A NOTE ON ERDÖS-RENYI LAW OF LARGE NUMBERS

BY
CHANDRAKANT M. DEO

Abstract

In this note the Erdös-Renyi law of large numbers is extended to stationary Gaussian sequences.

1. Introduction and main theorem. A new law of large numbers for i.i.d. sequence of random variables was discovered by Erdös-Renyi (1970). The general problem of extending this theorem to stationary sequences, under various mixing conditions, appears to be quite difficult. In this note we deal with a stationary Gaussian sequence and show that such a sequence obeys Erdös-Renyi theorem under a mild condition on the correlation sequence. The same condition was used in Deo (1974) to prove Strassen's law of iterated logarithm for stationary, Gaussian sequences.

Let $\left\{\xi_{n}: 1 \leq n<\infty\right\}$ be a stationary, Gaussian sequence with $E\left(\xi_{1}\right)=1, E\left(\xi_{1}^{2}\right)=$ 1 and $E\left(\xi_{1} \xi_{n+1}\right)=r_{n}, n \geq 0$. Let $S_{0}=0, S_{n}=\sum_{j=1}^{n} \xi_{j}$ and for $1 \leq k \leq n$ let $\Theta(n, k)=\max _{0 \leq j \leq n-k}\left(S_{j+k}-S_{j}\right) / k$. We will assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{1+\beta} r_{n}=0 \quad \text { for some } \quad \beta>0 . \tag{1}
\end{equation*}
$$

Under (1) the series $\sum r_{j}$ converges absolutely. Write $\sigma^{2}=1+2 \sum_{j=1}^{\infty} r_{j}$. We exclude the degenerate case $\sigma=0$ and assume hereafter $\sigma>0$. Let [\cdot] be the usual largest integer function. The object of this note is to prove the following

Theorem. If (1) holds then, for each $c>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Theta(n,[c \log n])=\sigma \sqrt{\frac{2}{c}} \tag{2}
\end{equation*}
$$

with probability one.
Proof. We first show that

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} \Theta(n,[c \log n]) \geq \sigma \sqrt{\frac{2}{c}} \quad \text { w.p. } 1 . \tag{3}
\end{equation*}
$$

Let $\varepsilon>0$. The first step consists in proving that 3 positive numbers ν, δ

Received by the editors August 11, 1975 and, in revised form, July 21, 1976.
(depending upon ε) such that

$$
\begin{equation*}
P\left\{\Theta(n,[c \log n])<\sigma\left(\sqrt{\frac{2}{c}}-\varepsilon\right\}<n^{-\nu}+e^{-n^{s}}, \quad \text { for all large } n\right. \tag{4}
\end{equation*}
$$

Now break up the integers 1 through n into blocks of size $[c \log n]$ leaving a gap of size $[\log \log n]$ between two adjacent blocks. Let k_{n} denote the total number of such blocks of size $[c \log n]$ and let $J_{1}, J_{2}, \ldots, J_{k_{n}}$ denote these blocks. Thus J_{1} consists of integers 1 through $[c \log n], J_{2}$ consists of integers $[c \log n]+[\log \log n]$ through $2[c \log n]+[\log \log n]$ and so on. Note that k_{n} is approximately $n /(\log n+\log \log n)$ and as will be clear from computations below the last incomplete block if any, of size less than [$c \log n$] can be safely ignored. Let $Y_{n, i}=\sum_{j \in J_{i}} \xi_{j}, 1 \leq i \leq k_{n}$. Now the probability in (4) is clearly dominated by

$$
\begin{equation*}
P\left\{\max _{1 \leq i \leq k_{n}}\left(\sigma^{2}[c \log n]\right)^{-1 / 2} Y_{n, i}<\left(\sqrt{ } \frac{2}{c}-\varepsilon\right) \sqrt{ } c \log n\right\} . \tag{5}
\end{equation*}
$$

Note that for each n, the variances of $Y_{n, i}$'s are equal; and, as $n \rightarrow \infty$, these are asymptotic to $\sigma^{2} c \log n$. Hence if $0<\varepsilon^{\prime}<\varepsilon$, the probability in (5) is, for large n, less than

$$
\begin{equation*}
P\left\{\max _{1 \leq \mathrm{i} \leq \mathrm{K}_{n}}\left(\operatorname{Var} Y_{n, i}\right)^{-1 / 2} Y_{n, i}<\left(\sqrt{\frac{2}{c}}-\varepsilon^{\prime}\right) \sqrt{ } c \log n\right\} \tag{6}
\end{equation*}
$$

Let now $Z_{1}, Z_{2}, \ldots, Z_{k_{n}}$ be independent standard normal variables. We have,

$$
\begin{align*}
P\left\{\max _{1 \leq i \leq k_{n}} Z_{i}<\left(\sqrt{\frac{2}{c}}-\varepsilon^{\prime}\right) \sqrt{ } c \log n\right\} & =\prod_{i=1}^{k_{n}} P\left\{Z_{i}<\left(\sqrt{\frac{2}{c}}-\varepsilon^{\prime}\right) \sqrt{ } c \log n\right\} \tag{7}\\
& =\prod_{i=1}^{k_{n}}\left[1-P\left\{Z_{i}>\left(\sqrt{\frac{2}{c}}-\varepsilon^{\prime}\right) \sqrt{ } c \log n\right\}\right] \\
& -\sum_{i=1}^{k_{n}} P\left\{Z_{i}>\left(\sqrt{\frac{2}{c}}-\varepsilon^{\prime}\right) \sqrt{ } c \log n\right\}
\end{align*}
$$

Now using the standard estimate ([4], page 175) for the upper tail of the normal distribution it is easy to see that $P\left\{Z_{i}>\left(\sqrt{ } 2 / c-\varepsilon^{\prime}\right) \sqrt{ } 2 \log n\right\}$ is, for large n, greater than $n^{-1+\delta^{\prime}}$ for some $\delta^{\prime}>0$. Also $k_{n}>n^{1-\delta^{\prime} / 2}=$ for large n. Hence the probability in (7) is less than $e^{-n^{\delta}}$ for large n where $\delta=\delta^{\prime} / 2$.

Next we estimate Δ_{n} which stands for the difference between the probabilities in (6) and (7). For this we use the following

Lemma (Berman (1964)). Let the random variables $X_{1}, X_{2}, \ldots, X_{n}$ have joint Gaussian distribution with zero means, unit variances and correlations $\{r(i, j): 1 \leq i \leq j \leq n\}$. Also let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent standard normal.

Then for any $a>0$,

$$
\begin{aligned}
&\left|P\left(\max _{1 \leq i \leq n} X_{i}<a\right)-P\left(\max _{1 \leq i \leq n} Z_{i}<a\right)\right| \\
& \leq \sum_{1 \leq i \leq j<n}\left[1-r^{2}(i, j)\right]^{-1 / 2} \cdot|r(i, j)| \exp \left\{-\frac{a^{2}}{1+|r(i, j)|}\right\} .
\end{aligned}
$$

To apply this lemma let $r_{n}(i, j)$ denote the correlation coefficient between $Y_{n, i}$ and $Y_{n, j}$. Under our hypothesis (1) it is a straightforward verification that \exists finite positive constant B independent of n, i, j such that

$$
\begin{array}{ll}
\left|r_{n}(i, i+1)\right|<B(\log \log n)^{-\beta}, & 1 \leq i \leq k_{n}-1 ; \quad \text { and } \\
\left|r_{n}(i, i+k)\right|<B(k-1)^{-\beta}, & k>1, \quad 1 \leq i+k \leq k_{n} . \tag{8}
\end{array}
$$

Thus $r_{n}(i, j) \rightarrow 0$ as $n \rightarrow \infty$ uniformly in i, j. Also note that $\{(\sqrt{ } 2 / c-$ $\left.\left.\varepsilon^{\prime}\right) \sqrt{ } c \log n\right\}^{2}>\left(2-\varepsilon^{\prime \prime}\right) \log n$, where $\varepsilon^{\prime \prime}=2 \sqrt{ } 2 \varepsilon^{\prime} c$ and $\varepsilon^{\prime \prime}>0$ can be made arbitrarily small by making ε^{\prime} and hence ε small enough. Hence applying the lemma we have, for all large n,

$$
\begin{aligned}
\Delta_{n} & \leq \text { const } \sum_{1 \leq i \leq j<k_{n}}\left|r_{n}(i, j)\right| \cdot n^{-\left(2-\varepsilon^{\prime \prime} / 1+\left|r_{n}(i, j)\right|\right)} \\
& \leq \text { const } \sum_{1 \leq i \leq j<k_{n}}\left|r_{n}(i, j)\right| n^{-2+\left(\varepsilon^{\prime \prime} / 2\right)} \\
& \leq \text { const }\left\{\sum_{k=2}^{n}(n-k)(k-1)^{-\beta} n^{-2+\left(\varepsilon^{\prime \prime} / 2\right)}+(n-1) n^{-2+\left(\varepsilon^{\prime \prime} / 2\right)}\right\}
\end{aligned}
$$

where in the last step we have used (8) and the fact that $k_{n}<n$. Note that $\sum_{k=2}^{n}(n-k)(k-1)^{-\beta} \leq n \sum_{k=2}^{n}(k-1)^{-\beta} \leq$ const $n^{2-\beta}$. Hence, we get (assuming $\beta<1$ without loss of generality),

$$
\begin{equation*}
\Delta_{n} \leq \text { const } n^{2-\beta-2+\left(\varepsilon^{\prime \prime} / 2\right)}=\text { const } n^{-\beta+\left(\varepsilon^{\prime \prime} / 2\right)} \tag{9}
\end{equation*}
$$

Here $\beta>0$ is fixed and $\varepsilon^{\prime \prime}$ can be taken to be less than 2β by choosing our initial $\varepsilon>0$ small enough which is permissible since, if (4) holds for some ε, it also holds for all smaller ε. Thus from (9) we can conclude that

$$
\begin{equation*}
\Delta_{n} \leq n^{-\nu}, \text { for some } \gamma>0, \text { for all large } n . \tag{10}
\end{equation*}
$$

Combining (10) and (7) we get (4).
It now follows from (4) and the first Borel-Cantelli lemma that $\Theta\left(\left[e^{k / c}\right]-\right.$ $1, k-1)<\sigma(\sqrt{ } 2 / c-\varepsilon)$ for only finitely many k 's with probability one. Note that for n with $\left[e^{k / c}\right] \leq n<\left[e^{(k+1) / c}\right]$, the numerator is the definition of $\Theta(n,[c \log n])$ is less than or equal to the numerator in the definition of $\Theta\left(\left[e^{(k+1) / c}\right]-1, k\right)$ whereas the denominators are asymptotically equal. Thus $\Theta(n,[c \log n])<\sigma(\sqrt{ } 2 / c-\varepsilon)$ only finitely often with probability one which proves (3).

The proof that $\varlimsup_{n \rightarrow \infty} \Theta(n,[c \log n]) \leq \sigma \sqrt{ } 2 / c$ is much simpler. Indeed, for $\varepsilon>0$,

$$
\begin{equation*}
P\left\{\Theta(n,[c \log n])>\sigma\left(\sqrt{ } \frac{2}{c}+\varepsilon\right)\right\} \leq n P\left\{\frac{[c \log n]}{\sigma[c \log n]}>\left(\sqrt{\frac{2}{c}}+c\right) \sqrt{ } c \log n\right\} \tag{11}
\end{equation*}
$$

Again using the standard estimate ([4], page 175) of the upper tail of the normal distribution it is easy to see that the right side of (11) is dominated by $n^{-\alpha}$ for some $\alpha>0$. In conjunction with the first Borel-Cantelli iemma this implies $\Theta\left(\left[e^{k / c}\right], k\right)>\sigma(\sqrt{ } 2 / c+\varepsilon)$ only finitely often with probability one. By an approximation similar to the one already used this means $\Theta(n,[c \log n])>$ $(\sigma \sqrt{ } 2 / c+\varepsilon)$ only finitely often with probability one. This completes the proof of the theorem.

References

1. S. M. Berman, Limit theorems for maximum term in a stationary sequence, Ann. Math. Statist. 35 (1964), 502-516.
2. C. M. Deo, A note on stationary Gaussian sequences, Ann. Probability 2 (1974), 954-957.
3. P. Erdös and A. Renyi, On a new law of large numbers, J. Analyse Math. 23 (1970), 103-111.
4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1 (1968), 3d Ed, Wiley (New York).

Math. Dept.,
University of Ottawa,
Ottawa, Ontario,
Canada, K1N 6N5.

