
15
Twisted reduced models

There is an elegant alternative to the quenched Eguchi–Kawai model, de-
scribed in the previous chapter, which also preserves the U(1)d symmetry.
It was proposed by González-Arroyo and Okawa [GO83a, GO83b] on the
basis of a twisting reduction prescription. The corresponding lattice ver-
sion of the reduced model lives on a hypercube with twisted boundary
conditions. The twisted reduced model for a scalar field was constructed
by Eguchi and Nakayama [EN83].
The twisted reduced models reveal interesting mathematical structures

associated with representations of the Heisenberg commutation relation
(in the continuum) or its finite-dimensional approximation by unitary ma-
trices (on the lattice). In contrast to the quenched reduced models which
describe only planar graphs, the twisted reduced models make sense order
by order in 1/N and even at finite N . In this case they are associated with
gauge theories on noncommutative space, whose limit of large noncom-
mutativity is given by planar graphs thereby reproducing a d-dimensional
Yang–Mills theory at large N .
We begin this chapter with a description of the twisted reduced models

first on the lattice and then in the continuum and show how they describe
planar graphs of a d-dimensional theory.

15.1 Twisting prescription

We start by working on a lattice to make the results rigorous and then
repeat them for the continuum.
The twisting reduction prescription is a version of the general reduc-

tion prescription described in Sect. 14.1. We again perform the unitary
transformation (14.4), where the matrices D(x) are now expressed via a
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352 15 Twisted reduced models

set of d (unitary) N ×N matrices Γµ by

D(x) = Γx1/a
1 Γx2/a

2 · · ·Γxd/a
d , (15.1)

and the coordinates of the (lattice) vector xµ are measured in the lattice
units so that all the exponents are integral.
The matrices Γµ obey the Weyl–’t Hooft commutation relation

ΓµΓν = ZµνΓνΓµ (15.2)

with Zµν = Z†
νµ being elements of Z(N) and d is assumed to be even.

These matrices Γµ, which are called twist eaters, will be constructed ex-
plicitly in a moment.
Substituting (14.4) with D(x) given by Eq. (15.1) into Eq. (14.1), we

obtain the following partition function of the twisted reduced model [EN83]

ZTRM =
∫
dϕ̃ e−STRM[ϕ̃] (15.3)

with the action

STRM[ϕ̃] = −N
∑
µ

tr Γµϕ̃Γ†µϕ̃+N tr Ṽ (ϕ̃) . (15.4)

The “derivation” is again modulo the volume factor in the action.
Correspondingly, an analog of Eq. (14.9) for the twisting reduction

prescription is given by〈
F [ϕx]
〉

red.=
〈
F
[
D†(x)ϕ̃D(x)

] 〉
TRM

, (15.5)

where the average on the RHS is calculated for the twisted reduced model:〈
F [ϕ̃]
〉
TRM

= Z−1
TRM

∫
dϕ̃ e−STRM[ϕ̃]F [ϕ̃] . (15.6)

The equality of the LHS of Eq. (15.5) (calculated for the d-dimensional
theory (14.1)) and the RHS (calculated for the twisted reduced model)
takes place in the planar limit, i.e. for N =∞, owing to the explicit form
of D(x) given by Eq. (15.1).

Problem 15.1 Demonstrate that the order of Γµ in Eq. (15.1) is inessential.

Solution Let us define a more general path-dependent factor

D(Cx0) = P
∏
i

Γµi , (15.7)
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15.1 Twisting prescription 353

where the path-ordered product runs over all links forming a path Cx0 from the
origin to the point x. Owing to Eq. (15.2), a change of the path multiplies D(x)
by the Abelian factor

Z(C) =
∏

p∈S:∂S=C
Z∗
µν , (15.8)

where (µ, ν) is the orientation of the plaquette p. The product runs over any
surface spanned by the closed loop C, which is obtained by passing the original
path forward and the new path backward. Owing to the Bianchi identity∏

p∈cube
Zµν = 1 , (15.9)

where the product goes over six plaquettes forming a three-dimensional cube on
the lattice, the product on the RHS of Eq. (15.8) does not depend on the form
of the surface S and is a functional solely of the loop C.
It is now easy to see that under this change of the path we obtain

D†
ij(x)Dkl(x) −→ |Z(C)|2D†

ij(x)Dkl(x) (15.10)

and the path-dependence is canceled because |Z(C)|2 = 1. This is a general
property which holds for the twisting reduction prescription of any even repre-
sentation of SU(N) (i.e. invariant under transformations from the center Z(N)).

Let us now explicitly construct the matrices Γµ which obey Eq. (15.2).
We begin with the case of d = 2, where Γ1 and Γ2 can be chosen to
coincide with the L× L Weyl “clock” and “shift” matrices [Wey31]:

Q = diag
(
1, ω, ω2, . . . , ωL−1) (15.11)

and

P =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...
...
...
...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0


, (15.12)

which are unitary and obey

QL = 1 = PL , (15.13)
P Q = ωQP (15.14)

with ω ∈ Z(L). A solution to Eq. (15.2) in d = 2 is obviously given by
Γ1 = P, Γ2 = Q providing L = N and ω = Z12 = e2πi/L.
For even d > 2, the factor of Zµν can always be written as

Zµν = e2πinµν/N ∈ Z(N) (nµν = −nνµ ∈ ZN ) , (15.15)
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354 15 Twisted reduced models

where nµν can be represented in a canonical skew-diagonal form

nµν =


0 +n1
−n1 0

. . .
0 +nd/2

−nd/2 0

 . (15.16)

Although a solution to Eq. (15.2) is known for an arbitrary set of{
n1, . . . , nd/2

}
(it is described in Problem 15.3), it is enough for our pur-

poses to consider the simplest case of n1 = n2 = n in d = 4 dimensions.
The idea is now to combine Γ1, . . . ,Γ4 into two pairs: Γ1,Γ2 and Γ3,Γ4,

so the commutator of the two matrices from the same pair is similar to
that in two dimensions, while the matrices from different pairs commute.
These rules are prescribed by an explicit form of nµν given for this simplest
twist by

nµν =


0 +n
−n 0

0 +n
−n 0

 . (15.17)

The solution to Eq. (15.2) can then be represented by a direct product
of the L× L Weyl matrices (15.11) and (15.12):

Γ1 = P ⊗ I , Γ2 = Q⊗ I ,

Γ3 = I⊗ P , Γ4 = I⊗Q .

}
(15.18)

In other words, the solution is given on a subgroup SU(L) ⊗ SU(L) of
the group SU(N), which is possible only if N = L2 and n = L. Once
again, this solution is not the most general one, but it is enough for our
purposes. Note that ΓLµ = 1 for this simplest solution.

Problem 15.2 Extend the solution (15.18) to d dimensions assuming that all
ni = Ld/2−1 in Eq. (15.16).

Solution For such nµν the solution may be given on a subgroup
∏d/2

1 ⊗SU(L)
of SU(N) so that N = Ld/2 and Γi, Γi+1 (odd i = 1, 3, . . . , d− 1) can be chosen
as a direct product of the Weyl matrices for the ith of SU(L)s and the unit
matrices for the others. Again ΓLµ = 1 for this simplest twist.

Problem 15.3 Find a solution to Eq. (15.2) for a general matrix nµν .

Solution We proceed similarly to the previous Problem. Given N and the d/2
numbers ni ∈ ZN , we introduce the integers pi = N/gcd(ni, N). A solution to
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15.2 Twisted reduced model for scalars 355

Eq. (15.2) exists if the product p1 · · · pd/2, which plays the role of the dimension
of irreducible representation of the algebra, divides N . In that case we write

N = p0

d/2∏
i=1

pi (p0 ∈ Z) (15.19)

and the solution may be given on the subgroup SU(p0)⊗SU(p1)⊗· · ·⊗SU(pd/2)
of SU(N) such that Γi,Γi+1 are constructed as a direct product of the Weyl
matrices on SU(pi) and unit matrices for the others. The subgroup of GL(p,C)
consisting of matrices which commute with the twist eaters Γµ is then GL(p0,C).
This solution was found in [BG86, LP86], where it was shown that Eq. (15.19)

is a necessary and sufficient condition for the existence of solutions to Eq. (15.2).
The simplest solution from the previous Problem is associated with p0 = 1,
p1 = · · · = pd/2 = L. Another simple example is N = p0L

d/2, ni = p0L
d/2−1,

p1 = · · · = pd/2 = L when ΓLµ = 1.

15.2 Twisted reduced model for scalars

We shall now demonstrate how the twisted reduced model, which is de-
fined for a scalar field by Eqs. (15.3) and (15.6), reproduces [EN83] at
large N the planar graphs of the d-dimensional theory.
In principle, we may try to simply repeat the perturbative analysis of

Sect. 14.1, representing the propagator of ϕ̃ij via the Γµ and expecting
that momentum integrals will be recovered after summing over indices
circulating in closed loops owing to the explicit form of the twist eaters.
This is indeed the case.
It is more instructive, however, to proceed in a slightly different way

explicitly introducing the momentum variable via a sort of a Fourier trans-
formation on gl(N ;C) (general complex N ×N matrices).
A convenient Weyl basis on gl(L;C) is given [Hoo78, Hoo81] by (sym-

metric) products of the “clock” and “shift” matrices (15.11) and (15.12).
Let us introduce L2 matrices

Jm1,m2 = Pm1Qm2ω−m1m2/2 , (15.20)

where m1,m2 ∈ ZL. An arbitrary L × L matrix M can be expanded in
this basis:

M ij =
1
N2

L∑
m1,m2=1

J ij
m1,m2

M(m1,m2) , (15.21)

where M(m1,m2) are certain expansion coefficients.
We see that a pair of integers m1 and m2, forming a two-dimensional

vector, m = {m1,m2} ∈ Z
2
L, is naturally associated with this construc-

tion. As we shall see in a moment, these integers label momenta on an
L× L periodic lattice.
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356 15 Twisted reduced models

An extension of this construction to arbitrary (even) d dimensions is
obvious for the simplest twist given by the matrix (15.16) with ni =
Ld/2−1 for all i = 1, . . . , d/2, which is considered in Problem 15.2 on
p. 354. We introduce the basis on gl(N ;C):

Jm = Γm1
1 · · ·Γmd

d e−πi
∑

µ<ν mµnµνmν/N , (15.22)

where m = {m1, . . . ,md} ∈ Z
d
L is a d-dimensional vector (remember that

N = Ld/2). The last factor∗ again makes the product symmetric.
There exist Ld = N2 independent orthogonal generators Jm which obey

J†
m = J−m (mod L) , (15.23)

1
N
tr JmJ†

n = δmn , (15.24)∑
m∈Zd

L

J ij
m J†kl

m = Nδilδkj , (15.25)

JmJn = Jm+n eπi
∑

µ,ν mµnµνnν/N (mod L) . (15.26)

Equations (15.24) and (15.25) represent, respectively, orthogonality and
completeness of the generators. The product of two generators is given
explicitly by Eq. (15.26).
An arbitrary N ×N complex matrix M ij can be expanded as

M ij =
1
N2

∑
m∈Zd

L

J ij
m M(m) (15.27)

andM(−m) =M∗(m) ifM is Hermitian as a consequence of Eq. (15.23).
Using Eq. (15.24), the coefficient M(m) is given by

M(m) = N tr
(
M J†

m

)
. (15.28)

Equation (15.27) simply extends Eq. (15.21) to the multidimensional case.
A mapping of the twisted reduced model into a d-dimensional field

theory can be established as follows.
We expand the matrix ϕ̃ in the basis of Jm:

ϕ̃ =
1
N2

∑
m∈Zd

L

Jm ϕ(m) . (15.29)

∗ Strictly speaking, we assume that nµν is even and L is odd for the Jm to obey a
periodicity property J...,mi+L,... = J...,mi,.... This is necessary only for finite N since
this periodicity is lost as N → ∞.

https://doi.org/10.1017/9781009402095.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402095.016


15.2 Twisted reduced model for scalars 357

The measure (13.2) for the averaging over the matrices ϕ̃ is then repre-
sented by

dϕ̃ =
∏

m∈Zd
L

dϕ(m) . (15.30)

The substitution of the expansion (15.29) into the kinetic part of the
action of the twisted reduced model yields

S
(2)
TRM ≡ N tr

(
M

2
ϕ̃2 −
∑
µ

Γµϕ̃Γ†µϕ̃

)

=
1
N2

∑
m∈Zd

L

(
M

2
−
∑
µ

cos
2π
∑

ν nµνmν

N

)
ϕ(−m)ϕ(m)

(15.31)

which coincides with the kinetic part of the action of a single-component
scalar field on a d-dimensional lattice of spatial extent Ld = N2 with
periodic boundary conditions.
In the latter case, we substitute the Fourier expansion

ϕ̃x =
1
Ld

∑
m∈Zd

L

e2πi
∑

µ,ν xµnµνmν/aNϕ(m) , (15.32)

which yields

S(2) ≡
∑
x

(
M

2
ϕ̃2x −
∑
µ

ϕ̃xϕ̃x+aµ̂

)

=
1
Ld

∑
m∈Zd

L

(
M

2
−
∑
µ

cos
2π
∑

ν nµνmν

N

)
ϕ(−m)ϕ(m) .

(15.33)

The number of degrees of freedom is the same in both cases: there
are N2 elements of the matrix ϕ̃ in the twisted reduced model which
matches the Ld = N2 sites of the lattice. The expansion coefficients in
Eqs. (15.29) and (15.32) are just the same! Correspondingly, the measure
for path integration over ϕx is∏

x

dϕx =
∏

m∈Zd
L

dϕ(m) (15.34)

which coincide with the measure (15.30).
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358 15 Twisted reduced models

In other words, the degrees of freedom described by the matrix (15.29)
or the field (15.32) are the same.
The coincidence of the actions of the two theories at finite N is only

for the kinetic part of the actions which is quadratic in fields. This is no
longer the case for interaction terms. For the simplest cubic interaction,
we have, using Eq. (15.26),

N tr ϕ̃3 =
1
N6

∑
m1,m2,m3

ϕ(m1)ϕ(m2)ϕ(m3)N tr Jm1Jm2Jm3

=
1
N4

∑
m,n

ϕ(−m− n)ϕ(m)ϕ(n) eπi
∑

µ,ν mµnµνnν/N

(15.35)

which has an extra phase in contrast to the cubic interaction of a single-
component scalar field outlined in Sect. 2.3.∗

The presence of this factor is crucial in showing that the twisted reduced
model at N =∞ correctly reproduces planar graphs of the d-dimensional
theory. This happens because of a remarkable theorem proven in [EN83,
GO83b] which states that

(1) the phases cancel out in planar graphs,
(2) the phases remain in nonplanar graphs suppressing their contribu-

tion as N →∞.

In order to sketch a proof of the theorem, we introduce the momen-
tum variables pµ ≡ 2π

∑
ν nµνmν/aN and qµ ≡ 2π

∑
ν nµνnν/aN , which

become continuous momenta from the first Brillouin zone (−π/a, π/a] as
N → ∞, and pass to the momenta pi, pj, and pk associated with the
single lines carrying the indices i, j, and k as in Eq. (14.17).
The phase factor in Eq. (15.35) can then be rewritten in the form

eπi
∑

µ,ν mµnµνnν/N = e−ipθq/2 = e−i(piθpj+pjθpk+pkθpi)/2 , (15.36)

where we have used the rules of matrix multiplication of the Lorentz
indices so that

piθpj =
∑
µ,ν

pµi θµνp
ν
j (15.37)

and

θµν =
a2N

2π
n−1
µν . (15.38)

∗ We shall demonstrate in the next chapter that the twisted reduced model at finite N
is precisely equivalent to a theory on a noncommutative lattice.
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15.2 Twisted reduced model for scalars 359

A proof of the theorem simplifies [IIK00] after rewriting the phase factor
according to Eq. (15.36). Now each factor of exp (−ipiθpj/2) can be
assigned to each of the three propagators which meet at a vertex. The
overall phase of a graph can be computed by summing up the phases
associated with both ends of each of the propagator lines. Since the two
ends of an internal double line are oriented in an opposite way for a planar
graph, the contributions of the two ends mutually cancel. Therefore, the
overall phase of a planar graph involves only external momenta and is the
same to all orders of perturbation theory. For example, there is no such
phase for vacuum graphs, while the RHS of Eq. (15.36) is reproduced
for each planar graph contributing to the three-point vertex. This phase
depending on external momenta is simply related to the mapping (15.5)
of observables.
The cancellation of the phases does not occur for crossing lines which

are inevitably present for nonplanar graphs. For example, the nonplanar
graph depicted in Fig. 11.3 has the extra factor of exp (ipθq) where p and
q are momenta associated with the two lines which cross over each other.
This is because if these two lines were to form a four-gluon vertex, instead
of crossing, it would produce the additional phase factor exp (−ipθq) and
the graph would then be planar.
A nonplanar graph possesses such an extra momentum-dependent

phase factor in the integrand, whose rapid oscillations suppress the in-
tegral over internal momenta. Note that θµν given by Eq. (15.38) is ∼ L
so that the integral for a nonplanar diagram of genus h is suppressed by(

p2d det
µν

θµν

)−h

∼ L−hd ∼ N−2h (15.39)

in accord with the topological expansion in 1/N . Here p2 is typical ex-
ternal momentum associated with the diagram.
If N → ∞ then only planar diagrams survive in the twisted reduced

model, thereby reproducing the planar limit of the d-dimensional theory.

Remark on twisted versus quenched models at large but finite N

The size of the lattice associated with the twisted reduced model at large
but finite N is L = N2/d. This is to be compared with its counterpart for
the quenched reduced model where L = N1/d as discussed in the Remark
on p. 329. For a given N , the value of L for the twisted reduced model is
much larger than for the quenched reduced model. The former therefore
provides a more economic approach to the limit of infinite volume.
We shall see in the next chapter that yet another continuum limit,

associated with noncommutative theories, can be obtained in the twisted
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reduced models at the distances ∼
√
|θ| ∼ aN1/d. The corresponding

momenta are p2 ∼ 1/|θ| so that the dimensionless parameter on the LHS
of Eq. (15.39) is ∼ 1 and each term of the genus expansion is of order one
in this continuum limit.

Remark on mapping between matrices and fields

The transition from matrices to functions on a periodic Ld lattice can be
formalized by introducing the matrix-valued function [Bar90]

∆ij(x) =
1
N2

∑
m∈Zd

L

j∗m(x)J
ij
m , (15.40)

where the functions

jm(x) = e2πi
∑

µ,ν xµnµνmν/aN (15.41)

form a Fourier basis.
Thus defined ∆ij(x) possesses the properties

∆†(x) = ∆(x) , (15.42)

N tr
[
Jm∆(x)

]
= jm(x) , (15.43)∑

x

∆ij(x)∆kl(x) =
1
N
δilδkj , (15.44)

Γµ∆(x) Γ†µ = ∆(x− aµ̂) , (15.45)

N tr
[
∆(x)∆(y)

]
= δxy . (15.46)

Equation (15.46) represents completeness of the Fourier basis (15.41) in
the space of functions on a discrete torus.
Given the definitions (15.29), (15.32), and (15.40), we can directly relate

matrices with functions of x by

ϕ̃ =
∑
x

∆(x)ϕ(x) (15.47)

and vice versa

ϕ(x) = N tr
[
ϕ̃∆(x)

]
. (15.48)

In particular, the equivalence of the actions (15.31) and (15.33) is a
consequence of the general formula

N tr L̃ =
∑
x

L(x) , (15.49)

where L̃ is arbitrary and L(x) is related to it by Eqs. (15.47) and (15.48).
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15.2 Twisted reduced model for scalars 361

As N →∞, we approach the limit of an infinite lattice since aL→∞.
Then the discrete variable mµ is to be substituted by a continuum mo-
mentum variable from the first Brillouin zone:

kµ =
2π
∑

ν nµνmν

aN
∈
(
−π
a
,
π

a

]
. (15.50)

The summation over mµ is to be substituted in all the formulas above by
an integration over kµ:

1
N2

∑
m∈Zd

L

· · · −→
∫ d∏

µ=1

dkµ
2π

· · · . (15.51)

For smooth configurations when only modes with |kµ| ! 1/a are essen-
tial, we can additionally substitute the summation over the lattice sites
x by an integration over the continuum variable x ∈ R

d (d-dimensional
Euclidean space):

ad
∑
x

· · · =⇒
∫
ddx · · · . (15.52)

Then Eq. (15.49) becomes

adN tr L̃ =⇒
∫
ddxL(x) . (15.53)

In particular, we have

adN tr I =⇒
∫
ddx = V (15.54)

which relates the (infinite) trace of a unit matrix with the (infinite) vol-
ume.
We shall return to the relation between infinite-dimensional matrices

(= operators) and functions on R
d in Sect. 15.4 when discussing a con-

tinuum limit of the twisted reduced models.

Remark on SU(∞) and symplectic diffeomorphisms in d = 2

The group SU(N) can be approximated at large N by the group SL(2;R)
of area-preserving or symplectic diffeomorphisms (SDiff) in two dimen-
sions.
It follows from Eq. (15.26) that

[Jm , Jn] = 2i sin
[ π
N
(mµε

µνnν)
]
Jm+n , (15.55)

where mµε
µνnν = m1n2 −m2n1.
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At large N and mµε
µνnν ! N the sin can be expanded, which yields

[Jm , Jn] ≈ i
2π
N
(mµεµνnν)Jm+n . (15.56)

Equation (15.56) is to be compared with the Poisson bracket

{jm, jn}PB ≡ εµν∂µjm∂νjn

∝ (mµε
µνnν) jm+n (15.57)

of the basis functions jm given by Eq. (15.41). The group SL(2;R) of
symplectic diffeomorphisms arose since it is a symmetry of the Poisson
structure.
For smooth matrices ϕ̃ij when the low modes dominate in Eq. (15.29),

the commutator can be substituted by the Poisson bracket

[ · , · ] =⇒ i { · , · }PB . (15.58)

This looks like a semiclassical approximation of commutators in quantum
mechanics by the Poisson brackets. It is now justified by the large value
of N .
This clarifies the relation between the group SL(2;R) of symplectic

diffeomorphisms and the group SU(∞) for smooth fields.
There is a vast literature on this issue starting from unpublished works

by J. Goldstone and J. Hoppe (see [Hop89]) in the early 1980s who approx-
imated symplectic diffeomorphisms of a spherical membrane by SU(N).
This relation was applied [FIT89] to classical Yang–Mills theory and for-
mulated [FFZ89, FZ89] in an elegant way for a torus. These two cases
describe two different N = ∞ limits of SU(N) [PS89]. It was conjec-
tured [Bar90] that strings could appear from the reduced models owing
to this mechanism, which also seems to explain early results [Cre84] on an
SL(2;R) invariance of the SU(∞) Yang–Mills theory in two dimensions.
More on the relation between symplectic diffeomorphisms and SU(∞)

can be found in the review [Ran92].

15.3 Twisted Eguchi–Kawai model

In order to construct the twisted Eguchi–Kawai model (TEK), we proceed
quite similarly to Sect. 14.3 by substituting D(x) given by Eq. (15.1).
Equation (14.31) remains the same but the difference is that now

Dµ ≡ D(x+ aµ̂)D†(x) = Γµ (15.59)

and, hence, the Dµ do not commute.
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Reordering the matrices in D(x) produces an Abelian factor which de-
pends on the ordering prescription. It is possible to use a symmetric
ordering (15.22) instead of the normal ordering (15.1) when

D(x) = Jx/a , (15.60)

and

Dµ = Γµ
d∏

ν=1

Zxν/2a
µν . (15.61)

This extra Abelian factor cancels in most of the formulas.
The substitution of (14.31) with D(x) given by Eq. (15.1) (or

Eq. (15.60)) into the Wilson action (6.18) results in

STEK =
1
2

∑
µ�=ν

{
1− 1

N
tr
[
Ũ †
νΓ

†
νŨ

†
µΓνΓ

†
µŨνΓµŨµ

]}

=
1
2

∑
µ�=ν

{
1− Zµν

1
N
tr
[ (

Ũ †
νΓ

†
ν

)(
Ũ †
µΓ

†
µ

)(
ΓνŨν

)(
ΓµŨµ

) ]}
,

(15.62)

where the factor of Zµν emerged because of the commutation relation
(15.2).
Introducing the new variable

Uµ = ΓµŨµ (15.63)

as in Eq. (14.37), we finally obtain

STEK[U ] =
1
2

∑
µ�=ν

(
1− Zµν

1
N
trU †

νU
†
µUνUµ

)
(15.64)

for the action of the twisted Eguchi–Kawai model.
Noting that the Haar measure dŨµ = dUµ is not changed∗ under the

(left) multiplication (15.63) by a unitary matrix Γµ, we arrive at the
partition function of the twisted Eguchi–Kawai model

ZTEK =
∫ ∏

µ

dUµ e−NSTEK[U ]/g
2
. (15.65)

The only difference from the original Eguchi–Kawai model (14.40) resides
in the twisting factor of Zµν in the action (15.64).

∗ We shall see in Sect. 16.6 some examples when this is not the case.
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The twisted Eguchi–Kawai model possesses the gauge symmetry (14.39)
and the U(1)d symmetry (14.41). The second one is not broken for all
values of the coupling g2N owing to the presence of the twisting factor as
will be demonstrated in a moment. For this reason, the twisted Eguchi–
Kawai model is equivalent at large N to the planar limit of d-dimensional
Yang–Mills theory for all values of the coupling g2N .
The vacuum state of the twisted Eguchi–Kawai model is given modulo

a gauge transformation by

U clµ = Γµ , (15.66)

where the twist eaters Γµ were constructed explicitly in Sect. 15.1. The
value of the action (15.64) of the twisted Eguchi–Kawai model is 0 for this
configuration which is smaller, say, than the value of

∑
µν (1− ReZµν)

of the action for a configuration given by diagonal matrices.
An analog of Eq. (14.42) for the twisted Eguchi–Kawai model is given

by 〈
F [Uµ(x)]

〉
red.=
〈
F
[
D†(x+ aµ̂)UµD(x)

] 〉
TEK

. (15.67)

But the fact that Dµ no longer commute results in subtleties in repre-
senting the averages, in particular the Wilson loops, in the language of
the twisted Eguchi–Kawai model.
The Wilson loop averages in the twisted Eguchi–Kawai model are de-

fined by

WTEK(C) =

〈
1
N
trD†(C)

1
N
tr P
∏
i

Uµi

〉
TEK

, (15.68)

where

D(C) = P
∏
i

Γµi (15.69)

and the product runs over links forming the contour C. This is an analog
of Eq. (14.45).
Note that WTEK(C) = 1 for the vacuum configuration (15.66) when C

is closed.
For closed loops D(C) ∈ Z(N) which can be proven using the commu-

tation relation (15.2). For instance,

D(∂p) = Γ†νΓ
†
µΓνΓµ = Z∗

µν . (15.70)

The value of D(C) for a closed loop is the same as that prescribed by
Eq. (15.67).
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The first trace on the RHS of Eq. (15.68) vanishes for open loops,
thereby providing the vanishing of the open Wilson loop averages them-
selves. Strictly speaking, this vanishing does not hold, say, for the loops
in the form of a straight line consisting of L links for the Γµ given by
Eq. (15.18) when ΓLµ = 1. But this will be inessential for the purposes
of this section since such loops are infinitely long as N → ∞. We shall
return to this point below when considering the twisted Eguchi–Kawai
model at finite N and associating it with a theory on a finite lattice.
Because the averages of the open Wilson loops vanish in the twisted

Eguchi–Kawai model as N → ∞ by construction, all that was said in
Sect. 14.3 concerning the equivalence with the d-dimensional lattice gauge
theory is applicable for the twisted Eguchi–Kawai model as well.

Problem 15.4 Extend Eq. (15.70) to arbitrary closed contours.

Solution The calculation is similar to that in Problem 15.1 on p. 352. The
result is

D(C) =
∏

p∈S:∂S=C
Z∗
µν , (15.71)

where (µ, ν) is the orientation of the plaquette p. The product runs over any
surface spanned by the closed loop C and is surface-independent owing to the
Bianchi identity (15.9).

Problem 15.5 Derive the loop equation for the twisted Eguchi–Kawai model.

Solution The derivation is quite similar to Problem 14.2 on p. 336. Performing
the shift (14.49) in the action (15.64), we obtain an extra factor of Z∗

µν which is
absorbed by D(C) in the definition (15.68) of the Wilson loop averages in the
twisted Eguchi–Kawai model owing to Eq. (15.70):

D†(C)Zµν = D†(C ∂p) (15.72)

and similarly

D†(C)Z∗
µν = D†(C ∂p−1

)
(15.73)

for the Hermitian conjugate term in the action.
The resulting loop equation reads [GO83b]∑

p

[
WTEK(C ∂p)−WTEK

(
C ∂p−1

)]
= g2N

∑
l∈C

τν(l)WTEK(Cyx)WTEK(Cxy) . (15.74)

The Kronecker symbol δxy is again restored on the RHS of Eq. (14.50) since the
averages of the open Wilson loops vanish:

WTEK(Cxy) = δxyWTEK(Cxx) . (15.75)

This reproduces at N =∞ the loop equation (12.65) of the d-dimensional lattice
gauge theory which proves the equivalence.
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Remark on twisted boundary conditions

When gauge theory is defined in a box, the boundary conditions are not
necessarily periodic. The values of the gauge field at opposite sides of the
box can rather coincide modulo an SU(N) gauge transformation:

Aµ(x+ Oν) = Ων(x)Aµ(x) Ω†
ν(x) + iΩν(x) ∂µΩ†

ν(x) . (15.76)

Here Oν denotes the spatial extent of the box in direction ν. This equation
represents a twisted boundary condition.
A box with periodic boundary conditions looks geometrically like a

torus T
d with the period matrix Oµν = Oνδµν . Similarly, a box with the

twisted boundary conditions (15.76) is often called a twisted torus.
The transition matrices Ων in Eq. (15.76) obey the consistency condi-

tion [Hoo79]

Ωµ(x+ Oν) Ων(x) = Zµν Ων(x+ Oµ)Ωµ(x) , (15.77)

where Zµν ∈ ZN .
This factor of Zµν cannot be removed in a pure Yang–Mills theory

since the gauge group is actually SU(N)/Z(N). Therefore, there are N
distinct choices of boundary conditions per plane of a box, which are not
related by a gauge transformation. The factor of Zµν is associated with an
additive flux known as the ’t Hooft flux, which is a feature of non-Abelian
field configurations.
A lattice counterpart of Eq. (15.76) reads

Uµ(x+ Oν) = Ων(x+ aµ̂)Uµ(x) Ω†
ν(x) . (15.78)

Correspondingly, a periodic lattice of finite size Ld is called a discrete
torus T

d
L.

The twisted Eguchi–Kawai model is of the same type as Wilson’s lattice
gauge theory on a unit hypercube with the twisted boundary condition
and Ωµ = Γ

†
µ. This explains the terminology.

Problem 15.6 Show the equivalence between the twisted Eguchi–Kawai model
and Wilson’s lattice gauge theory on a unit hypercube with the twisted boundary
condition.

Solution The twisted boundary condition (15.78) for a hypercube with the
corner at x = 0 is given generically as

Uµ(aν̂) = Ων(aµ̂)Uµ(0)Ω†
ν(0) , (15.79)

or

Uµ(aν̂) = Γ†
νUµ(0)Γν (15.80)

for Ων(0) = Ων(aµ̂) = Γ†
ν .
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The action of Wilson’s lattice gauge theory on a unit hypercube with the
twisted boundary condition can be transformed using Eq. (15.80) to the form

1
2

∑
µ�=ν

{
1− 1

N
tr
[
U †
ν (0)U

†
µ(aν̂)Uν(aµ̂)Uµ(0)

]}

=
1
2

∑
µ�=ν

{
1− 1

N
tr
[
U †
ν (0)
(
Γ†
νU

†
µ(0)Γν

) (
Γ†
µUν(0)Γµ

)
Uµ(0)
]}

=
1
2

∑
µ�=ν

{
1− Zµν

1
N
tr
[ (
U †
ν (0)Γ

†
ν

) (
U †
µ(0)Γ

†
µ

) (
ΓνUν(0)

)(
ΓµUµ(0)

)]}
,

(15.81)

where we have used Eq. (15.2). Introducing the variable Uµ = ΓµUµ(0), we
arrive at the action (15.64) and the partition function (15.65) of the twisted
Eguchi–Kawai model.
The consideration of this Problem was the original motivation of [GO83b] for

introducing the twisting factor of Zµν in the action of the naive Eguchi–Kawai
model.

Remark on U(N) gauge fields

The consistency condition for the U(N) gauge group is simply

Ωµ(x+ Oν) Ων(x) = Ων(x+ Oµ) Ωµ(x) U(N) matrices (15.82)

in order for a field in the fundamental representation to be single-valued
on a twisted torus.
But now field configurations are characterized by the first Chern class

qµν =
1
2π

∫
dxµdxν

1
N
trFµν no sum over µ, ν (15.83)

which is nothing but the (magnetic) U(1) flux through the (µ, ν)-plane of
the torus. It is quantized since the homotopy group π1(U(N)) = Z.
Given a U(N) field configuration with a constant U(1) flux and sub-

tracting it, we arrive at an SU(N) part of the gauge field:

ASU(N)
µ = Aµ +

πqµνxν
O2N

, (15.84)

which obeys Eq. (15.76) with

ΩSU(N)
µ = e−πi qµνxν/DN Ωµ (15.85)

satisfying Eq. (15.77) with Zµν = e−2πi qµν/N . Therefore, the U(1) (mag-
netic) flux induces [LPR89] the ’t Hooft flux for the SU(N) part of the
U(N) gauge group.
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15.4 Twisting prescription in the continuum

The twisting reduction prescription can be formulated directly for the
continuum theory [GK83] by substituting

ϕ̃ → ad/2−1ϕ̃ , Γµ = e−iaPµ , (15.86)

with the lattice spacing a → 0 and N → ∞. The N × N Hermitian
matrices ϕ̃ and Pµ become Hermitian operators ϕ̃ and P µ as N →∞.
While the Γµ in Eq. (15.86) look like Eq. (14.34), P µ are no longer

diagonal and do not commute. As a consequence of the Weyl–’t Hooft
relation (15.2), they obey the Heisenberg commutation relation

[P µ,P ν ] = − iBµν 1 , (15.87)

where

Bµν =
2πnµν
Na2

(15.88)

from the matrix approximation. However, we shall not refer to the ma-
trix approximation during most of this section and consider Bµν as an
independent variable.
The commutator (15.87) is similar to that for the coordinate and mo-

mentum operators in quantum mechanics. For this reason, the formula-
tion of the continuum twisted reduced model uses operator calculus of
quantum mechanics.
Let us mention once again that a solution to Eq. (15.87) for P µ exists

only for infinite-dimensional Hermitian matrices (representing operators).
This is a well-known property of the Heisenberg commutation relation. It
can be seen by taking the trace of both sides of Eq. (15.87). If P µ were
finite-dimensional matrices, the trace of the LHS would vanish owing to
the cyclic property of the trace, while that of the RHS would not. In
contrast, Eq. (15.2) which is written for unitary matrices possesses a
solution for finite N .
A continuum (operator) analog of Eq. (15.1) is

D(x) =
d∏

µ=1

e−iPµxµ (15.89)

and similarly for Eq. (14.4):

ϕij(x) N→∞−→ D†(x)ϕ̃D(x) . (15.90)

We can change the order of operators in the product on the RHS of
Eq. (15.89) by introducing a more general path-dependent operator

D(Cx0) = P e−i
∫
Cx0

dξµPµ , (15.91)
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where the integration contour Cx0 connects the origin and the point x,
but is arbitrary otherwise. Changing the shape of the contour results in
an extra factor

P e−i
∮
dξµPµ = e−iBµν

∫
dσµν

(15.92)

which is a c-number and cancels in the reduction formula (15.90). This
is quite similar to the consideration in Problem 15.1 on p. 352.
In particular, we can always pass in Eq. (15.89) from the normal order-

ing of the operators to a symmetric ordering:

D(x) = e−i
∑d

µ=1 Pµxµ . (15.93)

This is an operator analog of Eq. (15.60).
The action of the continuum twisted reduced model is given by the same

formula (14.21) as for the continuum quenched reduced model except that
P µ obey the commutation relation (15.87) rather than commuting as in
the quenched reduced model. A “volume element” v is again given for the
lattice regularization by Eq. (14.23). Just as in the case of the quenched
reduced model, the very formulation of the continuum twisted reduced
model implies a regularization.
What remains to be defined are two related issues: how to understand

the trace in Eq. (14.21) and how to introduce a regularization directly
within the continuum theory.
We begin with a two-dimensional case where Bµν = Bεµν . The oper-

ators P 1 and P 2 are then similar to the position and momentum oper-
ators in one-dimensional quantum mechanics, with B playing the role of
Planck’s constant.
A Hilbert space is spanned either by | p1〉 or | p2〉 states which are the

eigenstates of either P 1 or P 2:

P 1 | p1〉 = p1 | p1〉 , P 2 | p2〉 = p2 | p2〉 , (15.94)

and are normalized to 〈p′|p〉 = δ(1)(p− p′).
In either basis the trace of an operator O on the Hilbert space is defined

via its (diagonal) matrix elements by

trH O =
∫

dp 〈p |O | p〉 . (15.95)

The matrix element can be easily calculated, representing O by the use
of the commutator (15.87) in a normal form, where all P 1 are to the left
of P 2, and

e−ik1P2/B | p1〉 = | p1 − k1〉 , eik2P1/B | p2〉 = | p2 − k2〉 .

(15.96)
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There exists a simple operator representation of the N = ∞ limit of
the basis elements Jm introduced in Sect. 15.2. Substituting the operator
limit (15.86) of Γ1 = P and Γ2 = Q into Eq. (15.20), we obtain

J ij
m −→ e−iam1P1 e−iam2P2 e−iπm1m2/L ≡ Jm . (15.97)

The order of operators on the RHS of Eq. (15.97) is normal. Applying
the Baker–Campbell–Hausdorff formula

eA eB e−
1
2
[A,B] = eA+B, (15.98)

which is exact when the commutator [A,B] is a c-number as in our case,
it can be represented conveniently in a symmetric- or Weyl-ordered form

Jm = e−ia(m1P1+m2P2). (15.99)

The continuum operator counterparts of the formulas of Sect. 15.2 are
obvious.
Introducing the continuum momentum variable kµ = 2πεµνmν/aL

which is a d = 2 version of Eq. (15.50) and using the substitution (15.51),
we have

f =
∫ ∏

µ

dkµ
2π

Jk f(k) (15.100)

which is quite analogous to the Fourier transform of a function

f(x) =
∫ ∏

µ

dkµ
2π

eikx f(k) . (15.101)

Here

Jk = ei(k2P1−k1P2)/B = eik2P1/B e−ik1P2/B e−ik1k2/2B (15.102)

as follows from Eq. (15.97).
The coefficients f(k) on the RHSs of Eqs. (15.100) and (15.101) are the

same. Therefore, these equations relate operators in Hilbert space and
functions to each other. This relation is often called theWeyl transform.∗

Given Eqs. (15.100) and (15.101) and using Eqs. (15.94) and (15.96), we
can alternatively write down the Weyl transform via the matrix element

f(k1, k2) =
2π
B

∫
dp1 e−ik2p1/B

〈
p1 + 1

2k1
∣∣ f ∣∣ p1 − 1

2k1
〉
. (15.103)

An extension to d dimensions is straightforward. Say, k and x in
Eqs. (15.100) and (15.101) were to simply become d-dimensional vec-
tors. Similarly, the integration as well as the matrix element are

∗ More rigorous mathematical definitions can be found in the book [Won98].
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taken in Eq. (15.103) with respect to half of the momentum variables:
p1, p3, . . . , pd−1.
The Weyl transform can, of course, be formulated without any reference

to the discrete formulas of Sect. 15.2. We simply followed the spirit of
Weyl’s original book [Wey31].
However, an advantage of such an approach which starts from a lattice

discretization is that it provides an ultraviolet cutoff, making the con-
tinuum twisted reduced model well-defined. The values of momenta are
bounded by |kµ| ≤ π/a, which introduces the cutoff. Instead of the lattice
regularization, we can use a Lorentz-invariant regularization of [GK83] di-
rectly for the continuum theory restricting k2 ≤ Λ2 in the integral over
kµ in Eqs. (15.100) and (15.101). This will both regularize perturbation
theory and bound operators on the Hilbert space.
The action of the continuum twisted reduced model regularized in such

a way can be represented in the form

STRM =
(2π)d/2

Pf (Bµν)
trH

{
−1
2
[P µ, ϕ̃]

2 + Ṽ (ϕ̃)
}
, (15.104)

where we have substituted

vN =
(2π)d/2

Pf (Bµν)
(15.105)

and Pf (Bµν) =
√
detµν Bµν . This substitution is justified by the defini-

tion (15.88) of Bµν and v is again a volume element given by Eq. (14.23)
for the lattice regularization.
We have already met the factor (15.105) for d = 2 in Eq. (15.103). It

appears whenever the trace over the Hilbert space is substituted by the
integral over space as

(2π)d/2

Pf (Bµν)
trH L =

∫
ddxL(x) , (15.106)

where L(x) is the Weyl transform of L. This formula is a counterpart of
Eq. (15.53)
The proof of how the continuum twisted reduced model reproduces

planar graphs is quite similar to that of Sect. 15.2 on the lattice. The
integral over space is reproduced according to Eq. (15.106). Nonplanar
graphs are again suppressed as θµν = B−1

µν →∞.

Remark on the number of states in Hilbert space

For the matrix approximation, the Hilbert space is spanned by N states.
A question arises as to what is the number of states in the Hilbert space
regularized in a Lorenz-invariant way.

https://doi.org/10.1017/9781009402095.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402095.016


372 15 Twisted reduced models

This can be easily understood from an analogy with the semiclassical
limit of quantum mechanics when B, which plays the role of Planck’s
constant, is small. The volume occupied by the N states in a phase
space is given semiclassically by the Bohr–Sommerfeld formula. It can be
written in our notation as∏

µ

∆pµ
2π

= N
Pf (Bµν)
(2π)d/2

. (15.107)

Dividing by N , we conclude that the factor on the RHS of Eq. (15.105) is
related semiclassically to the inverse volume of a cell in the phase space.
Given a regularization which determines the LHS of Eq. (15.107) via

the cutoff Λ, we can solve Eq. (15.107) for N which gives the number of
states in the regularized Hilbert space.
Of course, all of these formulas become exact for the lattice regulariza-

tion when Pf (Bµν) ∼ 1/N → 0.

15.5 Continuum version of TEK

The continuum version of the twisted Eguchi–Kawai model can be con-
structed [GK83] from the lattice counterpart of Sect. 15.3 by substituting

Uµ = eiaAµ , Γµ = e−iaPµ , (15.108)

when the lattice spacing a→ 0 and N →∞. Here Aµ and Pµ are N ×N
Hermitian matrices which become Hermitian operators when N →∞ as
is described in the previous section. We shall imply, but not explicitly
use the operator notation.
To derive the action of the continuum twisted Eguchi–Kawai model, we

first obtain from Eqs. (15.108) and (15.87)

U †
νU

†
µUνUµ = ea

2[Aµ,Aν ], Zµν = eia
2Bµν (15.109)

to order a2. Finally, we arrive at the following action of the continuum
twisted Eguchi–Kawai model:

STEK[A] = − v

4g2
tr ([Aµ, Aν ] + iBµν)

2 , (15.110)

where v is again a “volume element” given for the lattice regularization by
Eq. (14.23). Just as in the case of the quenched Eguchi–Kawai model, the
very formulation of the continuum twisted Eguchi–Kawai model implies
a regularization.
It is worth mentioning here a subtlety associated with the fact that

Aµ are Hermitian operators (infinite-dimensional matrices). The point is
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that

tr [Aµ, Aν ] �= 0 (15.111)

in this case so that Bµν cannot be omitted. This is a well-known property
of operators obeying the Heisenberg commutation relation (15.87) as has
already been pointed out.
Nevertheless, the presence of the Bµν does not affect the classical equa-

tion of motion for the continuum twisted Eguchi–Kawai model which
coincides with Eq. (14.71) since Bµν is a c-number.
Owing to the presence of Bµν in the action (15.110), the vacuum con-

figuration of the continuum twisted Eguchi–Kawai model is given by

Aclµ = −Pµ (15.112)

modulo a gauge transformation Aclµ → ΩAclµΩ
†. The minimum of the

action is reached when Pµ obey Eq. (15.87) rather than being diagonal
matrices.
The continuum limit of Eqs. (15.68) and (15.69) determines the aver-

ages of Wilson loops in the continuum twisted Eguchi–Kawai model:

WTEK(Cyx) =
〈
1
N
trD†(Cyx)

1
N
trP ei

∫
Cyx

dξµAµ

〉
TEK

, (15.113)

where D(Cyx) is defined in Eq. (15.91). They are nontrivial since Aµ do
not commute.
The trace of D†(Cyx) on the RHS of Eq. (15.113) vanishes for open

loops. This provides the vanishing of the averages of open Wilson loops
as is prescribed by the Rd symmetry (14.61) of the action (15.110).
For closed loops this factor does not vanish and represents the flux of

the Bµν -field through a surface bounded by the contour C. It is needed to
provide the equivalence with planar graphs of d-dimensional Yang–Mills
theory, since the classical extrema of the continuum twisted Eguchi–Kawai
model are given by Eq. (15.112) and perturbation theory is constructed by
expanding around this classical solution. The equivalence can be demon-
strated perturbatively using the theorem stated at the end of Sect. 15.2.
The proof of the equivalence between the large-N limit of d-dimensional

Yang–Mills theory and the continuum Eguchi–Kawai model can be given
using the continuum loop equation, for which the lattice regularization
was considered in Problem 15.5 on p. 365. The loop equation for the
continuum twisted Eguchi–Kawai model coincides with Eq. (14.65) for the
continuum naive Eguchi–Kawai model. This is because the loop operator
on the LHS of Eq. (14.65) is of first order (obeys the Leibnitz rule of
the type of Eq. (12.96)). For this reason, the first trace in Eq. (15.113)
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produces

[Pµ, [Pµ, Pν ]] = 0 (15.114)

which vanishes since the commutator of Pµ with Pν is a c-number. The
manipulations with the result of acting with the loop operator on the
second trace in Eq. (15.113) is exactly the same as for the naive Eguchi–
Kawai model with an unbroken Rd symmetry, which are described in
Sect. 14.4. Also the treatment of the averages of open Wilson loops
according to Eqs. (14.68) and (14.69) remains the same. This shows,
in particular, that the “volume factor” v for the twisted Eguchi–Kawai
model is the same as for the quenched Eguchi–Kawai model if integrals
over momentum are regularized in the same way.

Problem 15.7 Calculate trHD†(Cyx) for a straight line connecting x and y.

Solution Using the formulas of Sect. 15.4, we obtain in d = 2

trH ei(y1−x1)P 1+i(y2−x2)P 2

=
∫
dp1 〈p1 | ei(y1−x1)P 1 ei(y2−x2)P 2 e−i(x1−y1)(x2−y2)B/2 | p1〉

=
2π
B
δ(1)(y1 − x1) δ(1)(y2 − x2) . (15.115)

An extension to d dimensions is straightforward:

trH ei(y−x)P =
(2π)d/2

Pf (Bµν)
δ(d)(x− y) . (15.116)

This demonstrates how the averages of open Wilson loops vanish in the con-
tinuum twisted Eguchi–Kawai model.

Remark on TEK with fundamental matter

As has already been discussed in Sect. 11.5, matter in the fundamental
representation of the gauge group SU(N) can survive the large-N limit
of Yang–Mills theory only in the Veneziano limit when the number Nf of
flavors is proportional to the number N of colors.
Such a limit with Nf = nfN can be described [Das83] for an integral nf

by the following generalization of the twisted Eguchi–Kawai model.
We begin for simplicity with a scalar field on the lattice, whose free

action for Hermitian matrices is given by the first line in Eq. (15.31). An
interaction with the gauge field is introduced by gauging the first of the
two matrix indices of the general complex matrix ϕ̃ij, i.e. by replacing
the second Γµ by Uµ, which is essentially an exponential of the covariant
derivative as has already been pointed out.
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The generalized action is given as

S = STEK +N tr

[
Mϕ̃†ϕ̃−

∑
µ

(
Γµϕ̃†U †

µϕ̃+ Γ
†
µϕ̃

†Uµϕ̃
)]

, (15.117)

where STEK is the action (15.64) describing self-interactions of the gauge
field. Repeating the analysis of Sect. 15.2, we see that this model repro-
duces planar graphs of the d-dimensional Yang–Mills theory with Nf = N
species of scalars in the fundamental representation.
We can easily associate an extra index running from 1 to nf to the

matrix ϕ̃ in order to have a theory with Nf = nfN flavors.
A similar generalization of the twisted Eguchi–Kawai model can be

made by incorporating fermions which belong to the fundamental rep-
resentation, thereby describing the Veneziano limit of QCD. Introducing
Grassmann-valued matrices ψ̃ and ¯̃ψ, we write down the action as

S = STEK +N tr

[
M
¯̃
ψψ̃ −

∑
µ

(
Γµ
¯̃
ψP−

µ U
†
µψ̃ + Γ

†
µ
¯̃
ψP+µ Uµψ̃

)]
,

(15.118)

where P±
µ are the projectors for lattice fermions that are defined in Chap-

ter 8.
The continuum counterparts of Eqs. (15.117) and (15.118) can be easily

written down by noting that the interaction with the gauge field can be
incorporated by the substitution

[Pµ, ϕ̃] → −Aµϕ̃− ϕ̃Pµ (15.119)

in the free actions (cf. Eq. (15.104) for Hermitian scalars), since Aµ is as-
sociated with the covariant derivative in the fundamental representation.
Finally for the action of the continuum twisted Eguchi–Kawai model

with fundamental matter we find

S = STEK + vN tr

[
m2ϕ̃†ϕ̃+

∑
µ

|Aµϕ̃+ ϕ̃Pµ|2
]

(15.120)

for scalars and

S = STEK + vN tr

[
m
¯̃
ψψ̃ − i

∑
µ

¯̃
ψ γµ

(
Aµψ̃ + ψ̃Pµ

)
ψ̃

]
(15.121)

for fermions. Here STEK is given by Eq. (15.110).
When formulated in terms of operators on the Hilbert space, vN in

Eqs. (15.120), (15.121) and (15.110) is to be substituted according to
Eq. (15.105).
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