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DISTINGUISHED EXCHANGEABLE COALESCENTS
AND GENERALIZED FLEMING–VIOT PROCESSES
WITH IMMIGRATION

CLÉMENT FOUCART,∗ Université Pierre et Marie Curie

Abstract

Coalescents with multiple collisions (also called �-coalescents or simple exchangeable
coalescents) are used as models of genealogies. We study a new class of Markovian
coalescent processes connected to a population model with immigration. Consider an
infinite population with immigration labelled at each generation by N := {1, 2, . . .}.
Some ancestral lineages cannot be followed backwards after some time because their
ancestor is outside the population. The individuals with an immigrant ancestor constitute
a distinguished family and we define exchangeable distinguished coalescent processes as
a model for genealogy with immigration, focusing on simple distinguished coalescents,
i.e. such that when a coagulation occurs all the blocks involved merge as a single
block. These processes are characterized by two finite measures on [0, 1] denoted by
M = (�0,�1). We call them M-coalescents. We show by martingale arguments that
the condition of coming down from infinity for the M-coalescent coincides with that
obtained by Schweinsberg for the�-coalescent. In the same vein as Bertoin and Le Gall,
M-coalescents are associated with some stochastic flows. The superprocess embedded
can be viewed as a generalized Fleming–Viot process with immigration. The measures
�0 and�1 respectively specify the reproduction and the immigration. The coming down
from infinity of the M-coalescent will be interpreted as the initial types extinction: after
a certain time all individuals are immigrant children.

Keywords: Exchangeable partition; coalescent theory; genealogy for a population with
immigration; stochastic flow; coming down from infinity

2010 Mathematics Subject Classification: Primary 60J25; 60G09
Secondary 92D25

1. Introduction

Pitman [22] and Sagitov [24] defined in 1999 the class of�-coalescent processes, sometimes
also called simple exchangeable coalescents. These coalescent processes appear as models
for the genealogy of certain haploid populations with fixed size. The general motivation of
this work is to define a new class of coalescent processes that may be used to describe the
genealogy of a population with immigration. Heuristically, let us imagine an infinite haploid
population with immigration described at each generation by N := {1, 2, . . .}. This means that
each individual has at most one parent in the population at the previous generation; indeed,
immigration implies that some individuals may have parents outside this population (they are
children of immigrants). Sampling n individuals in the population at some fixed generation, we
group together the individuals with the same parent at the preceding generation. The individuals
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Distinguished exchangeable coalescents 349

with an immigrant parent constitute a special family. We get a partition of N where each block
is a family.

To give to the population a full genealogy, we may imagine a generic external ancestor, say
0, to distinguish the immigrants family. This way, all families will have an ancestor at the
preceding generation. Following the ancestral lineage of an individual backwards in time, it
may coalesce with some others in N or reach 0. In the latter case the lineage is absorbed at 0.
We call 0 the immigrant ancestor, and we will therefore work with partitions of N ∪ {0} = Z+.
We view the block containing 0 as distinguished and then we speak of distinguished partitions.
As usual, a partition is identified with the sequence of its blocks in the increasing order of their
smallest element. The distinguished block is thus the first.

For a population with no immigration, Kingman introduced exchangeable random partitions
of N. A random partition is exchangeable if and only if its law is invariant under the action of
permutations of N. The distinguished partitions appearing in our setting are not exchangeable
on Z+; however, their laws are invariant under the action of permutations σ of Z+ such that
σ(0) = 0. These partitions are called exchangeable distinguished partitions. We will present
an extension of Kingman’s theorem that determines their structure via a paint-box construction.

This allows us to define, following the approach in Bertoin’s book [4, p. 177], a new class of
coalescent processes, which we call exchangeable distinguished coalescents. An exchangeable
distinguished coalescent is characterized in law by a measure µ0 on the space of partitions of
Z+, called the distinguished coagulation measure. The extension of Kingman’s theorem enables
us to characterize this measure, and when µ0 is carried on the subset of simple distinguished
partitions (which have only one nontrivial block), we get a representation involving two finite
measures on [0, 1]: M = (�0,�1). We call this subclass of distinguished coalescents
M-coalescents. The restriction of an M-coalescent to each finite subset containing 0 is a
Markovian coalescent chain with the following transition rates. When the partition restricted
to N has b blocks, two kinds of jumps are allowed: for b ≥ k ≥ 2, each k-tuple of blocks
not containing 0 can merge to form a single block at rate

∫ 1
0 x

k−2(1 − x)b−k�1(dx), and, for
b ≥ k ≥ 1, each k-tuple of blocks not containing 0 can merge with the one containing 0 at rate∫ 1

0 x
k−1(1 − x)b−k�0(dx).

Next, we study a classical phenomenon for coalescent processes: a coalescent process
starting from infinitely many blocks is said to come down from infinity if its number of
blocks instantaneously becomes finite. An interesting result is that the condition for M-
coalescents to come down does not depend on �0 and is the same for the �1-coalescent
found by Schweinsberg [25].

In the last section we define some stochastic flows connected with M-coalescents. The
model of continuous population embedded in the flow can be viewed as a generalized Fleming–
Viot process with immigration. As in [5], the stochastic flows involved allow us to define
simultaneously a population model forwards in time and its genealogical process backwards
in time. A duality between M-generalized Fleming–Viot processes with immigration and
M-coalescents will be studied.

In a forthcoming paper, we will give a different approach to construct the generalized
Fleming–Viot processes with immigration by introducing some stochastic flows of partitions.
Our method will draw both on the works of Donnelly and Kurtz [13] and Bertoin and Le Gall [5].
Some ideas of Birkner et al. [8] may be applied to establish a link between certain branching
processes with immigration and M-generalized Fleming–Viot processes with immigration,
defined in [16].
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1.1. Outline

The paper is organized as follows. In Section 2 we recall some basic facts on random
partitions, and we give some fundamental properties of exchangeable distinguished partitions
(the existence of asymptotic frequencies and paint-box representation). In Section 3 we define
exchangeable distinguished coalescents. We establish a characterization of their laws by an
exchangeable measure µ0 on the space of the distinguished partitions. The structure of µ0 is
entirely described which enables us to study the dust. The main reference is Bertoin’s book [4,
Chapters 2, 4]. The construction of exchangeable distinguished coalescents is very close to
that for exchangeable coalescents of [4]. In Section 4 we focus onM-coalescents and study the
coming down from infinity. In particular, our approach provides a new proof of Schweinsberg’s
result (see [25]) about the necessary and sufficient conditions to come down from infinity for
�-coalescents based on martingale arguments. In Section 5 we introduce certain stochastic
flows encoding M-coalescents. As in [4] and [5], these flows allow us to define a population
model with immigration called M-generalized Fleming–Viot process with immigration.

2. Distinguished partitions

We begin with some general notation and properties which we will use constantly in the
following sections.

For every integer n ≥ 1, we denote by [n] the set {1, . . . , n} and by Pn the set of its partitions.
The set of partitions of N is denoted by P∞. Let π ∈ P∞, where we identify the set π with the
sequence (π1, π2, . . .) of the blocks of π enumerated in increasing order of their least element:
for every i ≤ j , min πi ≤ min πj . The number of blocks of π is denoted #π . For all π ∈ P∞
and n ∈ N, π|[n] ∈ Pn is by definition the restriction of π to [n]. We denote by Pm the set of
mass partitions, meaning the decreasing sequences with sum less than or equal to 1:

Pm :=
{
s = (s1, s2, . . .);

∑
i≥1

si ≤ 1, s1 ≥ s2 ≥ · · · ≥ 0

}
.

Given a partition π = (B1, B2, . . .) and a block B of that partition, we say that B has an
asymptotic frequency, denoted by |B|, if the following limit exists:

|B| := lim
n→∞

#(B ∩ [n])
n

.

If each block of a partition has asymptotic frequency, this partition is said to have asymptotic
frequencies. For π ∈ P∞ possessing asymptotic frequencies, |π |↓ is the mass partition
associated with π , that is, (|π |↓i )i∈N is the rearrangement in decreasing order of (|πi |)i∈N.
For every n ∈ N, a permutation of [n] is a bijection σ : [n] 
→ [n]. For n = ∞, we define
a permutation of N to be a bijection σ of N such that σ(k) = k when k is large enough. We
define the equivalence relation ‘∼

π
’ by i ∼

π
j if i and j are in the same block of π . We denote

by σπ the partition, defined by

i ∼
σπ
j ⇐⇒ σ(i) ∼

π
σ(j).

We stress that, due to the ranking of the blocks, (σπ)i = σ−1(πη(i)) for a certain permutation η.
A random partition π of N is exchangeable if σπ and π have the same law for every

permutation σ of N. Kingman established a correspondence between exchangeable partition
laws and mass partitions via the paint-box partitions. We recall briefly the construction of
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paint boxes. Let s be an element of Pm. Let V be an open subset of (0, 1) such that the ranked
sequence of lengths of its interval components is given by s. Let U1, . . . be an independent
and identically distributed (i.i.d.) sequence of uniform variables on [0, 1]. An s-paint box is
the partition π induced by the following equivalence relation: for all i �= j ,

i ∼
π
j ⇐⇒ Ui and Uj belong to the same interval component of V.

Kingman proved that any exchangeable partition is a mixture of paint boxes. We denote by ρs
the law of an s-paint box.

As explained in the introduction, we now extend this setting by distinguishing a block,
working with partitions of Z+.

Definition 2.1. A distinguished partition π is a partition of Z+ where the block containing 0
is viewed as a distinguished block. Ranking the blocks in the order of their least element, the
first block π0 contains 0 and is the distinguished block of π .

We denote by [ n ] the set {0, 1, . . . , n}, and by P 0
n the space of distinguished partitions of

{0, . . . , n}. For n = ∞, we agree that [ ∞ ] = Z+ = {0, 1, . . .} and then P 0∞ is the space of
partitions of Z+. A first basic property is the compactness of the space P 0∞ for the distance
defined by

d(π, π ′) = (1 + max{n ≥ 0, π| [ n ] = π ′
| [ n ]})−1.

See [4] for a proof. Let π ∈ P 0
n . For all n′ ∈ Z+ ∪ {∞} such that n′ ≥ n, we define

P 0
n′,π = {π ′ ∈ P 0

n′ ;π ′
| [ n ] = π}.

A random distinguished partition is a random element ofP 0∞ equipped with theσ -field generated
by the finite unions of the sets P 0

n,π (which corresponds to the Borelian σ -field for d).
In the same way, we introduce the set of distinguished mass partitions, meaning the sequences

s = (si)i≥0 of nonnegative real numbers such that
∑
i≥0 si ≤ 1, ranked in decreasing order

apart from s0:

P 0
m :=

{
s = (s0, s1, . . .);

∑
i≥0

si ≤ 1, s0 ≥ 0, s1 ≥ s2 ≥ · · · ≥ 0

}
.

We identify the sets Pm and {s ∈ P 0
m; s0 = 0}. The dust of s is by definition the quantity

δ := 1 − ∑∞
i=0 si . A (distinguished) mass partition is said to be improper if the dust is positive.

For π ∈ P 0∞ having asymptotic frequencies, |π |↓ is the distinguished mass partition associated
with π , that is, |π |↓0 = |π0| and (|π |↓i )i∈N is the rearrangement in decreasing order of (|πi |)i∈N.
We stress that, by definition, |π |↓0 = |π0|.

We define a permutation of Z+ to be a bijection σ of Z+ such that σ(k) = k when k is large
enough. Note that any permutation of N can be extended to a permutation of Z+ by deciding
that σ(0) = 0.

Definition 2.2. A random distinguished partition π is exchangeable if σπ and π have the same
law for every permutation σ of Z+ such that σ(0) = 0.

It is easily seen that the restriction of an exchangeable distinguished partition to N is
exchangeable. The converse may fail: there exist distinguished partitions which are not
exchangeable though their restriction to N is exchangeable. We construct a counterexample:
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let π be a nondegenerate exchangeable random partition and let π0 be obtained from π by
distinguishing the block containing 1, i.e. π0 = (π1 ∪ {0}, π2, . . .) with blocks enumerated in
order of appearance. The restriction π0

|N = π is exchangeable. The structure of π implies
that P[π0

| [ 2 ] = ({0, 1}, {2})]= P[1 �∼
π

2] > 0. Let σ be the permutation of [ 2 ]: σ(0) = 0,

σ(1) = 2, σ(2) = 1. We have P[π0
| [ 2 ] = ({0, σ (1)}, {σ(2)})] = P[π1 = {2}] = 0. We have

thus found a permutation such that P[π0 = σ(π0
0 , . . .)] �= P[π0 = (π0

0 , . . .)].
We define now the distinguished paint boxes and extend Kingman’s correspondence to

exchangeable distinguished partitions.

Definition 2.3. A distinguished paint box can be constructed in the following way. Let s be
a distinguished mass partition; we denote by δ its dust. Denote by ∂ an element which does
not belong to Z+. Let ξ be a probability on Z+ ∪ {∂} such that, for all k ≥ 0, ξ(k) = sk and
ξ(∂) = δ. Let X1, X2, . . . be a sequence of i.i.d. random variables with distribution ξ , and let
X0 = 0. An s-distinguished paint box is defined by, for all i �= j ≥ 0,

	0 : i ∼ j ⇐⇒ Xi = Xj �= ∂.

In particular, 	0
0 := {i ≥ 0;Xi = 0} = {i ≥ 1;Xi = 0} ∪ {0}.

We denote by ρ0
s the law of an s-distinguished paint box. When s0 = 0, the block 	0

0 is
the singleton {0} and the s-distinguished paint box restricted to N is a classical s-paint-box
partition of N. According to the previous notation for paint boxes, we will denote its law by ρs .

Another way to define an s-distinguished paint box is to consider a subprobability α on [0, 1)
and set s = (α(0), α(x1), α(x2), . . .), where x1, x2, . . . are the atoms of α in (0, 1) ranked in
decreasing order of their sizes. Let X1, X2, . . . be independent with law α, and let X0 = 0.
The partition 	0 defined by, for i �= j ,

i ∼ j ⇐⇒ Xi = Xj

is an s-distinguished paint box.
Equivalently, we can work with uniform variables: an interval representation of s is a

collection of disjoint intervals (A0, A1, A2, . . .), where A0 is [0, s0] and (Ai)i≥1 is such that
the decreasing sequence of their lengths is (s1, s2, . . .). Draw an infinite sequence of uniform
independent variables (Ui)i≥1 and fix U0 = 0. The partition of Z+ defined by π0 := i ∼ j if
and only if Ui and Uj fall in the same interval (if Ui falls in the dust of s then {i} is a singleton
block of π0) is an s-distinguished paint box. We stress that its law does not depend on the
choice of intervals (A1, A2, . . .), and then we can choose Ai := [s0 + · · ·+ si−1, s0 + · · ·+ si)
for all i ≥ 1.

Proposition 2.1. Let s ∈ P 0
m, and let π0 be an s-distinguished paint box.

(i) The distinguished paint box π0 is exchangeable.

(ii) π0 has asymptotic frequencies, and, more precisely, |π0|↓ = s.

(iii) For every i ∈ Z+, if |π0
i | = 0 then π0

i is a singleton or empty.

(iv) s is improper if and only if some blocks different from π0
0 are singletons. In this case the

set of singletons {i ∈ Z+ : i is a singleton of π0} has an asymptotic frequency given by
the dust δ = 1 − ∑∞

i=0 si almost surely.

(v) We have ρ0
s (0 is a singleton)= 0 if s0 > 0 and 1 otherwise, and ρ0

s (1, 2, . . . , q are
singletons) = δq for q ≥ 1.
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Proof. See the proof of Proposition 2.8 of [4].

It remains to see whether the distinguished paint-box construction of Definition 2.3 yields
all the exchangeable distinguished partitions.

Theorem 2.1. Let π0 be a random distinguished partition. The following assertions are
equivalent:

(i) π0 is exchangeable,

(ii) there exists a random distinguished mass partition S = (S0, S1, . . .) such that, condi-
tionally given S = s, π0 has the law of an s-distinguished paint box (ρ0

s ). Furthermore,
|π0|↓ = S.

Proof. A mixture of distinguished paint boxes is still exchangeable, proving that (ii)
implies (i). Let π0 be exchangeable. We adapt a proof of Aldous [1]; see also [4, p. 101].
We define a selection map to be any random function b : Z+ → Z+ that maps all the points of
the block π0

0 to 0, and all the points of a block π0
i for i ≥ 1 to the same point of that block.

Let U0 = 0, (Ui)i≥1 be i.i.d. uniform on [0, 1], independent of π0 and of the selection map b.
We defineXn = Ub(n). The law of (Xn, n ≥ 1) does not depend on the choice of b. The key of
the proof is the exchangeability of (Xn)n≥1. Let σ be a permutation with σ(0) = 0. We have

Xσ(n) = Ub(σ(n)) = U ′
b′(n),

whereU ′
i = Uσ(i) and b′ = σ−1◦b◦σ . We verify that b′ is a selection map for the partitionσπ0.

Let i ≥ 0 and n ∈ σπ0
i , by the definition of σπ0, σπ0

i = σ−1(π0
η(i)) for a certain permutation

η such that η(0) = 0. Then there exists a k ∈ π0
η(i) such that n = σ−1(k). For i = 0 and

k ∈ π0
0 , b′(n) = σ−1(b(k)) = σ−1(0) = 0 for all n ∈ σπ0

0 . For i ≥ 1, we clearly find that
b′(n) = σ−1 ◦ b(k) depends only on i.

The sequence (U ′
i , i ≥ 1) has the same law as (Ui, i ≥ 1). By exchangeability and the

independence of (Uj ) and π0, ((U ′
n)n≥1, σπ

0) has the same law as ((Un)n≥1, π
0), and the

sequence (Xn, n ≥ 1) is exchangeable. By the de Finetti theorem, conditionally on the random
probability measure µ := limn→∞(1/n)

∑n
i=1 δXi , (Xn, n ≥ 1) are i.i.d. random variables

with distribution µ. Moreover, by the definition of Xn, i ∼
π
j if and only if Xi = Xj . We

deduce that, conditionally given µ = α, the distinguished partition π0 is an s(α)-distinguished
paint box with s(α) := (α(0), α(x1), . . .). By the distinguished paint-box construction, on
{µ = α}, s(α) is the mass partition of π0 and so |π0|↓ = s(µ); moreover, the random sequence
S := s(µ) in P 0

m verifies assertion (ii). To conclude, the random partition π0 has the law as an
η-mixture of distinguished paint boxes, where η is the law of |π0|↓. This completes the proof.

Theorem 2.1 sets up a bijection between probability distributions for exchangeable dis-
tinguished partitions and probability distributions on the space of distinguished mass parti-
tions, P 0

m:

P[π0 ∈ ·] =
∫

P 0
m

ρ0
s (·)P(|π0|↓ ∈ ds).

Remark 2.1. Let π0 be an exchangeable distinguished partition. As for exchangeable parti-
tions (see [23, p. 43]), we can show that there exists a function p such that

P[π0
| [ n ] = (B0, . . . , Bk)] = p(n0, . . . , nk),

where ni = #Bi, i = 0, . . . , k. Contrary to exchangeable random partitions, the function p is
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not totally symmetric but only invariant by permutations of the arguments (n1, . . . , nk). Indeed,
by exchangeability, P[π0 = (σB0, . . . , σBk)] = p(#B0, . . . , #Bk) = p(#Bη(0), . . . , #Bη(k)),
where η is the permutation such that σπ0

i = σ−1(π0
η(i)). Owing to the assumption that σ(0) =

0, the permutation η is such that η(0) = 0. The exchangeable distinguished partitions are thus
special cases of partially exchangeable partitions in the sense of [21].

We mention that Donnelly and Joyce [12] defined the exchangeable ordered partitions for
which all the blocks are distinguished (they speak about exchangeable random ranking). They
obtained a Kingman representation for the exchangeable ordered partition structure. For every
µ probability on [0, 1], an ‘ordered paint box’is constructed from a sequence of i.i.d.µ variables.
We stress that, contrary to an exchangeable distinguished paint box, the law of aµ-ordered paint
box depends on the order of the atoms of µ. Exchangeable ordered partitions are also partially
exchangeable but the functionp has no symmetry properties. Gnedin [15] gave a representation
of exchangeable compositions which are a generalization of exchangeable random rankings.

We could define distinguished partitions with several distinguished blocks. It corresponds to
a population with several sources of immigration: each distinguished block gathers the progeny
of an immigration source. For the sake of simplicity, we distinguish here just one block.

In the next section we define distinguished coalescents which can be interpreted as a
genealogy for a population with immigration.

3. Distinguished coalescents

Imagine an infinite haploid population with immigration. We denote by	0(t) the partition of
the current population into families having the same ancestor t generations earlier. As explained
in the introduction, individuals who have no ancestor in the population at generation t form the
distinguished block of 	0(t). Actually, individual 0 can be viewed as their common ancestor.
When some individuals have the same ancestor at generation t , they have the same ancestor
at any generation t ′ ≥ t . In terms of partitions, all integers in the same block of 	0(t) are
in the same block of 	0(t ′) for any t ′ ≥ t . The collection of partitions (	0(t))t≥0 will be
a coalescent process. To define these processes and go from an exchangeable distinguished
partition to another coarser partition, we have to introduce the coagulation operator.

3.1. Coagulation operator and distinguished coalescents

To define the distinguished exchangeable coalescents, we need to define an operator on the
space of distinguished partitions.

Definition 3.1. Let π, π ′ ∈ P 0∞. The partition Coag(π, π ′) is defined by Coag(π, π ′)i = π ′′
i ,

where π ′′
i = ⋃

j∈π ′
i
πj . The partition Coag(π, π ′) is exactly the partition obtained by coagu-

lating blocks of π according to blocks of π ′.

We denote by 0[ ∞ ] the partition into singletons {{0}, {1}, . . .}, and by 1[ ∞ ] the trivial
partition {Z+,∅, . . .}. Plainly, for all n ≥ 0, Coag(π, π ′)| [ n ] = Coag(π| [ n ], π ′

| [ n ]) and, for
all π ∈ P 0∞,Coag(π, 0[ ∞ ]) = π and Coag(π, 1[ ∞ ]) = 1[ ∞ ]. Note that, however, we do not
have Coag(π, π ′)|K = Coag(π|K, π ′|K) for K ⊂ N in general.

Proposition 3.1. Let π and π ′ be two independent exchangeable distinguished partitions. The
distinguished partition Coag(π, π ′) is also exchangeable.

Proof. See the proof of Lemma 4.3 of [4].
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The coagulation operator allows us to define distinguished coalescents which are Markovian
processes valued in distinguished partitions of N.

Definition 3.2. A Markov process 	0 with values in P 0∞ is called a distinguished coalescent
if its semigroup is given as follows: the conditional law of 	0(t + t ′) given 	0(t) = π0 is
the law of Coag(π0, π ′), where π ′ is some exchangeable distinguished partition (whose law
depends only on t ′). A distinguished coalescent is called standard if 	0(0) = 0[ ∞ ].

The properties of the coagulation operator (see [4]), imply that a distinguished coalescent	0

fulfills the Feller property. Therefore, the process has a càdlàg version and is strong Markovian.
Plainly, the random partition 	0

|N(t) is exchangeable for all t ≥ 0. However, we stress that in
general the process (	0

|N(t), t ≥ 0) is not an exchangeable coalescent and not even Markovian.
We will give an example in Section 4.2.

For every n ≥ 1, the restriction	0
| [ n ] is a continuous-time Markov chain with a semigroup

given by the operator Coag. Let π ∈ P 0
n \ {0[ n ]}. We denote by qπ the jump rate of 	0

| [ n ]
from 0[ n ] to π :

qπ := lim
t→0+

1

t
P0[ n ] [	0

| [ n ](t) = π ].
An easy adaptation of the proof of Proposition 4.4 of [4] gives the existence and uniqueness of
the distinguished coagulation measure.

Definition 3.3. The distinguished coagulation measure of	0 is the unique measureµ0 on P 0∞
such that µ0({0[ ∞ ]}) = 0 and

µ0(P 0∞,π ) = qπ

for every n ∈ Z+ and every partition π ∈ P 0
n .

Moreover, the measure µ0 fulfills

µ0(π ∈ P 0∞ : π| [ n ] �= 0[ n ]) < ∞ and µ0 is exchangeable.

Conversely, any measure fulfilling the previous conditions will be called a distinguished coag-
ulation measure.

Let µ0 be a distinguished coagulation measure. We construct explicitly a distinguished
coalescent process with coagulation measure (in the sense of Definition 3.3) µ0. Let N be a
Poisson measure with intensity dt ⊗ µ0(dπ). Let Nb be the image of N by the map (t, π) 
→
(t, π| [ b ]). Its intensity, denoted by µ0

b, is the image of µ0 by the previous map. We denote by
(ti , πi) the atoms of Nb, and define a process (	b(t), t ≥ 0) by the following recursion: for
all 0 ≤ t < t1, 	b(t) = 0[ b ] and, if ti ≤ t < ti+1, 	b(t) = Coag(	b(ti−1), π

i), with t0 = 0.

Proposition 3.2. The sequence of random partitions (	b(t), b ∈ N) is compatible, which
means that, for all a ≤ b, 	b|[a] = 	a . The unique process (	0(t), t ≥ 0) such that

	0|[b](t) = 	b(t), defined by 	0
i (t) = ⋃

b≥1	
b
i (t), is a distinguished coalescent with coagu-

lation measure µ0.

Proof. The same arguments as those in the proof of Proposition 4.5 of [4] apply.

Example 3.1. We denote by K(i, j) the simple distinguished partition where i and j are in
the same block and all the other blocks are singletons. Let c0 and c1 be two nonnegative
real numbers. The measure µ0 = c0µ

K
0 + c1µ

K
1 , where µK0 := ∑

1≤i δK(0,i) and µK1 :=∑
1≤i<j δK(i,j), is a distinguished coagulation measure. The process obtained is called

Kingman’s distinguished coalescent with rates (c0, c1).
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Indeed, the measureµ0 defined as above is plainly a distinguished coagulation measure. The
Poissonian construction explains the dynamics of this process. At a constant rate c0, a block
not containing 0 merges with 	0

0 that is a singular coagulation with the distinguished block.
At a constant rate c1, two blocks not containing 0 merge into one, which is the classic binary
coagulation of Kingman’s coalescent.

3.2. Characterization in law of the distinguished coalescents

The next theorem is one of the main results of this work, it claims that the law of a
distinguished coalescent is characterized by two nonnegative real numbers c0 and c1, and a
measure ν0 on P 0

m. It should be viewed as an extension of Theorem 2.1 to certain infinite
measures. Recall that ρ0

s denotes the law of an exchangeable distinguished s-paint box for
s ∈ P 0

m.

Theorem 3.1. Recalling Definition 3.3, let µ0 be a distinguished coagulation measure. There
exist two unique real numbers c0 and c1 and a unique measure ν0 on P 0

m which satisfy

ν0(0) = 0 and
∫

P 0
m

(
s0 +

∞∑
i=1

s2
i

)
ν0(ds) < ∞

such that
µ0 = c0µ

K
0 + c1µ

K
1 + ρ0

ν0 ,

where

ρ0
ν0(·) :=

∫
s∈P 0

m

ρ0
s (·)ν0(ds).

Conversely, let c0, c1, and ν0 be two real numbers and a measure on P 0
m verifying the previous

conditions. Then there exists a unique (in law) distinguished coalescent with µ0 = c0µ
K
0 +

c1µ
K
1 + ρ0

ν0 .

When ν0 is carried on {s ∈ P 0
m; s0 = 0} (which can be identified as Pm), the block containing

0 is reduced to the singleton {0} (we distinguish no block), and considering the restriction to N,
we recover the characterization of exchangeable coalescents (also called�-coalescents) in [26].

Proof of Theorem 3.1. Arguments used to prove this theorem are adapted from those of
Theorem 4.2 of [4, Chapter 4]. Nevertheless, we give details to highlight the fact that the
condition on ν0 differs from that of Theorem 4.2 of [4]. We denote by µ0

n the restriction of µ0

to {π ∈ P 0∞;π| [ n ] �= 0[ n ]}. The measure µ0
n = 1{π∈P 0∞;π[ n ] �=0[ n ]} µ

0 has a finite mass and is
invariant under the action of permutations σ that coincide with the identity on [ n ]. We define
the n-shift on distinguished partitions by the map π → π ′ defined by

i ∼
π ′ j ⇐⇒ i + n ∼

π
j + n

for all i, j ≥ 1 and by
0 ∼
π ′ j ⇐⇒ 0 ∼

π
j + n

for all j ≥ 1. The image of µ0
n by the n-shift, denoted by µ̄0

n, is invariant under the action of
permutations σ of Z+ such that σ(0) = 0. By Kingman’s correspondence (Theorem 2.1),

µ̄0
n(dπ) =

∫
P 0

m

ρ0
s (dπ)µ̄

0
n(|π |↓ ∈ ds).
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Moreover, µ̄0
n-almost every partition has asymptotic frequencies. The shift does not affect

the asymptotic frequencies, and so µ0
n-almost every partition has asymptotic frequencies. The

measure µ0 is the increasing limit of the µ0
n; we deduce that µ0-almost every partition has

asymptotic frequencies.
By the distinguished paint-box representation of µ̄0

n, we obtain, for all s ∈ P 0
m \ {0},

µ0
n(n+ 1 ∼ n+ 2 �∼ 0 or 0 ∼ n+ 1 | |π |↓ = s) = s0 +

∞∑
k=1

s2
k .

Let ν0
n be the image of µ0

n by the map π 
→ |π |↓:

ν0
n(ds) = µ0

n(|π |↓ ∈ ds).

We stress that ν0
n(ds) = µ̄0

n(|π |↓ ∈ ds) because the n-shift has no impact on the asymptotic
frequencies.

We have µ0
n(n+ 1 ∼ n+ 2 �∼ 0 or 0 ∼ n + 1) ≥ ∫

P 0
m
(s0 + ∑∞

i=1 s
2
i )ν

0
n(ds). Moreover,

µ0
n(n+ 1 ∼ n+ 2 �∼ 0 or 0 ∼ n+ 1) ≤ µ0(n+ 1 ∼ n+ 2 �∼ 0 or 0 ∼ n+ 1).

By the exchangeability of µ0,

µ0(n+ 1 ∼ n+ 2 �∼ 0 or 0 ∼ n+ 1) = µ0(1 ∼ 2 �∼ 0 or 0 ∼ 1) ≤ µ0(π| [ 2 ] �= 0[ 2 ]) < ∞.

We deduce that the finite measures ν0
n increase as n ↑ ∞ to the measure ν0 := µ0(|π |↓ ∈ ds)

and so

lim
n→∞

∫
P 0

m

(
s0 +

∞∑
i=1

s2
i

)
ν0
n(ds) =

∫
P 0

m

(
s0 +

∞∑
i=1

s2
i

)
ν0(ds) ≤ µ0(π| [ 2 ] �= 0[ 2 ]) < ∞.

Let k ∈ N and π [k] ∈ Pk \ {0[ k ]}. The sequence of events π|{k+1,...,k+n} �= 0{k+1,...,k+n} is
increasing. Then we have

µ0(π| [ k ] = π [k], |π |↓ �= 0)

= lim
n→∞µ

0(π| [ k ] = π [k], |π |↓ �= 0, π|{k+1,...,k+n} �= 0{k+1,...,k+n}).

By an obvious permutation we obtain

µ0(π| [ k ] = π [k], |π |↓ �= 0, π|{k+1,...,k+n} �= 0{k+1,...,k+n}) = µ̄0
n(π| [ k ] = π [k], |π |↓ �= 0).

Thus, using the distinguished paint-box representation of µ̄0
n, we deduce that

µ̄0
n(π| [ k ] = π [k], |π |↓ �= 0) =

∫
P 0

m

ρ0
s (π| [ k ] = π [k], |π |↓ �= 0)ν0

n(ds)

→
∫

P 0
m

ρ0
s (π| [ k ] = π [k], |π |↓ �= 0)ν0(ds) as n → ∞.

As k is arbitrary, we get

1{|π |↓ �=0} µ0(dπ) =
∫

P 0
m

ρ0
s (dπ)ν

0(ds).

It remains to study 1{|π |↓=0} µ0(dπ). Consider now µ̃0(dπ) := 1{0∼1, |π |↓=0} µ0(dπ), which
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has finite mass (because µ0(0 ∼ 1) < ∞). We want to show that µ̃0(dπ) is proportional to
δK(0,1), where K(0, 1) is the simple partition with 0 ∼ 1. Let µ̃0

2(dπ) be the image of µ̃0 by
the 2-shift. The measure µ̃0

2(dπ) is supported by {π ∈ P∞; |π |↓ = 0} and is exchangeable
with finite mass. By the distinguished paint-box construction, the only exchangeable parti-
tion with asymptotic frequencies |π |↓ = 0 is the partition into singletons 0[ ∞ ]. Therefore,
µ̃0

2(dπ) = c0δ{{0},{1},...}. We deduce that, for µ̃0
2-almost every π ′, i �∼

π ′ j for all i �= j . From
the definition of the 2-shift, we find that, for µ̃0-almost every π ,

i + 2 �∼
π
j + 2 for all i, j ≥ 1, i �= j, and 0 �∼

π
j + 2 for all j ≥ 1.

This implies that we have to consider only three possibilities:

µ̃0(dπ) = c0δK(0,1), µ̃0(0 ∼ 1 ∼ 2) > 0, or µ̃0(2 ∼ k) > 0 for some k ≥ 3.

If µ̃0(2 ∼ k) > 0 for some k ≥ 3, we find by exchangeability that µ̃0(2 ∼ k) = µ̃0(2 ∼ 3) > 0.
Moreover, the collection of sets {{2 ∼ n}, n ≥ 3} is such that the intersection of two or
more sets has a zero measure µ̃0 and so µ̃0(

⋃
n≥3{2 ∼ n}) = ∑

n≥3 µ̃
0(2 ∼ n) ≤ µ0(0 ∼ 1).

It follows that µ0(0 ∼ 1) = ∞. This is a contradiction because µ0(0 ∼ 1) < ∞. If
µ̃0(0 ∼ 1 ∼ 2) > 0 then, by exchangeability, for all n ≥ 2, µ̃0(0 ∼ 1 ∼ n) = c0 > 0
and, by the same arguments, the same contradiction appears. We deduce that µ̃0(dπ) is equal
to c0δK(0,1). By exchangeability we have 1{0∼i, |π |↓=0} µ0(dπ) = c0δK(0,i). The measure
µ0 1{|π |↓=0, π0 �={0}} is carried on the simple partition π such that π0 is not a singleton; moreover,
the collection of sets {{0 ∼ i}, i ≥ 1} is such that the intersection of two sets has a zero measure.
Therefore, we have

1{|π |↓=0, π0 �={0}} µ0(dπ) = c0

∑
i≥1

δK(0,i).

The restriction of µ0 to {π ∈ P 0∞;π0 = {0}} can be viewed as an exchangeable measure on
P∞; the argument to conclude is then the same as in [4, p. 184].

Remark 3.1. Denote by (D0(t))t≥0 := (1 − ∑∞
i=0 |	0

i (t)|)t≥0 the process of the dust of 	0.
The arguments of [22] or [4] allow us to show that, for all t > 0, the random partition 	0(t)

has improper asymptotic frequencies with a strictly positive probability if and only if c1 = 0
and

∫
P 0

m
(1 − δ)ν0(ds) < ∞, where δ = 1 − ∑∞

i=0 si . In that case, the process (ξ0(t))t≥0 :=
(−ln(D0(t)))t≥0 is a subordinator with Laplace exponent

φ0(q) = c0q +
∫

P 0
m

(1 − δq)ν0(ds).

Note that the drift coefficient c0 may be positive, which contrasts with the result of Pitman [22].

4. The simple distinguished exchangeable coalescents: M-coalescents

In this section we focus on simple distinguished coalescents for which the coagulation
measure µ0 is carried by the set of simple distinguished partitions. We call them, hereafter,
M-coalescents. These processes are the analogue of �-coalescents for exchangeable distin-
guished coalescents. Historically, the �-coalescent is the first exchangeable coalescent with
multiple collisions to have been defined; see [22] and [24]. We begin by recalling some basic
facts about �-coalescents.
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4.1. �-coalescents

A �-coalescent (also called a simple exchangeable coalescent) is a process taking values
in the partitions of N describing the genealogy of an infinite haploid population, labelled by
N where two or more ancestral lineages merging cannot occur simultaneously. We stress that
in these coalescent processes, each individual has an ancestor in the population. Immigration
phenomenon is not taken into account and no block is distinguished. A simple exchangeable
coalescent is a Markovian process (	(t), t ≥ 0) on the space of partitions of N satisfying the
following conditions.

(i) If n ∈ N then the restriction (	|[n](t)) is a continuous-time Markov chain valued in Pn.

(ii) For each n, (	|[n](t)) evolves by the exchangeable merging of blocks: 	|[n](t) =
Coag(	|[n](t−), π ′), where π ′ is an independent simple exchangeable partition.

By Theorem 1 of [22], or [24], we know that any simple exchangeable coalescent is characterized
in law by a finite measure�on [0, 1]. The dynamics of	 can be described as follows. Whenever
	|[n](t) is a partition with b blocks, the rate at which a k-tuple of its blocks merges is

λb,k =
∫ 1

0
xk−2(1 − x)b−k�(dx).

When � is the Dirac at 0, we recover Kingman’s coalescent. When �({0}) = 0, the �-
coalescent can be constructed via a Poisson point process on R+ × [0, 1] with intensity dt ⊗
ν(dx), where ν(dx) = x−2�(dx):

N =
∑
i∈N

δ(ti ,xi ).

The atoms ofN encode the evolution of the coalescent	. At time t−, flip a coin for which the
probability of ‘heads’ is x for each block. All blocks flipping ‘heads’ are merged immediately.
We can also construct a simple exchangeable partition, π ′, where the nontrivial block is
constituted by indices of ‘heads’. Thus, we get 	(t) by Coag(	(t−), π ′). In order to make
this construction rigorous, we first consider the restrictions (	|[n](t)) as in Proposition 3.2,
since the measure ν(dx) := x−2�(dx) can have an infinite mass.

4.2. M-coalescents

The distinguished exchangeable coalescents such that when a coagulation occurs all the
blocks involved merge as a single block are called M-coalescents. We specify their laws
by two finite measures on [0, 1], and study their generators in the same fashion as those of
�-coalescents.

Definition 4.1. When a distinguished coagulation measure µ0 is carried by the set of simple
distinguished partitions (with only one block nonempty or a singleton), the distinguished
coalescent 	0 is said to be simple. Define the following restricted measures:

ν0 = ν0 1{s∈P 0
m;s=(s0,0,...)} and ν1 = ν0 1{s∈P 0

m;s=(0,s1,0,...)} .

We can write ν0 = ν0 + ν1. By a slight abuse of notation, ν0 and ν1 can be viewed as two
measures on [0, 1] such that

∫ 1
0 s0ν0(ds0) < ∞ and

∫ 1
0 s

2
1ν1(ds1) < ∞, and Theorem 3.1 yields

µ0 = c0µ
K
0 + ρ0

ν0
+ c1µ

K
1 + ρν1 .
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We define the finite measures �0(dx) := xν0(dx) + c0δ0 and �1(dx) := x2ν1(dx) + c1δ0.
The law of a simple distinguished coalescent is then characterized by M = (�0,�1), and we
call this subclass the M-coalescents.

As already mentioned in Section 3, in most cases, the restriction to N of a distinguished
coalescent is not Markovian. Let 	0 be an M-coalescent with, for instance, �0 = δ0 and
�1(dx) = dx (the Lebesgue measure). To locate the distinguished block in 	0

|N, we may
locate a binary coagulation before time t (all other mergers involve an infinite number of
blocks). The restricted process 	0

|N is then not Markovian.
The explicit Poissonian construction of Proposition 3.2 can now be interpreted in the same

way as that of�-coalescents; see Section 4.1. When�0({0}) = �1({0}) = 0, theM-coalescent
associated can be constructed via two Poisson point processes N0 and N1 on R+ × (0, 1]
with intensities dt ⊗ ν0(dx) and dt ⊗ ν1(dx), where ν0(dx) = x−1�0(dx) and ν1(dx) =
x−2�1(dx).

• At an atom (ti , xi) of N1, flip a coin for which the probability of ‘heads’ is xi for each
block not containing 0. All blocks flipping ‘heads’ are merged immediately into one
block as in the Proposition 3.2.

• At an atom (ti , xi) of N0, flip a coin for which the probability of ‘heads’ is xi for each
block not containing 0. All blocks flipping ‘heads’ coagulate immediately with the
distinguished block.

This construction is exactly that obtained when we coagulate the partition at t− with a simple
exchangeable distinguished partition π ′ where the nontrivial block is constituted by indexes
of ‘heads’. Thus, we construct the M-coalescent in the same way as the �-coalescent in
Section 4.1.

We investigate jump rates of anM-coalescent (	0(t))t≥0. Thanks to the simple distinguished
paint-box structure, we compute explicitly the jump rates of the restriction of	0. Let π ∈ P 0

n

be simple, qπ = µ0(P 0∞,π ).

• For every 2 ≤ k ≤ n, if π has one block not containing 0 with k elements then

qπ = λn,k :=
∫ 1

0
xk−2(1 − x)n−k�1(dx).

• For every 1 ≤ k ≤ n, if the distinguished block of π has k + 1 elements (counting 0)
then

qπ = rn,k :=
∫ 1

0
yk−1(1 − y)n−k�0(dy).

Let π ∈ P 0
p with b blocks without 0, and let F be any function defined on P 0

p . The generator
of 	0

| [p ] is

L∗F(π) =
∑

I⊂{1,...,b}, |I |≥2

λb,|I |(F (cIπ)− F(π))+
∑

J⊂{1,...,b}, |J |≥1

rb,|J |(F (cJ π)− F(π)),

with cIπ = Coag(π, {{0}, {1}, . . . , {I }, . . .}) and cJ π = Coag(π, {{0} ∪ {J }, {·}, . . . , {·}}).
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4.3. Coming down from infinity for M-coalescents

Let � be a finite measure on [0, 1], and let 	 be a �-coalescent. Pitman [22] showed
that if �({1}) = 0, only the following two types of behaviour are possible: either P[for all
t > 0, 	(t) has infinitely many blocks] = 1 or P[for all t > 0, 	(t) has only finitely many
blocks] = 1. In the second case, the process	 is said to come down from infinity. For instance,
Kingman’s coalescent comes down from infinity, while if�(dx) = dx then the corresponding
�-coalescent (called the Bolthausen–Sznitman coalescent) does not come down from infinity.
A necessary and sufficient condition for a �-coalescent to come down from infinity was given
by Schweinsberg [25]. Define

φ(n) =
n∑
k=2

(k − 1)Cknλn,k

with λn,k = ∫ 1
0 x

k−2(1 − x)n−k�(dx). The�-coalescent comes down from infinity if and only
if

∑∞
n=2 1/φ(n) < ∞.

Define ψ�(q) := ∫
[0,1](e

−qx − 1 + qx)x−2�(dx). Bertoin and Le Gall [7] observed that

∞∑
n=2

1

φ(n)
< ∞ ⇐⇒

∫ ∞

a

dq

ψ�(q)
< ∞,

where the right-hand side holds for some a > 0 (and then necessarily for all). This equivalence
is explained in a probabilistic way by Berestycki et al. [2]; see also [3, p. 107].

As for the �-coalescent, if the M-coalescent comes down from infinity, it does so immedi-
ately.

Proposition 4.1. Let (	0(t))t≥0 be an M-coalescent, with �0 and �1 without mass at 1. We
denote by T its time of coming down from infinity: T = inf{t > 0, #	(t) < ∞}. We have,
almost surely, T = 0 or T = ∞.

Proof. See the proof of Lemma 31 of [26].

We stress that, when�0 +�1 has a mass at 1, theM-coalescent comes down from infinity.
Indeed, by the Poisson construction, in an exponential time τ of parameter (�0 +�1)({1}), the
Poisson measureN has an atom π such that π0 = Z+ or π1 = N. Thus, for large t , the process
	0(t) has just one block.

It remains to focus on the case where�0+�1 has no mass at 1. Intuitively, when the genuine
�1-coalescent comes down, all blocks merged into one in an almost surely finite time. On the
one hand, we can think that the (�0,�1)-coalescent has more jumps and coagulates all its
blocks faster. On the other hand, the perturbation due to the coagulation with the distinguished
block on the general term of the sum, studied initially by Schweinsberg [25], is not sufficient to
induce its convergence and so the coming down. The (�0,�1)-coalescent comes down from
infinity if and only if the �1-coalescent comes down.

Theorem 4.1. The (�0,�1)-coalescent comes down from infinity if and only if

∞∑
n=2

1

φ1(n)
< ∞,

where φ1(n) = ∑n
k=2(k − 1)Cknλn,k and λn,k is as in Section 4.2.

The proof requires rather technical arguments and is given in Section 6.
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5. M-coalescents and generalized Fleming–Viot processes with immigration

In this section we are interested in a population model which has exactly a genealogy
given by an M-coalescent. A powerful method to study simultaneously the population model
and its genealogy is to define some stochastic flows as Bertoin and Le Gall [5]. A process
valued in the space of probability measures on [0, 1], (Z0

t , t ≥ 0), is embedded in the flow.
The atoms of the random probability Z0

t represent the current types of frequency in the
population at time t . Moreover, Z0

t has a distinguished atom at 0 representing the fraction
of immigrants in the population. This process will be called the M-generalized Fleming–Viot
process with immigration. Following [5], we begin by establishing a correspondence between
some stochastic flows and M-coalescents.

5.1. Stochastic flows of distinguished bridges

By assumption, at any time the families describing the population form a distinguished
exchangeable partition. Theorem 2.1 ensures that it has a distinguished paint-box structure.
We have to study some random functions called distinguished bridges.

5.1.1. Distinguished bridges and exchangeable distinguished partitions. Considering the un-
derlying law on [0, 1] associated with an s-distinguished paint box (see Definition 2.3), we
introduce the distinguished bridges defined by

bs(r) = s0 +
∞∑
i=1

si 1{Vi≤r} +δr,

where s is a distinguished mass partition and (Vi)i≥1 is a sequence of independent uniform
variables; see Figure 1. Let U0 = 0 and (Ui)i≥1 be an independent sequence of i.i.d. uniform
variables. The partition given by i ∼ j if and only if b−1

s (Ui) = b−1
s (Uj ) is exactly the

s-distinguished paint box. When s0 = 0, the bridge encodes a paint-box partition with no
distinguished block.

Focusing on M-coalescents, we need to focus only on two types of distinguished bridges:

• bridges with distinguished mass partition (0, x, 0, . . .): b0,x(r) = x 1{V≤r} +r(1 − x),

• bridges with distinguished mass partition (x, 0, 0, . . .): bx,0(r) = x + r(1 − x).

U2

U1

U3

U4

U0 0=
0
s

bs

0 V2V1 V3 1

ss i rδb
s r( ) 0

+= � 1i=

∞
rV{ }i ≤ +

Figure 1: Distinguished bridge.
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To be concise, we will work directly with distinguished bridges of the form

by,x(r) = y + x 1{V≤r} +r(1 − x − y).

The following lemma relates the composition of distinguished bridges to the coagulation of
simple distinguished partitions.

Lemma 5.1. Let x, x′, y, y′ ∈ [0, 1] with x + y, x′ + y′ ≤ 1, and let by,x and by′,x′ be two
independent distinguished bridges.

Let π : i ∼ j if and only if b−1
y,x(Ui) = b−1

y,x(Uj ). We stress that π has at most two nontrivial
blocks.

(i) For i ≥ 1, we setU ′
i := b−1

y,x(Uj ) for all j ∈ πi . The variables (U ′
i )i≥1 are i.i.d. uniform,

independent of π .

(ii) Let π ′ be the partition constructed from by′,x′ and (U ′
i )i≥1. We denote by π0 the partition

such that i ∼ j if and only if b−1
y,x ◦ b−1

y′,x′(Ui) = b−1
y,x ◦ b−1

y′,x′(Uj ). We have the identity

π0 = Coag(π, π ′).

Proof. The proof is an easy adaptation of Lemma 4.8 of [4].

Lemma 5.1 is the key observation in order to associate a stochastic flow of distinguished
bridges, as defined below, with M-coalescents.

Definition 5.1. A flow of distinguished bridges is a collection (Bs,t , −∞ < s ≤ t < ∞) of
distinguished bridges such that

• for all s < t < u,Bs,u = Bs,t ◦ Bt,u almost surely,

• the law of Bs,t depends only on t − s, and, for any s1 < · · · < sn, Bs1,s2 , . . . , Bsn−1,sn

are independent,

• B0,0 = Id and B0,t → Id in probability when t → 0.

5.1.2. Poissonian construction of distinguished flows encodingM-coalescents. LetM0 andM1

be two independent Poissonian measures on R × [0, 1] with intensities dt ⊗ ν0(dx) and dt ⊗
ν1(dx). We suppose that ν0([0, 1])+ν1([0, 1]) < ∞ so thatNs,t := (M0 +M1)((s, t]×[0, 1])
is finite and (Nt ) = (N0,t )t≥0 is a Poisson process. Let (t0i , x

0
i ) and (t1i , x

1
i ) be the atoms ofM0

and M1 in (s, t] × [0, 1]. We define Bs,t = bx1 ◦ · · · ◦ bxK , where K = Ns,t and bx denotes
b0,x or bx,0 depending on whether x is an atom of M0 or M1. From the independence of M0

and M1 and the independence of Mi(A) and Mi(B), i = 0, 1, for A and B disjoint, (Bs,t )s≤t
is a flow in the sense of Definition 5.1.

Proposition 5.1. The process (	0(t), t ≥ 0) defined by 	0(t) : i ∼ j ⇔ B−1
0,t (Ui) =

B−1
0,t (Uj ), where B0,t = bx1 ◦ · · · ◦ bxNt , is an M-coalescent with M = (xν0(dx), x2ν1(dx)).

Proof. Lemma 5.1 implies that the process (	0(t))t≥0 corresponds to that built explicitly
in Proposition 3.2.

The next result defines stochastic flows for general measures ν0 and ν1 on [0, 1].
Theorem 5.1. Let (νn0 ) and (νn1 ) be two sequences of finite measures on [0, 1]. We call
(B

(n)
s,t , −∞ < s ≤ t < ∞) the associated flow of bridges. Assume the weak convergences
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of �n1(dx) := x2νn1 (dx) to �1(dx) := c1δ0(dx) + x2ν1(dx) and �n0(dy) := yνn0 (dy) to
�0(dy) := c0δ0 + yµ(dy).We obtain

• (B
(n)
s,t , ∞ < s ≤ t < ∞) converges, in the sense of convergence of finite-dimensional

distributions, to (Bs,t , ∞ < s ≤ t < ∞), a stochastic flow,

• the process (	0(t), t ≥ 0) defined by 	0(t) : i ∼ j ⇔ B−1
0,t (Ui) = B−1

0,t (Uj ) is an
M-coalescent with rates (�0,�1).

Proof. We denote by 	(n)(s, t) the random partition encoded by B(n)s,t . Under the previous
assumptions on ν0 and ν1, the jump rates

λ
(n)
b,k =

∫ 1

0
xk(1 − x)b−kνn1 (dx) and r

(n)
b,k =

∫ 1

0
yk(1 − y)b−kνn0 (dy)

converge:

λ
(n)
b,k → c1 1{k=2} +

∫ 1

0
xk(1 − x)b−kν1(dx) := λb,k as n → ∞,

r
(n)
b,k → c0 1{k=1} +

∫ 1

0
xk(1 − x)b−kν0(dx) := rb,k as n → ∞.

The sequence of Markov chains (	(n)| [ k ](s, t))t≥s converges in the sense of finite-dimensional
distributions to a distinguished coalescent chain, say 	0

| [ k ](s, t)t≥s . By compatibility, this
implies the convergence of finite-dimensional distributions of (	(n)(s, t))n≥1 to 	0(s, t).
According to Proposition 2.9 and Lemma 4.7 of [4] (which are easily adapted to our setting),
we obtain the convergence of the distinguished mass partitions

|	(n)(s, t)|↓ → |	0(s, t)|↓ as n → ∞
and the convergence of the bridge B(n)s,t (which has jumps of size |	(n)(s, t)|↓) to a bridge
Bs,t (which has jumps of size |	0(s, t)|↓) for all s, t ≥ 0 fixed. Thanks to the independence
of B(n)s1,s2 , . . . , B

(n)
sk−1,sk for any s1 < · · · < sk and the flow property (B(n)s,t ◦ B(n)t,u = B

(n)
s,u), the

one-dimensional convergence in distribution readily extends to finite-dimensional distributions.
The existence of the flow B is ensured by Kolmogorov’s extension theorem.

Remark 5.1. As mentioned in Section 2, we could define coalescents with several distinguished
blocks. In particular, considering distinguished bridges which jump at 0 and 1, we get a flow
coding a coalescent with two distinguished blocks and a population with two immigration
sources.

The composition of two distinguished bridges may be interpreted as the succession of two
events (reproduction or immigration) in the population. A duality method provides a continuous
population model.

5.2. The dual distinguished flow and a population model with immigration

In the same spirit of [4] and [5], we interpret the dual flow, (B̂s,t ) := (B−t,−s), in terms
of a natural model population on [0, 1) with fixed size 1. We denote by Z0

t (dr), the random
Stieljes measure of B̂0,t , i.e. Z0

t = dB̂0,t ; it defines a Markov process with values in the space
of probability measures on [0, 1) (denoted by M1). We may think of Z0

t (dr) and Z0
t ({0})

respectively as the size of the progeny at time t of the fraction dr of the initial population, and
as the size at time t of the immigrants descendants.
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The cocycle identity B̂t,u ◦ B̂s,t = B̂s,u ensures that (Z0
t ) is a continuous-time Markov chain

with the following dynamics, whenever the measures ν0 and ν1 are finite: if t is a jump time
for Z0· then the conditional law of Z0

t given Z0
t− is that of

• (1 −X)Z0
t− +XδU if t is an atom ofM1, where X is distributed as ν1(·)/ν1([0, 1]) and

U as Z0
t−,

• (1 − Y )Z0
t− + Yδ0 if t is an atom of M0, where Y is distributed as ν0(·)/ν0([0, 1]).

At a reproduction time (meaning an atom of M1) an individual picked at random in the
population at generation t− generates a proportion X of the population at time t , as for the
genuine generalized Fleming–Viot. At an immigration time (meaning an atom of M0) the
individual 0 at the time t− generates a proportion Y of the population at time t . In both cases,
the rest of the population at time t− is reduced by a factor 1 − X or 1 − Y so that, at time
t , the total size is still 1. We call this measure-valued process a generalized Fleming–Viot
process with immigration (GFVI). The genealogy of this population (which is identified as
[0, 1]) coincides with an M-coalescent. Plainly, the generator of (Z0

t , t ≥ 0) is

LG(ρ) =
∫
ν1(dx)

∫
ρ(da)[G((1 − x)ρ + xδa)−G(ρ)]

+
∫
ν0(dy)[G((1 − y)ρ + yδ0)−G(ρ)].

Thus, for any bounded function G on M1, the space of probability measures on [0, 1],

G(Z0
t )−

∫ t

0
ds

∫
ν1(dx)

∫
Z0
s (da)[G((1 − x)Z0

s + xδa)−G(Z0
s )]

−
∫ t

0
ds

∫
ν0(dy)[G((1 − y)Z0

s + yδ0)−G(Z0
s )]

is a martingale. Considering functions of the form

Gf : ρ ∈ M1 
→
∫

[0,1]p
f (x1, . . . , xp)ρ(dx1) · · · ρ(dxp) = 〈f, ρ⊗p〉

for f a continuous function on [0, 1]p, we generalize in the following lemma this result for
infinite measures.

Lemma 5.2. Assume that ν0 and ν1 have infinite masses, and that c0 and c1 are 0. We define
the operator L, acting on functions of the type Gf , by

LGf (ρ) =
∫
ν1(dx)

∫
ρ(da)[Gf ((1 − x)ρ + xδa)−Gf (ρ)]

+
∫
ν0(dy)[Gf ((1 − y)ρ + yδ0)−Gf (ρ)].

The process Gf (Z0
t )− ∫ t

0 LGf (Z
0
s ) ds is a martingale.

Proof. Consider two sequences (νn1 ) and (νn0 ) of finite measures on [0, 1). Suppose that
�n1(dx) := x2νn1 (dx) and�n0(dx) := xνn0 (dx)weakly converge to some finite measures�1(dx)
and �0(dx).
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For Gf (ρ) = ∏p
i 〈ρ, φi〉, Bertoin and Le Gall [5] obtained

∫
νn1 (dx)

∫
ρ(da)[G((1 − x)ρ + xδa)−G(ρ)]

=
∑

I⊂{1,...,p}
|I |≥2

λnp,|I |
∫
ρ(dx1) · · · ρ(dxp)[f (xI1 , . . . , xIp)− f (x1, . . . , xp)]

with (xI1 , . . . , x
I
p) = (y1, . . . , yp), where, for all i ∈ I , yi = xinf I and the values yi, i /∈ I ,

listed in the order of {1, . . . , p} \ I are the numbers x1, . . . , xinf I−1, xinf I+1, . . . , xp−|I |+1.
The assumption on ν1 ensures that the right-hand side converges to

∑
I⊂{1,...,p}

|I |≥2

λp,|I |
∫
ρ(dx1) · · · ρ(dxp)[f (xI1 , . . . , xIp)− f (x1, . . . , xp)].

It remains to study the ‘immigration’ part, that is, to establish
∫
νn0 (dy)[G((1 − y)ρ + yδ0)−G(ρ)]

=
∑

J⊂{1,...,p}
|J |≥1

rnp,|J |
∫
ρ(dx1) · · · ρ(dxp)[f (x0

1 , . . . , x
0
p)− f (x1, . . . , xp)]

with (x0
1 , . . . , x

0
p) = (z1, . . . , zp), where, for all i ∈ J , zi = 0 and the values zi, i /∈ J , listed

in the order of {1, . . . , p} \ J are the numbers x1, . . . , xinf J−1, xinf J+1, . . . , xp−|J |.
An easy calculation gives

G((1 − y)ρ + yδ0) =
p∏
i=1

[(1 − y)〈ρ, φi〉 + yφi(0)]

=
∑

J⊂{1,...,p}
(1 − y)p−|J |y|J | ∏

j /∈J
〈ρ, φj 〉

∏
j∈J

φj (0)

and then, from the identity

∏
j /∈J

〈ρ, φj 〉
∏
j∈J

φj (0) =
∫

[0,1]p
f (x0

1 , . . . , x
0
p)ρ(dx1) · · · ρ(dxp),

it follows that∫
νn0 (dy)G((1 − y)ρ + yδ0) =

∑
J⊂{1,...,p}

|J |≥1

rnp,|J |
∫
ρ(dx1) · · · ρ(dxp)f (x0

1 , . . . , x
0
p).

Moreover, by passing to the limit in n → ∞, the right-hand side converges to

∑
J⊂{1,...,p}

|J |≥1

rp,|J |
∫
ρ(dx1) · · · ρ(dxp)f (x0

1 , . . . , x
0
p).
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It follows that, for f (x1, . . . , xp) = ∏p
i φi(xi), the process

Mf (t) := Gf (Z
0
t )−

∫ t

0
LGf (Z

0
s ) ds

is a martingale, where L is the operator defined by

LGf (ρ) =
∑

I⊂{1,...,p}
|I |≥2

λp,|I |
∫
ρ(dx1) · · · ρ(dxp)[f (xI1 , . . . , xIp)− f (x1, . . . , xp)]

+
∑

J⊂{1,...,p}
|J |≥1

rp,|J |
∫
ρ(dx1) · · · ρ(dxp)[f (x0

1 , . . . , x
0
p)− f (x1, . . . , xp)].

Since any continuous function on [0, 1]p is the uniform limit of linear combinations of functions
of the previous type, we easily conclude that Mf is a martingale for any continuous function
on [0, 1]p. The statement claims that, when c0 = c1 = 0, the generator has the same integral
form as that for finite measures. We assume now that c0 and c1 are 0. Let A1, . . . , Ap be
i.i.d. variables distributed as ρ, and let x, y ∈ [0, 1]. Let (βj ) and (β ′

j ) be two sequences of
Bernoulli variables of parameters x and y. We set I := {j, βj = 1} and J := {j, β ′

j = 1}. Let
f be a continuous function on [0, 1]p. For Gf (ρ) = 〈ρ⊗p, f 〉, it is readily checked (see [8])
that∫

ρ(da)[Gf ((1 − x)ρ + xδa)−Gf (ρ)]
= E[f (AJ1 , . . . , AJp)] − E[f (A1, . . . , Ap)]
=

∑
I⊂{1,...,p}

|I |≥2

x|I |(1 − x)p−|I |
∫
ρ(dx1) · · · ρ(dxp)(f (xI1 , . . . , xIp)− f (x1, . . . , xp)),

Gf ((1 − y)ρ + yδ0)−Gf (ρ)

= E[f (A0
1, . . . , A

0
p)] − E[f (A1, . . . , Ap)]

=
∑

J⊂{1,...,p}
|J |≥1

y|J |(1 − y)p−|J |
∫
ρ(dx1) · · · ρ(dxp)(f (x0

1 , . . . , x
0
p)− f (x1, . . . , xp)).

We deduce that the process (Z0
t ) solves the following martingale problem: for any continuous

function f on [0, 1]p, Gf (Z0
t )− ∫ t

0 dsLGf (Z0
s ) is a martingale.

Proposition 5.2. The law of the process (Z0
t , t ≥ 0) is characterized by the martingale problem

of Lemma 5.2, and the operator L is an extended generator of the process (Z0
t , t ≥ 0).

Proof. We will use the same duality argument as in Bertoin and Le Gall [5]. With their
notation, we define a class of functions from M1 × P 0

p to R by

�f : (m, π) ∈ M1 × P 0
p 
→

∫
δ0(dx0)m(dx1) · · ·m(dx#π−1)f (Y (π; x1, . . . , x#π−1)),

where f is a continuous function on [0, 1]p and Y (π; x1, . . . , x#π−1) = (y1, . . . , yp) is such
that yj = xi if j ∈ πi for any i ≥ 0.
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For a fixed partition π in P 0
n , there exists a function g continuous on [0, 1]#π−1 with

µ 
→ �f (µ, π) = Gg(µ), and so L�f (µ, π) = LGg(µ) is well defined. We stress that, for
a fixed measure µ, �f (µ, ·) is a function on P 0

p . We show the following duality result:

E[�f (Z0
0,	

0(t))] = E[�f (Z0
t , 	

0
0)].

By the cocycle property of the stochastic flow involved, it suffices to focus on the process
beginning at Z0

0 = λ:

Eλ[φf (Z0
t , 0[p])] = E

[∫
[0,1]p+1

δ0(dx0) dB̂0,t (x1) · · · dB̂0,t (xp)f (x1, . . . , xp)

]

= E

[∫
[0,1]p+1

δ0(dx0) dx1 · · · dxpf (B̂
−1
0,t (x1), . . . , B̂

−1
0,t (xp))

]

= E[f (B̂−1
0,t (V1), . . . , B̂

−1
0,t (Vp))].

Here (Vi, 1 ≤ i ≤ p) are independent and uniformly distributed on [0, 1]. We define, for
1 ≤ i ≤ #	0

| [p ](t)− 1,
V ′
i := B̂−1

0,t (Vj )

for j ∈ 	0
i| [p ](t). By Lemma 5.1, (V ′

i )1≤i≤#	0
| [p ](t)−1 are uniform i.i.d., independent of	0(t),

where 	0 is an M-coalescent with rates (xν0(dx), x2ν1(dx)).
We obtain

Eλ[φf (Z0
t , 0[p ])] = E

[∫
[0,1]p+1

δ0(dx0) dx1 · · · dx#	0
| [p ](t)−1f (y1, . . . , y#	0

| [p ](t)−1)

]

with yj = xi if j ∈ 	0
i| [p ](t). Thus, we deduce the duality result

Eλ[�f (Z0
t , 0[p ])] = E[�f (λ,	0

| [p ](t))],
and so L�f (µ, π) = L∗�f (µ, π).

From Theorem 4.4.2 of [14], this implies uniqueness for the martingale problem, as well as
the strong Markov property for the solution.

Remark 5.2. In the case of a standard M-coalescent, Z0
0 is the Lebesgue measure λ, and we

have

Z0
t (dr) = |	0

0(t)|δ0(dr)+
∑
i≥1

|	0(t)|↓i δWi (dr)+
(

1 −
∑
i≥0

|	0(t)|↓i
)

dr,

where (Wi, i ≥ 1) are independent uniform and independent of 	0(t).

The extinction of the initial types corresponds to the absorption of the GFVI process
(Z0
t , t ≥ 0) at δ0. Plainly, this event occurs if and only if the measure �0 is not the zero

measure and the M-coalescent embedded is coming down from infinity. By Theorem 4.1 we
know that the coming down from infinity depends only on the measure �1. In terms of the
population model, the immigration mechanism, encoded by �0 := c0δ0 + xν0(dx), has no
impact on the extinction occurrence, provided of course that �0 is not the zero measure.
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6. Proof of Theorem 4.1

Recall the statement of Theorem 4.1. We give a proof based on martingale arguments.
For the �-coalescents (in our setting this corresponds to having �0 ≡ 0), Schweinsberg

studied the mean time of ‘coming down from infinity’ and concluded using the Kochen–Stone
lemma. The proof we give here is based on martingale arguments. To show that the convergence
of the series is sufficient for the coming down from infinity, we need to prove Lemma 6.1, which
is similar to Proposition 4.9 of [4, p. 202]. The necessary part of the proof does not follow
Schweinsberg’s ideas. Assuming that the coalescent comes down from infinity and the sum
is infinite, we will define a supermartingale (thanks to Lemmas 6.2, 6.3, and 6.4) and find a
contradiction (Lemma 6.5).

Lemma 6.1. Let (	0(t), t ≥ 0) be a (�0,�1)-coalescent, where �0 +�1 has no mass at 1.
Let us define the fixation time

ζ := inf{t ≥ 0, 	0(t) = {Z+,∅, . . .}}.
Define

φ(n) =
n∑
k=2

(k − 1)Cknλn,k +�0([0, 1])n.

Then the expectation of the fixation time is bounded by

E[ζ ] ≤
∞∑
n=1

1

φ(n)
.

As a consequence, if the series on the right-hand side converges, the fixation time is finite with
probability 1.

Proof. We will study the process of blocks which do not contain 0: for all t > 0, 	∗(t) :=
{	0

1(t), . . .}. This process is not partition valued. The jump rates of #	∗
| [ n ](t) are easily

computed: for 2 ≤ k ≤ l + 1, #	∗
| [ n ] jumps from l to l − k + 1 with rate

Ckl λl,k 1{k≤l} +Ck−1
l rl,k−1.

The first term represents the coagulation of k blocks, none of which contain 0, and the second
term represents the disappearance of k − 1 blocks (coagulation with 	0

0). We obtain the
infinitesimal generator of #	∗

| [ n ]:

G[n]f (l) =
l∑

k=2

Ckl λl,k[f (l − k + 1)− f (l)] +
l+1∑
k=2

Ck−1
l rl,k−1[f (l − k + 1)− f (l)].

We define

φ1(n) =
n∑
k=2

(k − 1)Cknλn,k and φ2(n) =
n+1∑
k=2

(k − 1)Ck−1
n rn,k−1.

Using the binomial formula, we obtain φ2(n) = �0([0, 1])n. We remark that φ1 is an
increasing function. Setting φ(n) = φ1(n) + φ2(n), and assuming the convergence of the
sum

∑∞
n=1 1/φ(n), we define

f (l) =
∞∑

k=l+1

1

φ(k)
.
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The map φ is increasing; thus, we have f (l − k + 1)− f (l) ≥ (k − 1)/φ(l), and so

G[n]f (l) ≥
l+1∑
k=2

(Ckl λl,k + Ck−1
l rl,k−1)

k − 1

φ(l)
= 1.

The process f (#	∗
| [ n ](t))− ∫ t

0 G
[n]f (#	∗

| [ n ](s)) ds is a martingale. The quantity

ζn := inf{t; #	∗
[ n ](t) = 0}

is a finite stopping time. Let k ≥ 1. Applying the optional stopping theorem to the bounded
stopping time ζn ∧ k, we obtain

E[f (#	∗
| [ n ](ζn ∧ k))] − E

[∫ ζn∧k

0
G[n]f (#	∗

| [ n ](s)) ds

]
= f (n).

With the inequality G[n]f (l) ≥ 1, we deduce that

E[ζn ∧ k] ≤ E[f (#	∗
| [ n ](ζn ∧ k))] − f (n).

By monotone convergence and Lebesgue’s theorem, we have E[ζn] ≤ f (0) − f (n). Passing
to the limit in n, we have ζn ↑ ζ∞ := inf{t; #	(t) = 1} and f (n) → 0; thus,

E[ζ∞] ≤ f (0) =
∞∑
k=1

1

φ(k)
.

By simple series comparisons, we deduce the sufficient part of the theorem. Plainly, φ(n) ≥
φ1(n), and if the series

∑∞
n=1 1/φ1(n) converges then, by Lemma 6.1, theM-coalescent comes

down from infinity.
To show that the convergence of the series is necessary for the coming down, we must look

more precisely at the behaviour of the jumps. The following technical lemmas show that, when
a distinguished coalescent comes down from infinity, there is a finite number of jumps which
decrease by half or more the number of blocks. Lemma 6.3 will allow us to study the process of
the number of blocks before the first of these times. Assuming that the sum

∑∞
n=2 1/φ(n) = ∞

is infinite, we will define a supermartingale in Lemma 17 and find a contradiction by applying
the optional stopping theorem.

We have already seen that, as for the �-coalescent, a way to understand the dynamics of
a (�0,�1)-coalescent, when �0 and �1 have no mass at 0, is to imagine drawing an infinite
sequence of Bernoulli variables at each jump time, with parameter x controlled by the measures
ν0(dx) = x−1�0(dx) and ν1(dx) = x−2�1(dx). The following technical lemma allows us to
estimate the chance for a Bernoulli vector to have more than half of its terms equal to 1.

Lemma 6.2. Let (X1, X2, . . .) be independent Bernoulli variables with parameter x ∈ [0, 1
4 ).

Defining S(x)n = X1 + · · · +Xn, for every n0, there is the bound

P

[
there exists n ≥ n0, S

(x)
n >

n

2

]
≤ exp(−n0f (x))

1 − exp(−f (x))
with f (x) ∼ 1

2 log(1/x) when x → 0.
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Proof. By Markov’s inequality, for all t > 0,

P

[
S(x)n ≥ n

2

]
≤ e−nt/2 E[etS(x)n ] = exp

(
− n

[
t

2
− log(xet + 1 − x)

])
.

Applying this inequality for t = log(1/x), we obtain P[S(x)n ≥ n/2] ≤ e−nf (x), where

f (x) = 1

2
log

(
1

x

)
− log(2 − x).

The function f is nonnegative on (0, 1
4 ), and so we obtain the convergence of the geometric

sum

P

[
there exists n ≥ n0, S

(x)
n >

n

2

]
≤

∑
n≥n0

exp(−nf (x)) = exp(−n0f (x))

1 − exp(−f (x)) .

Moreover, we have f (x) ∼ 1
2 log(1/x) as x → 0+.

Lemma 6.3. Assume that the M-coalescent comes down from infinity. With probability 1, we
have

τ := inf

{
t > 0, #	0(t) <

#	0(t−)
2

}
> 0.

Moreover, if we define τn := inf{t > 0, #	0
| [ n ](t) < #	0

| [ n ](t−)/2} then the sequence of
stopping times τn converges to τ almost surely.

Proof. Obviously, binary coagulations play no role in the statement and we may assume that
�0({0}) = 0 and�1({0}) = 0. LetN be a Poisson measure with intensity dt ⊗ (x−1�0(dx)+
x−2�1(dx)). Recall the notation in Lemma 6.2. Let n0 ≥ 4. We will show that

N

({
(t, x); t ≤ 1; there exists n ≥ n0, S

(x)
n ≥ n

2

})
< ∞.

By Proposition 4.1, #	0(ε) < ∞ almost surely for every ε > 0. We will then deduce that there
is a finite number of jump times before 1 where more than half of the blocks coagulate. By
the Feller property and, therefore, the regularity of the paths of (	0(t))t≥0, 	0(0+) = 	0(0)
and 0 is not a jump time; then, almost surely, τ > 0. Moreover, #	0(τ−) < ∞ and so, for all
n ≥ #	0(τ−), τn = τ . We deduce that τn → τ as n → ∞ almost surely.

By Poissonian calculations, we obtain

E

[
N

({
(t, x); t ≤ 1; there exists n ≥ n0, S

(x)
n >

n

2

})]

=
∫ 1

0
(ν0 + ν1)(dx)P

[
there exists n ≥ n0, S

(x)
n >

n

2

]
.

By Lemma 6.2 we obtain

∫ 1

0
(ν0 + ν1)(dx)P

[
there exists n ≥ n0, S

(x)
n >

n

2

]

≤
∫ 1/4

0
(ν0 + ν1)(dx)

exp(−n0f (x))

1 − exp(−f (x)) +
∫ 1

1/4
(ν0 + ν1)(dx).
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On the one hand, ∫ 1/4

0
(ν0 + ν1)(dx)

exp(−n0f (x))

1 − exp(−f (x)) < ∞
because the integrand is bounded by 8xn0/2 and n0 ≥ 4. On the other hand,

∫ 1

1/4
(ν0 + ν1)(dx) ≤

∫ 1

1/4
x−2x2(ν0 + ν1)(dx) ≤ 16

∫ 1

0
x2(ν0 + ν1)(dx) < ∞.

This completes the proof.

Assuming that the coalescent comes down from infinity and that
∑
n≥1 1/φ(n) = ∞, we

can define a supermartingale. We will find a contradiction using the optional stopping theorem.
We define the decreasing function

f (n) = exp

(
−
n+1∑
k=1

1

φ(k)

)
,

where φ(n) = φ1(n)+ φ2(n), with φ1(n) and φ2(n) defined as in Lemma 6.1.

Lemma 6.4. There exists a constant C > 0 such that, for all n ≥ 1, (e−Ctf (#	∗|[n](t)))t≤τn is
a nonnegative supermartingale.

Proof. We recall that the generator of (#	∗
| [ n ](t))t≥0 is

G[n]g(l) =
l+1∑
k=2

[Ckl 1{k≤l} λl,k + Ck−1
l rl,k−1][g(l − k + 1)− g(l)].

Stopping the process at τn, the jump times where more than half of the blocks coagulate are
ignored, and the generator of the stopped process is

A[n]g(l) =
l/2+1∑
k=2

[Ckl 1{k≤l/2} λl,k + Ck−1
l rl,k−1][g(l − k + 1)− g(l)].

We set�(n) = ∫ 1
0 (e

−nx − 1 + nx)ν1(dx). An easy verification allows us to claim the existence
of a c > 0 such that c�(q) ≤ φ1(q) ≤ �(q) (see the remark on page 170 of [7]); moreover,

�(q)

q
=

∫ 1

0
(1 − e−qx)ν1((x, 1)) dx →

∫ 1

0
xν1(dx) > 0 as q → ∞.

Plainly, h(q) = �(q)/q is a concave function, so h(q/2) ≥ h(q)/2 and �(q/2) ≥ �(q)/4.
Let us compute

A[n]f (l) =
l/2+1∑
k=2

[Ckl 1{k≤l/2} λl,k + Ck−1
l rl,k−1]f (l)

[
exp

( l∑
l−k+2

1

φ(j)

)
− 1

]
.

We have
l∑

l−k+2

1

φ(j)
≤ k − 1

φ(l − k + 2)
≤ k − 1

φ(l/2)
for all k ≤ l

2
+ 1,
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and ex − 1 ≤ cx for small x. Then, for large l,

A[n]f (l) ≤ cf (l)

l/2+1∑
k=1

[Ckl λl,k + Ck−1
l rl,k−1] k − 1

φ(l/2)
.

Thus, A[n]f (l) ≤ cf (l)φ(l)/φ(l/2).
By definition, φ(l) = φ1(l) + �0([0, 1])l. Moreover, l/φ1(l) is bounded (it converges to

(
∫
[0,1] xν1(dx))−1) and, from the inequalities

c�(l)

l
≤ φ1(l)

l
≤ �(l)

l
and �

(
l

2

)
≥ �(l)

4
,

we deduce that, for some constant C > 0,

φ(l)

φ(l/2)
≤ φ1(l)+�([0, 1])l

φ1(l/2)

= φ1(l)

φ1(l/2)
+ (�0([0, 1])) l

φ1(l)

φ1(l)

φ1(l/2)

≤ 4

c

[
1 +�0([0, 1]) l

φ1(l)

]

≤ C.

Therefore, A[n]f (l) ≤ Cf (l) and (e−Ctf (#	∗|[n](t)))t≤τ is a supermartingale.

Lemma 6.5. If
∑
n≥1 1/φ(n) = ∞ then 	0 does not come down from infinity.

Proof. Assume that the M-coalescent comes down from infinity. By Proposition 4.1 we
know that T = 0 almost surely. Let T (n)j := inf{t > 0; #	∗|[n](t) ≤ j}. We apply to the
previous supermartingale, the optional stopping theorem at time T (n)j ∧ τn and obtain

E[exp(−cT (n)j ∧ τn)f (#	∗|[n](τn ∧ T (n)j ))] ≤ f (n).

Passing to the limit with n ↑ ∞, f (n) → 0, T (n)j ↑ Tj , and τn → τ > 0 (by Lemma 6.3).
The time Tj is strictly positive for some j . Then τ ∧ Tj > 0, #	∗(τ ∧ Tj ) < ∞, and, thus,
f (#	∗(τ ∧ Tj )) > 0 almost surely. We have

E[exp(−cTj ∧ τ)] = 0.

Then Tj = ∞ almost surely, which is not possible on T < ∞.

It remains to establish that the convergence of the series is necessary for the coming down
from infinity. When �0({0}) = 0, the previous lemma claims that if the M-coalescent comes
down from infinity then

∑
n≥1 1/φ(n) < ∞. It suffices to show that

∑
n≥2

1

φ1(n)+�0([0, 1])n < ∞ �⇒
∑
n≥2

1

φ1(n)
< ∞.

The sequence (�(n)/n)n≥1 is increasing and tends to
∫ 1

0 x
−1�1(dx) (possibly infinite). From

the inequality c�(n)/n ≤ φ1(n)/n ≤ �(n)/n, we find that n/φ1(n) is bounded. It follows
that

1

φ1(n)+�0([0, 1])n = 1

φ1(n)(1 +�0([0, 1])n/φ1(n))
≥ c

1

φ1(n)

for some constant c > 0.
We then get the necessary part, and combining the results, Theorem 4.1 is deduced.
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