v @ f) and (h @ w @ g) can each be typed accord-

ingly.

Both the second and third translations above support the unCurrying of lifted

functions and do not increase the number of function applications at run time.

Which of the two, then, should be preferred by an implementation? At first glance,

the third requires one less parameter to the lifted form of function h, and so this

case might be preferred. However, if we assume parameters are passed in registers

if possible, then the second case actually might be preferable. If we assume that

function h expects its three parameters in registers r0, r1, and r2, then we need only

copy v and w once into r0 and r1, respectively. Then each call to h need only copy

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

530 A. Fischbach and J. Hannan

the appropriate argument into r3 (first f, then g). For this particular example, the

difference between the two approaches is insignificant since both require exactly one

copying of v and w.

7 Lambda lifting and polymorphism

We can extend our system to handle polymorphic functions. A polymorphic function

can have any free variable lifted from it without affecting the polymorphic nature

of the function. We must modify the rule for letrec in figure 3 as follows:

Γ{fi:∀	αi.τi} � ei : τi ⇒ e′
i

fi �∈ dom(Γ)

FV (τ) ⊆ dom(Γ)

	αi = FTV (τi) − FTV (Γ) Γ{f:∀	αi.τi} � e : τ ⇒ e′

Γ � letrec fi = ei in e : τ ⇒ letrec fi = e′
i in e′

When generalizing the type τ, we must ensure that any universally quantified type

variable α occurs free in τ but does not occur free in Γ. We use FTV (τ) to denote

the set of free type variables in τ. Likewise for a context Γ.

The treatment of polymorphism requires no special consideration of parameter

lifting. To understand why this is so we consider the constraints on the generalization

of type variables without the presence of lambda lifting. Any type variable in τ1 that

can be generalized cannot occur free in the context Γ. Any lambda-lifted parameter

y in e1 occurs free in Γ. (This constraint is imposed by the rule (lift-abs).) Hence,

any type variable occurring in the type of y (and in τ1) cannot be generalized.

As stated previously, the occurrence of specific variable names in lambda lifting is

significant, and this example of handling polymorphism is yet another instance of

this observation.

The only additional restriction we need to enforce is that function variables

with polymorphic types cannot be lifted. This restriction follows the approach of

Johnsson (1985). The restriction of lifting only variables with simple types is inherent

in our type-based approach. Because a lifted parameter occurs as the operand in an

application, it can assume only a single type. Consider the following example:

letrec id = λx.x

in letrec sqr = λy.y*y

in letrec f = λg.λz. (id @ g) @ (id @ (z+1))

in f @ sqr @ 0

The identifier id occurs free in the definition of f and so we would be tempted to

lift it out:

letrec id = λx.x

in letrec sqr = λy.y*y

in letrec f = λid.λg.λz. (id @ g) @ (id @ (z+1))

in f @ id @ sqr @ 0

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 531

Unfortunately, this resulting program is no longer well-typed. The definition of f

cannot be typed because the parameter id cannot be given a simple type, as required

by the rule for λ-abstraction.

This restriction to lifting only variables with simple types illustrates a difference

between our type-based approach and the (non-typed based) approaches of previous

work (Johnsson, 1985). Previous approaches used transformations that introduced

intermediate terms that might not be well-typed by the source languages’ type

systems. This observation has previously been made by Peter Thiemann (1999).

Our restriction to well-typed terms, while prohibiting us from lifting out vari-

ables of polymorphic type, still allows us to transform a program into a set of

global function definitions without any local definitions. If all function names

are globally defined, then each function can use any other function. The free

variables of a function will consist only of other function names. So while non-

type-based approaches can generate supercombinators (functions containing no

free variables), we are restricted to fully λ-lifted functions (functions whose free

variables are restricted to global function names). Thiemann suggests lifting out

a parameter for each different type instance at which the variable is used. An

alternative is to consider a richer type system that supports first-class polymor-

phism.

8 Conclusion

We have presented a declarative specification for lambda lifting and proven it

correct with respect to an operational semantics. The specification provides a general

relation between a term and a lifted form of the term, without enforcing a single

lifting strategy. The symmetry between lifting and dropping is evident from the

relational nature of the specification. Thus, this specification provides a foundation

from which existing algorithms may be proved correct, and also a starting point for

the development of new, type-inference-based, algorithms.

A Selected Proofs

Proof of Theorem 2

The proof of each part follows by induction over the deduction Ξ of Γ � e : τ ⇒ e′.

We consider both parts simultaneously.

1. Ξ is

Γ(x) = τ

Γ � x : τ ⇒ x
(var)

.

From Γ(x) = τ we have |Γ|(x) = |τ| and ||Γ||(x) = ||τ||. Hence we can construct

|Γ|(x) = |τ|
|Γ| � x : |τ| and

||Γ||(x) = ||τ||
||Γ|| � x : ||τ||.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

532 A. Fischbach and J. Hannan

2. Ξ is
Σ(c) = τ

Γ � c : τ ⇒ c
(const)

.

Because we assume Σ maps constants to unannotated types, |τ| = ||τ|| = τ.

Then trivially we have

|Σ|(c) = |τ|
|Γ| � c : |τ| and

||Σ||(c) = ||τ||
||Γ|| � c : ||τ||.

3. Ξ is of the form

Ξ1

Γ{y:τ} � e : τ1 ⇒ e′ y �∈ dom(Γ) FV (τ → τ1) ⊆ dom(Γ)

Γ � λy.e : τ → τ1 ⇒ λy.e′ (abs)
.

By induction on Ξ1 we can construct

Ξ′
1 :: |Γ{y:τ}| � e : |τ1|

Ξ′′
1 :: ||Γ{y:τ}|| � e′ : ||τ1||

Observe that |Γ{y:τ}| = |Γ|{y:|τ|} and ||Γ{y:τ}|| = ||Γ||{y:||τ||}. Hence we can

construct the deductions

Ξ′
1

|Γ|{y:|τ|} � e : |τ1|
|Γ| � λy.e : |τ| → |τ1|

and

Ξ′′
1

||Γ||{y:||τ||} � e′ : ||τ1||
||Γ|| � λy.e′ : ||τ|| → ||τ1||,

which are the required deductions because |τ1| → |τ| = |τ1 → τ| and ||τ1|| →
||τ|| = ||τ1 → τ||.

4. Ξ is of the form

Γ(x) = τ1

Ξ1

Γ � λy.e : τ ⇒ λz.e′

Γ � λy.e : {x}τ1
→ τ ⇒ λx.λz.e′ (lift-abs)

.

By induction on Ξ1 we can construct

Ξ′ :: |Γ| � λy.e : |τ|
Ξ′′

1 :: ||Γ|| � λz.e′ : ||τ||

Since |{x}τ1
→ τ| = |τ|, Ξ′ is the required deduction of

|Γ| � λy.e : |{x}τ1
→ τ|.

Because Γ(x) = τ1, ||Γ||(x) = ||τ1|| and hence from Ξ′′
1 we can construct

Ξ′
1 :: ||Γ||{x:||τ1||} � λz.e′ : ||τ||

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 533

from which we can construct

Ξ′
1

||Γ||{x:||τ1||} � λz.e′ : ||τ||
||Γ|| � λx.λz.e′ : ||τ1|| → ||τ||

which is the required deduction because ||τ1|| → ||τ|| = ||τ1 → τ||.
5. Ξ is of the form

Ξ1

Γ � e1 : τ2 → τ ⇒ e′
1

Ξ2

Γ � e2 : τ2 ⇒ e′
2

Γ � e1 @ e2 : τ ⇒ e′
1 @ e′

2

(app)

By induction on Ξ1 and Ξ2 we have

Ξ′
1 :: |Γ| � e1 : |τ2 → τ|

Ξ′′
1 :: ||Γ|| � e′

1 : ||τ2 → τ||
Ξ′

2 :: |Γ| � e2 : |τ2|
Ξ′′

2 :: ||Γ|| � e′
2 : ||τ2||

Again noting that |τ2 → τ| = |τ2| → |τ| and ||τ2 → τ|| = ||τ2|| → ||τ|| we can

construct the deductions

Ξ′
1

|Γ| � e1 : |τ2| → |τ|
Ξ′

2

|Γ| � e2 : |τ2|
|Γ| � e1 @ e2 : |τ|

and

Ξ′′
1

||Γ|| � e′
1 : ||τ2|| → ||τ||

Ξ′′
2

||Γ|| � e′
2 : ||τ2||

||Γ|| � e′
1 @ e′

2 : ||τ|| .

6. Ξ is of the form

Ξ1

Γ � e : {x}τ1
→ τ ⇒ e′ Γ(x) = τ1

Γ � e : τ ⇒ e′ @ x
(lift-app)

By induction on Ξ1, we can construct

Ξ′
1 :: |Γ| � e : |{x}τ1

→ τ|
Ξ′′

1 :: ||Γ|| � e′ : ||{x}τ1
→ τ||

Because |{x}τ1
→ τ| = |τ|, Ξ′

1 is the first required deduction.

From Γ(x) = τ1, we have ||Γ||(x) = ||τ1||. Observe that ||{x}τ1
→ τ|| = ||τ1|| →

||τ||. From these facts and Ξ′′
1 we can construct

Ξ′′
1

	Γ		� e′ :		τ1		→		τ	
	Γ		(x) =		τ1					
	Γ		� x :		τ1					

||Γ|| � e′ @ x : ||τ|| .

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

534 A. Fischbach and J. Hannan

7. Ξ is of the form

Ξj

Γ{fi:τi} � ej : τj ⇒ e′
j

fi �∈ dom(Γ)

FV (τ) ⊆ dom(Γ)

Ξ0

Γ{fi:τi} � e : τ ⇒ e′

Γ � letrec fi = ei in e : τ ⇒ letrec fi = e′
i in e′

(letrec)

By induction on the Ξj and Ξ0 we have (for j = 1 to n)

Ξ′
j :: |Γ{fi:τi}| � ej : |τj |

Ξ′
0 :: |Γ{fi:τi}| � e : |τ|

Ξ′′
j :: ||Γ{fi:τi}|| � e′

j : ||τj ||
Ξ′′

0 :: ||Γ{fi:τi}|| � e′ : ||τ||

Hence we can construct the deductions

Ξ′
j

|Γ|{fi:|τi|} � ej : |τj |
Ξ′

0

|Γ|{fi:|τi|} � e : |τ|
|Γ| � letrec fi = ei in e : |τ|

and

Ξ′′
j

||Γ||{fi:||τi||} � e′
j : ||τj ||

Ξ′′
0

||Γ||{fi:||τi||} � e′ : ||τ||

||Γ|| � letrec fi = e′
i in e′ : ||τ|| .

�

Proof of Theorem 4

We give the proof to part 1. It follows by induction on the pair (|Π|, |Ξ|) where

Π :: � e ↪→ v and Ξ :: � e : τ ⇒ e′. We show how to construct Π′ :: � e′ ↪→ v′ and

Ξ′ :: � v : τ ⇒ v′.

The proof makes use of some properties of deductions that allows us to construct

new deductions from existing ones. In particular, given a deduction of Ξ :: (x : τ1 ⇒
x′ ⊃ e : τ ⇒ e′) in which x and x′ are variables and a deduction Ξ1 :: e1 : τ1 ⇒ e′

1,

by substitution (function application in constructive type theory) we can construct

a deduction Ξ′ :: e[e1/x] : τ ⇒ e′[e′
1/x

′]. This result can be justified when we

view deductions as objects and interpret logical implication as the function type

constructor. Our previous work on unCurrying (Hannan & Hicks, 2000) makes

significant use of this and provides further explanation of the technique. (If we had

used explicit type contexts we would have required a substitution lemma for this

kind of result.)

1. Assume Π is λx.e ↪→ λx.e and Ξ is a deduction of λx.e : τ ⇒ λz.e′. Then Π′ is

λz.e′ ↪→ λz.e′ and Ξ′ = Ξ.

2. Assume Π is

Π1

�e1 ↪→ λx.e
Π2

�e[e2/x] ↪→ v

�e1 @ e2 ↪→ v

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 535

and Ξ is
Ξ1

�e1 : (τ2 → τ1) ⇒ e′
1

Ξ2

�e2 : τ2 ⇒ e′
2

�e1 @ e2 : τ1 ⇒ e′
1 @ e′

2

By induction on Π1 and Ξ1 there exists a v′
1 such that

Π′
1 :: e′

1 ↪→ v′
1 (A 1)

Ξ′
1 :: λx.e : (τ2 → τ1) ⇒ v′

1 (A 2)

By the structure of the inference rules, then Ξ′
1 must be of the form

Ξ′′
1

∀c, c′(c : τ2 ⇒ c′ ⊃ e[c/x] : τ1 ⇒ e′[c′/x′])

λx.e : (τ2 → τ1) ⇒ λx′.e′

where v′
1 = λx′.e′ for some x′ and e′. We can instantiate Ξ′′

1 (using e2, e
′
2, and

Ξ2) yielding a deduction

Ξ3 :: e[e2/x] : τ1 ⇒ e′[e′
2/x

′] (A 3)

By induction on Π2 and Ξ3, there exists a v′ such that

Π′
2 :: e′[e′

2/x
′] ↪→ v′ (A 4)

Ξ′ :: v : τ1 ⇒ v′ (A 5)

Finally, we can construct the deduction Π′:

Π′
1

�e′
1 ↪→ λx′.e′

Π′
2

�e′[e′
2/x

′] ↪→ v′

�e′
1 @ e′

2 ↪→ v′

3. Assume Π is an arbitrary deduction of �e ↪→ v and Ξ is of the form

Ξ1

�e : {w}τ1
→ τ ⇒ e′

Ξ2
�v1 : τ1 ⇒ w

�e : τ ⇒ e′ @ w

Then by induction on Π and Ξ1 there exists a v′ such that

Π′
1 :: e′ ↪→ v′ (A 6)

Ξ′
1 :: v : {w}τ1

→ τ ⇒ v′ (A 7)

The deduction Ξ′
1 must be of the form

Ξ′

λy.e1 : τ ⇒ λz.e′
1[w/x

′]
Ξ′

2

x : τ1 ⇒ x′
Ξ′

3
v1 : τ1 ⇒ w

λy.e1 : {w}τ1
→ τ ⇒ λx′.λz.e′

1

in which v = λy.e1 for some y and e1, and v′ = λx′.λz.e′
1 for some z and e′

1.

Then Π′ can be constructed as

Π′
1

e′ ↪→ λx′λz.e′
1 λz.e′

1[w/x
′] ↪→ λz.e′

1[w/x
′]

e′ @ w ↪→ λz.e′
1[w/x

′]

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

536 A. Fischbach and J. Hannan

4. Assume Π is
Π0

e[(letrec fi = ei in ej)/fj] ↪→ v

letrec fi = ei in e ↪→ v

(in which 1 � i � n for some n � 1) and Ξ is

Ξ1 · · · Ξn Ξ0

letrec fi = ei in e : τ ⇒ letrec f′
i = e′

i in e′

in which

Ξ1 :: = ∀ci, c′
i(ci : τi ⇒ c′

i ⊃ e1[ci/fi] : τ1 ⇒ e′
1[c

′
i/f

′
i]) (A 8)

...
...

Ξn :: = ∀ci, c′
i(ci : τi ⇒ c′

i ⊃ en[ci/fi] : τn ⇒ e′
1[c

′
i/f

′
i]) (A 9)

Ξ0 :: = ∀ci, c′
i(ci : τi ⇒ c′

i ⊃ e[ci/fi] : τ ⇒ e′[c′
i/f

′
i]) (A 10)

Observe that for 1 � k � n we can construct a deduction Ξ′
k of

Ξ1 · · · Ξn Ξk

letrec fi = ei in ek : τk ⇒ letrec f′
i = e′

i in e′
k

Applying Ξ0 to the deductions Ξ′
1, . . . , Ξ′

n we obtain a deduction

Ξ′
0 :: e[(letrec fi = ei in ej)/fj] : τ ⇒ e′[(letrec f′

i = e′
i in e′

j)/f
′
j]

(A 11)

By induction on Π0 and Ξ′
0 we have that there exists a v′ such that

Π′
0 :: e′[(letrec f′

i = e′
i in e′

j)/f
′
j] ↪→ v′ (A 12)

Ξ′ :: v : τ ⇒ v′ (A 13)

Hence we can construct Π′ as

Π′
0

e′[(letrec f′
i = e′

i in e′
j)/f

′
j] ↪→ v′

letrec f′
i = e′

i in e′ ↪→ v′

Part 2 follows similarly. �

Proof of Theorem 5

Before proceeding with the proof of the theorem we introduce two useful auxiliary

lemmas.

Lemma 2

If Λ ∼= Γ then FV (Λ) = FV (Γ).

The proof is straightforward from Definitions 2 and 3.

Lemma 3

If Closed(Λ) and Λ � e : (τ, θ) ⇒ m then θ ⊆ dom(Λ).

The proof is straightforward by induction on the typing derivation.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 537

Now the proof of the theorem proceeds by well-founded induction on the structure

of the typing derivation Ξ::Λ � e : (τ, θ) ⇒ m.

1. Ξ is

Σ(c) = τ

Λ � c : (τ, ∅) ⇒ c
(const)

and ∆ is

c ⇒t c.

Then trivially Ξ′ is

Σ(c) = τ

Γ � c : τ ⇒ c
(const)

2. Ξ is

Λ(x) = (τ, ∅)

Λ � x : (τ, {x}) ⇒ x∅.

Then ∆ is x∅ ⇒t x, and Ξ′ is

Γ(x) = τ

Γ � x : τ ⇒ x.

3. Ξ is

Λ(f) = (τ, θ)

Λ � f : (τ, θ) ⇒ fθ.

Suppose θ is y1::y2:: · · · ::yn for some n � 0. Then ∆ is a deduction of

fθ ⇒t f @ yn @ · · · @ y2 @ y1

and by Definition 3, Γ(f) = τ′ such that

τ′ = {yn}τyn → · · · {y2}τy2 → {y1}τy1 → τ

(where Γ(yi) = yi for i ∈ 1..n).

Then using n instances of (lift-app) we can construct Ξ′ as

Γ(f) = {yn}τyn → · · · {y2}τy2 → {y1}τy1 → τ

Γ � f : {yn}τyn → · · · {y2}τy2 → {y1}τy1 → τ ⇒ f

.

.

.

Γ � f : {y2}τy2 → {y1}τy1 → τ ⇒ f @ yn @ · · · @ y3 Γ(y2) = y2

Γ � f : {y1}τy1 → τ ⇒ f @ yn @ · · · @ y2

(lift-app)
Γ(y1) = y1

Γ � f : τ ⇒ f @ yn @ · · · @ y2 @ y1

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

538 A. Fischbach and J. Hannan

4. Ξ is

Ξ1

Λ{y:(τ, ∅)} � e : (τ1, θ) ⇒ m y �∈ dom(Λ)

Λ � λy.e : (τ → τ1, θ − {y}) ⇒ λy.m

and ∆ is

∆1

m ⇒t e
′

λy.m ⇒t λy.e
′.

From Λ ∼= Γ we have Λ{y:(τ, ∅)} ∼= Γ{y : τ}, and from Closed(Λ) we also have

Closed(Λ{y:(τ, ∅)).

By induction on Ξ1 and ∆1, we have

Ξ′
1::Γ{y:τ} � e : τ1 ⇒ e′

and so we can construct Ξ′ as

Ξ′
1

Γ{y:τ} � e : τ1 ⇒ e′

Γ � λy.e : τ → τ1 ⇒ λy.e′.

5. Ξ is

Ξ1

Λ � e1 : (τ2 → τ, θ1) ⇒ m1

Ξ2

Λ � e2 : (τ2, θ2) ⇒ m2

Λ � e1 @ e2 : (τ, θ1 ∪ θ2) ⇒ m1 @ m2

and ∆ is

∆1

m1 ⇒t e
′
1

∆2

m2 ⇒t e
′
2

m1 @ m2 ⇒t e
′
1 @ e′

2.

By induction on Ξ1 and ∆1 we have

Ξ′
1::Γ � e1 : τ2 → τ ⇒ e′

1.

By induction on Ξ2 and ∆2 we have

Ξ′
2::Γ � e2 : τ2 ⇒ e′

2.

Hence we can build Ξ′ as

Ξ′
1

Γ � e1 : τ2 → τ ⇒ e′
1

Ξ′
2

Γ � e2 : τ2 ⇒ e′
2

Γ � e1 @ e2 : τ ⇒ e′
1 @ e′

2 .

6. Ξ is

Ξi

Λ′ � ei : (τi, θi) ⇒ mi fi �∈ dom(Λ)
Ξ′

Λ′ � e : (τ, θ) ⇒ m

Λ � letrec fi = ei in e : (τ, θ ∪ θi) ⇒ letrec fi =θi mi in m

in which Λ′ = Λ{fi:(τi, θi)}.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 539

Then ∆ is
∆i

fi =θi mi ⇒t fi = e′
i

∆′

m ⇒t e
′

letrec fi =θi mi in m ⇒t letrec fi = e′
i in e′

Assume θi is x1::x2:: · · · ::xni ::∅ for some ni � 0. Each deduction ∆i must be

of the form

∆′
i

λxni . · · · λx2.λx1.mi ⇒t e
′
i

fi =∅ λxni . · · · λx2.λx1.mi ⇒t fi = e′
i

...

fi =x2::···::xni ::∅ λx1.mi ⇒t fi = e′
i

fi =x1::x2::···::xni ::∅ mi ⇒t fi = e′
i

Then by the structure of the translation relation, e′
i = λxni . · · · λx2.λx1.e

′′
i for

some e′′
i and the ∆′

i must be of the form

∆′′
i

mi ⇒t e
′′
i

...

λxni . · · · λx2.λx1.mi ⇒t λxni . · · · λx2.λx1.e
′′
i

Let Γ′ = Γ{fi:τ′
i} where (τi, θi) �Λ′ τ′

i. Then Λ′ ∼= Γ′. Observe that we have

Closed(Λ). By induction on each Ξi and ∆′′
i , we have

Ξ′
i::Γ

′ � ei : τi ⇒ e′′
i .

By Lemma 3 and Ξi, θi ⊆ dom(Λ′), and hence Closed(Λ′) and θi ⊆ dom(Γ′).
Starting with Ξ′

i and applying the (lift-abs) rule ni times we can construct Ξ′′
i :

Γ′(xni) = τxni

Γ′(x1) = τx1

Ξ′
i

Γ′ � ei : τi ⇒ e′′
i

Γ′ � ei : {x1}τx1
→ τi ⇒ λx1.e

′′
i

...

Γ′ � ei : {xni}τxni → · · · {x2}τx2
→ {x1}τx1

→ τi ⇒ λxni · · · λx2.λx1.e
′′
i

By induction on Ξ′ and ∆′ we have

Ξ′′::Γ′ � e : τ ⇒ e′.

From fi �∈ dom(Λ) we have fi �∈ dom(Γ). Let

τ′
i = {xni}τxni → · · · {x2}τx2

→ {x1}τx1
→ τi.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

540 A. Fischbach and J. Hannan

We can construct the required deduction as

Ξ′′
i

Γ′ � ei : τ′
i ⇒ λxni · · · λx2 .λx1 .e

′′
i fi �∈ dom(Γ′)

Ξ′′

Γ′ � e : τ ⇒ e′

Γ � letrec fi = ei in e : τ ⇒ letrec fi = λxni · · · λx2 .λx1 .e
′′
i in e′

�

Proof of Lemma 1

1. The first rule of solve

solve({θgi = θgj ∪θ}∪{θgj = θj}∪Φ) = solve({θgi = θj\θgi ∪θ}∪{θgj = θj}∪Φ)

replaces one occurrence of θgj on the right hand side of a constraint with θj .

Since θgj cannot occur in θj , one occurrence of θgj has been removed from Φ.

Since there are a finite number, say N, of θgj , they can all be eliminated from

the RHS of constraints after N applications of rule 1. Likewise for the rest of

the θgi . When all θgi have been removed from the RHS of all constraints, the

resulting constraint list is returned as a substitution. Hense solve(Φ) halts.

2. By the second rule of solve, ε must be a set of equalities {θgi = θ′
i} where no

θgi occur in any θ′
i . We show that ε is a solution to Φ.

We do this by demonstrating the correctness of rule 1; specifically, if ε is a

solution to

{θgi = θj\θgi ∪ θ} ∪ {θgj = θj} ∪ Φ

then it is a solution to

{θgi = θgj ∪ θ} ∪ {θgj = θj} ∪ Φ.

All of the constraints are the same in the two sets except for θgi . Since we

know εθgj = εθj ,

εθgi = ε(θgj \θgi ∪ θ)

We can add εθgi to the RHS allowing us to remove the restriction on θgj , thus:

εθgi = ε(θgj ∪ θ)

Now, if solve(Φ) ⇒ solve(Φ′) ⇒ · · · ⇒ ε, we know ε is a solution to Φ, hence

εθgi = εθi\θgi for all θgi in Φ.

�

Proof of Theorem 6

We only present the proof of Part 1 here. The proof is by induction over the

definition of PL and the deduction Π of Γ � e : τ.

1. Π is
Σ(c) = τ

Γ � c : τ

and PL(∆, c) = (∅, c). We can construct Ξ:

Σ(c) = τ

(Γ � ∆) � c : (τ, ∅) ⇒ c

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 541

2. Π is

Γ(x) = τ

Γ � x : τ

∆(x) = θ, then PL(∆, x) = ({x}, xθ). Since Closed(∆), θ = ∅ and we can

construct Ξ:

(Γ � ∆)(x) = (τ, ∅)

(Γ � ∆) � x : (τ, {x}) ⇒ x∅

3. Π is

Γ(f) = τ

Γ � f : τ

∆(f) = θ, then PL(∆, f) = (θ, fθ). We can construct Ξ:

(Γ � ∆)(f) = (τ, θ)

(Γ � ∆) � f : (τ, θ) ⇒ fθ

4. Π is

Π1

Γ{y : τ} � e : τ1

Γ � λy.e : τ → τ1

and PL(∆, λy.e) = (θ − {y}, λy.m). By induction on Π1 and the recursive call

to PL we have

Ξ1 :: (Γ{y : τ} � ∆{y : ∅}) � e : (τ1, θ) ⇒ m

By Definition 5, Γ{y : τ} � ∆{y : ∅} = (Γ � ∆){y : (τ, ∅)}. Since all variable

names are distinct, the constraints y /∈ dom(Γ) and y /∈ dom(∆) are trivially

satisfied. Thus y /∈ dom(Γ � ∆) and we can construct Ξ:

Ξ1

(Γ � ∆){y : (τ, ∅)} � e : (τ1, θ) ⇒ m y /∈ dom(Γ � ∆)

(Γ � ∆) � λy.e : (τ → τ1, θ − {y}) ⇒ λy.m

5. Π is

Π1

Γ � e1 : τ1 → τ
Π2

Γ � e2 : τ1

Γ � e1 @ e2 : τ

and PL(∆, e1 @ e2) = (θ1 ∪ θ2, m1 @ m2). By induction on Π1 and Π2, and

the recursive calls to PL, we have

Ξ1 :: (Γ � ∆) � e1 : (τ1 → τ, θ1) ⇒ m1

Ξ2 :: (Γ � ∆) � e2 : (τ1, θ2) ⇒ m2

We can construct Ξ:

Ξ1

(Γ � ∆) � e1 : (τ1 → τ, θ1) ⇒ m1

Ξ2

(Γ � ∆) � e2 : (τ1, θ2) ⇒ m2

(Γ � ∆) � e1 @ e2 : (τ, θ1 ∪ θ2) ⇒ m1 @ m2

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

542 A. Fischbach and J. Hannan

6. Π is

Γ′ = Γ{gi : τi → τ′
i}

Πi

Γ′ � λyi.ei : τi → τ′
i

Π′

Γ′ � e : τ

Γ � letrec gi = λyi.ei in e : τ

and PL(∆, letrec gi = λyi.ei in e) = (
⋃
εθgi ∪ θ, letrec gi =εθgi λyi.εmi in m).

∆′ = ∆{gi : θgi} and by induction on Πi and the recursive calls to PL,

we have

Ξi :: (Γ′ � ∆′) � λyi.ei : (τi → τ′
i, θi) ⇒ λyi.mi

ε = solve({θgi = θi\θgi }) and by Lemma 1, εθgi = εθi\θgi = εθi. By applying the

substitution ε to the deductions Ξi we have

Ξ′
i :: (Γ′ � ε∆′) � λyi.ei : (τi → τ′

i, εθi) ⇒ ελyi.mi

By induction on Π′ and the recursive call to PL, we have

Ξ′ :: (Γ′ � ε∆′) � e : (τ, θ) ⇒ m

All variable names are distinct, so gi /∈ dom(Γ � ∆). There are no θgi in ∆, so

by Definition 5

(Γ′ � ε∆′) = (Γ � ∆){gi : (τi, εθgi)}
Now we can construct:

Ξ′
i

(Γ′ � ε∆′) � λyi.ei : (τi → τ′
i, εθi) ⇒ ελyi.mi

Ξ′

(Γ′ � ε∆′) � e : (τ, θ) ⇒ m

(Γ � ∆) � letrec gi = λyi.ei in e : (τ,
⋃
εθgi ∪ θ) ⇒ letrec gi =εθgi λyi.εmi in m

�

Acknowledgements

We thank Olivier Danvy and the referees for their comments and suggestions.

References

Aspinall, D. (1995) Subtyping with singleton types. In: Pacholski, L. and Tiuryn, J. (eds.)

Computer Science Logic: Lecture Notes in Computer Science 933, pp. 1–15. Springer-Verlag.

Bondorf, A. and Danvy, O. (1991) Automatic autoprojection of recursive equations with

global variables and abstract data types. Science of Computer Programming, 16(2), 151–195.

Clinger, W. and Hansen, L. T. (1994) Lambda, the ultimate label, or a simple optimizing

compiler for scheme. In: Talcott, C., editor, Proceedings of ACM Conference on LISP and

Functional Programming, pp. 128–139. ACM Press.

Danvy, O. (1998) An extensional characterization of lambda lifting. Technical report RS-98-2,

BRICS.

Danvy, O. and Schultz, U. P. (2000) Lambda-dropping: transforming recursive equations into

programs with block structure. Theor. Comput. Sci. 248(1–2), 243–287.

Fischbach, A. and Hannan, J. (2000) Specification and correctness of lambda lifting. In: Taha,

W., editor, Semantics, Applications and Implementation of Program Generation: Lecture Notes

in Computer Science 1924, pp. 108–128. Springer-Verlag.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

Specification and correctness of lambda lifting 543

Fischbach, A. and Hannan, J. (2001) Type systems and algorithms for useless-variable

elimination. In: Danvy, O. and Filinski, A., editors, Programs as Data Objects: Lecture

Notes in Computer Science 2053, pp. 25–38. Springer-Verlag.

Hannan, J. (1995) Type systems for closure conversions. In: Nielson, H. R. and Solberg,

K. L., editors, Participants’ Proceedings of the Workshop on Types for Program Analysis,

pp. 48–62.

Hannan, J. (1998) A type-based escape analysis for functional languages. J. Functional

Program. 8(3), 239–273.

Hannan, J. and Hicks, Pk. (1998) Higher-order arity raising. In: Hudak, P. and Queinnec, C.,

editors, Proceedings Third International Conference on Functional Programming, pp. 27–38.

ACM Press.

Hannan, J. and Hicks, P. (2000) Higher-order unCurrying. Higher-order & Symbolic

Computation, 13(3), 179–216.

Hannan, J., Hicks, P. and Liben-Nowell, D. (1997) A lifetime analysis for higher-order

languages. Technical report CSE-97-014, Penn State University.

Hughes, J. (1982) Super combinators: A new implementation method for applicative

languages. In: Wise, D. S., editor, Proceedings ACM Symposium on LISP and Functional

Programming, pp. 1–10. ACM Press.

Johnsson, T. (1985) Lambda lifting: Transforming programs to recursive equations. In:

Jouannaud, J.-P., editor, Functional Programming Languages and Computer Architecture:

Lecture Notes in Computer Science 201, pp. 190–203. Springer-Verlag.

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages. Prentice

Hall International Series in Computer Science. Prentice Hall.

Peyton Jones, S. L. and Lester, D. R. (1992) Implementing Functional Languages. Prentice Hall

International Series in Computer Science. Prentice Halll.

Peyton Jones, S. L., Partain, W. and Santos, A. (1996) Let-floating: Moving bindings to

give faster programs. In: Harper, R., editor, Proceedings ACM SIGPLAN International

Conference on Functional Languages, pp. 1–12. ACM Press.

Shivers, O. (1991) Control-flow analysis of higher-order languages. PhD thesis, Carnegie-Mellon

University.

Thiemann, P. (1999) ML-style typing, lambda lifting, and partial evaluation. Proceedings Latin

American Conference on Functional Programming.

https://doi.org/10.1017/S0956796802004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004604

