A NOTE ON ERDÖS-RENYI LAW OF LARGE NUMBERS

ву CHANDRAKANT M. DEO

ABSTRACT. In this note the Erdös-Renyi law of large numbers is extended to stationary Gaussian sequences.

1. Introduction and main theorem. A new law of large numbers for i.i.d. sequence of random variables was discovered by Erdös-Renyi (1970). The general problem of extending this theorem to stationary sequences, under various mixing conditions, appears to be quite difficult. In this note we deal with a stationary Gaussian sequence and show that such a sequence obeys Erdös-Renyi theorem under a mild condition on the correlation sequence. The same condition was used in Deo (1974) to prove Strassen's law of iterated logarithm for stationary, Gaussian sequences.

Let $\{\xi_n : 1 \le n < \infty\}$ be a stationary, Gaussian sequence with $E(\xi_1) = 1$, $E(\xi_1^2) = 1$ and $E(\xi_1\xi_{n+1}) = r_n$, $n \ge 0$. Let $S_0 = 0$, $S_n = \sum_{j=1}^n \xi_j$ and for $1 \le k \le n$ let $\Theta(n, k) = \max_{0 \le j \le n-k} (S_{j+k} - S_j)/k$. We will assume that

(1)
$$\lim_{n \to \infty} n^{1+\beta} r_n = 0 \quad \text{for some} \quad \beta > 0.$$

Under (1) the series $\sum r_i$ converges absolutely. Write $\sigma^2 = 1 + 2 \sum_{i=1}^{\infty} r_i$. We exclude the degenerate case $\sigma = 0$ and assume hereafter $\sigma > 0$. Let $[\cdot]$ be the usual largest integer function. The object of this note is to prove the following

THEOREM. If (1) holds then, for each c > 0,

(2)
$$\lim_{n \to \infty} \Theta(n, [c \log n]) = \sigma \sqrt{\frac{2}{c}}$$

with probability one.

8

Proof. We first show that

(3)
$$\lim_{n\to\infty} \Theta(n, [c\log n]) \ge \sigma \sqrt{\frac{2}{c}} \quad \text{w.p. 1.}$$

Let $\varepsilon > 0$. The first step consists in proving that 3 positive numbers ν , δ

Received by the editors August 11, 1975 and, in revised form, July 21, 1976.

497

(depending upon ε) such that

(4)
$$P\{\Theta(n, [c \log n]) < \sigma\left(\sqrt{\frac{2}{c}} - \varepsilon\right) < n^{-\nu} + e^{-n^{\delta}}, \text{ for all large } n.$$

Now break up the integers 1 through n into blocks of size $[c \log n]$ leaving a gap of size $[\log \log n]$ between two adjacent blocks. Let k_n denote the total number of such blocks of size $[c \log n]$ and let $J_1, J_2, \ldots, J_{k_n}$ denote these blocks. Thus J_1 consists of integers 1 through $[c \log n]$, J_2 consists of integers $[c \log n] + [\log \log n]$ through $2[c \log n] + [\log \log n]$ and so on. Note that k_n is approximately $n/(\log n + \log \log n)$ and as will be clear from computations below the last incomplete block if any, of size less than $[c \log n]$ can be safely ignored. Let $Y_{n,i} = \sum_{j \in J_i} \xi_j$, $1 \le i \le k_n$. Now the probability in (4) is clearly dominated by

(5)
$$P\left\{\max_{1\leq i\leq k_n} \left(\sigma^2 [c\log n]\right)^{-1/2} Y_{n,i} < \left(\sqrt{\frac{2}{c}} - \varepsilon\right) \sqrt{c\log n}\right\}\right\}$$

Note that for each *n*, the variances of $Y_{n,i}$'s are equal; and, as $n \to \infty$, these are asymptotic to $\sigma^2 c \log n$. Hence if $0 < \varepsilon' < \varepsilon$, the probability in (5) is, for large *n*, less than

(6)
$$P\left\{\max_{1\leq i\leq K_n} \left(\operatorname{Var} Y_{n,i}\right)^{-1/2} Y_{n,i} < \left(\sqrt{\frac{2}{c}} - \varepsilon'\right) \sqrt{c} \log n\right\}.\right.$$

Let now $Z_1, Z_2, \ldots, Z_{k_n}$ be independent standard normal variables. We have,

(7)
$$P\left\{\max_{1\leq i\leq k_{n}} Z_{i} < \left(\sqrt{\frac{2}{c}} - \varepsilon'\right)\sqrt{c} \log n\right\} = \prod_{i=1}^{k_{n}} P\left\{Z_{i} < \left(\sqrt{\frac{2}{c}} - \varepsilon'\right)\sqrt{c} \log n\right\}$$
$$= \prod_{i=1}^{k_{n}} \left[1 - P\left\{Z_{i} > \left(\sqrt{\frac{2}{c}} - \varepsilon'\right)\sqrt{c} \log n\right\}\right]$$
$$- \sum_{\leq e^{i=1}}^{k_{n}} P\left\{Z_{i} > \left(\sqrt{\frac{2}{c}} - \varepsilon'\right)\sqrt{c} \log n\right\}.$$

Now using the standard estimate ([4], page 175) for the upper tail of the normal distribution it is easy to see that $P\{Z_i > (\sqrt{2}/c - \varepsilon')\sqrt{2} \log n\}$ is, for large *n*, greater than $n^{-1+\delta'}$ for some $\delta' > 0$. Also $k_n > n^{1-\delta'/2} =$ for large *n*. Hence the probability in (7) is less than $e^{-n^{\delta}}$ for large *n* where $\delta = \delta'/2$.

Next we estimate Δ_n which stands for the difference between the probabilities in (6) and (7). For this we use the following

LEMMA (BERMAN (1964)). Let the random variables X_1, X_2, \ldots, X_n have joint Gaussian distribution with zero means, unit variances and correlations $\{r(i, j): 1 \le i \le j \le n\}$. Also let Z_1, Z_2, \ldots, Z_n be independent standard normal.

https://doi.org/10.4153/CMB-1976-075-5 Published online by Cambridge University Press

Then for any a > 0,

$$\left| P\left(\max_{1 \le i \le n} X_i < a\right) - P\left(\max_{1 \le i \le n} Z_i < a\right) \right|$$

$$\le \sum_{1 \le i \le j < n} \left[1 - r^2(i, j) \right]^{-1/2} \cdot |r(i, j)| \exp\left\{ -\frac{a^2}{1 + |r(i, j)|} \right\}$$

To apply this lemma let $r_n(i, j)$ denote the correlation coefficient between $Y_{n,i}$ and $Y_{n,j}$. Under our hypothesis (1) it is a straightforward verification that \exists finite positive constant B independent of n, i, j such that

(8)
$$|r_n(i, i+1)| < B(\log \log n)^{-\beta}, \quad 1 \le i \le k_n - 1; \text{ and} \\ |r_n(i, i+k)| < B(k-1)^{-\beta}, \quad k > 1, \quad 1 \le i+k \le k_n$$

Thus $r_n(i, j) \to 0$ as $n \to \infty$ uniformly in *i*, *j*. Also note that $\{(\sqrt{2}/c - \varepsilon')\sqrt{c \log n}\}^2 > (2 - \varepsilon'')\log n$, where $\varepsilon'' = 2\sqrt{2\varepsilon'c}$ and $\varepsilon'' > 0$ can be made arbitrarily small by making ε' and hence ε small enough. Hence applying the lemma we have, for all large *n*,

$$\Delta_n \leq \operatorname{const} \sum_{1 \leq i \leq j < k_n} |r_n(i, j)| \cdot n^{-(2 - \varepsilon''/1 + |r_n(i, j)|)}$$

$$\leq \operatorname{const} \sum_{1 \leq i \leq j < k_n} |r_n(i, j)| n^{-2 + (\varepsilon''/2)}$$

$$\leq \operatorname{const} \left\{ \sum_{k=2}^n (n-k)(k-1)^{-\beta} n^{-2 + (\varepsilon''/2)} + (n-1)n^{-2 + (\varepsilon''/2)} \right\}$$

where in the last step we have used (8) and the fact that $k_n < n$. Note that $\sum_{k=2}^{n} (n-k)(k-1)^{-\beta} \le n \sum_{k=2}^{n} (k-1)^{-\beta} \le \text{const } n^{2-\beta}$. Hence, we get (assuming $\beta < 1$ without loss of generality),

(9)
$$\Delta_n \leq \operatorname{const} n^{2-\beta-2+(\varepsilon''/2)} = \operatorname{const} n^{-\beta+(\varepsilon''/2)}.$$

Here $\beta > 0$ is fixed and ε'' can be taken to be less than 2β by choosing our initial $\varepsilon > 0$ small enough which is permissible since, if (4) holds for some ε , it also holds for all smaller ε . Thus from (9) we can conclude that

(10)
$$\Delta_n \le n^{-\nu}$$
, for some $\gamma > 0$, for all large *n*.

Combining (10) and (7) we get (4).

It now follows from (4) and the first Borel-Cantelli lemma that $\Theta([e^{k/c}] - 1, k-1) < \sigma(\sqrt{2}/c - \varepsilon)$ for only finitely many k's with probability one. Note that for n with $[e^{k/c}] \le n < [e^{(k+1)/c}]$, the numerator is the definition of $\Theta(n, [c \log n])$ is less than or equal to the numerator in the definition of $\Theta([e^{(k+1)/c}] - 1, k)$ whereas the denominators are asymptotically equal. Thus $\Theta(n, [c \log n]) < \sigma(\sqrt{2}/c - \varepsilon)$ only finitely often with probability one which proves (3).

https://doi.org/10.4153/CMB-1976-075-5 Published online by Cambridge University Press

1976]

C. M. DEO

The proof that $\overline{\lim_{n\to\infty}} \Theta(n, [c \log n]) \le \sigma \sqrt{2/c}$ is much simpler. Indeed, for $\varepsilon > 0$,

(11)
$$P\left\{\Theta(n, [c \log n]) > \sigma\left(\sqrt{\frac{2}{c}} + \varepsilon\right)\right\} \le nP\left\{\frac{s[c \log n]}{\sigma[c \log n]} > \left(\sqrt{\frac{2}{c}} + c\right)\sqrt{c} \log n\right\}$$

Again using the standard estimate ([4], page 175) of the upper tail of the normal distribution it is easy to see that the right side of (11) is dominated by $n^{-\alpha}$ for some $\alpha > 0$. In conjunction with the first Borel-Cantelli lemma this implies $\Theta([e^{k/c}], k) > \sigma(\sqrt{2/c} + \varepsilon)$ only finitely often with probability one. By an approximation similar to the one already used this means $\Theta(n, [c \log n]) > (\sigma\sqrt{2/c} + \varepsilon)$ only finitely often with probability one. This completes the proof of the theorem.

REFERENCES

1. S. M. Berman, Limit theorems for maximum term in a stationary sequence, Ann. Math. Statist. 35 (1964), 502-516.

2. C. M. Deo, A note on stationary Gaussian sequences, Ann. Probability 2 (1974), 954-957.

3. P. Erdös and A. Renyi, On a new law of large numbers, J. Analyse Math. 23 (1970), 103-111.

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1 (1968), 3d Ed, Wiley (New York).

Math. Dept., University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5.

500