VOL. 13 (1975), 429-437.

On a system of Feferman

Luiz Paulo de Alcantara

Abstract

A system of set theory which appears as an extension of Ackermann set theory is introduced. In this sytem we construct a syntactic model for a theory proposed by Feferman for the development of category theory.

Feferman introduced in [1] a system of axiomatic set theory. In this paper we consider a theory T, which can be viewed as an extension of Ackermann set theory (see, for example, [4]). Our main result is the construction in T of a syntactic model for the system of Feferman. We shall use freely the terminology and notation of Feferman [1].

1. Feferman's system

The set theory of Feferman, $\mathrm{ZF} / \underline{s}$, is formulated in a first order language, $L_{\underline{s}}$, obtained by adding to. L a constant symbol \underline{s}.

The axioms are taken to consist of the following (in the basic symbolism of L_{s})
(1) the axioms of ZF ,
(2) $\exists x(x \in \underline{s})$,
(3) $\forall x, y(y \in x \wedge x \in \underline{s} \rightarrow y \in \underline{s})$,
(4) $\forall x, y(x \in \underline{s} \wedge \forall z(z \in y \rightarrow z \in x) \rightarrow y \in \underline{s})$,
(5) $\forall x \in \underline{s}\left(\varphi \underline{(}^{(s)}(x) \leftrightarrow \varphi(x)\right)$, for each formula φ of L with free variables X.

Received 9 September 1975. The author is indebted to Professor T. Lucas of Louvain-la-Neuve for several comments and suggestions.
(5) is a reflexion principle. What it means is the following:
suppose (M, E, s) is a model of $2 F / \underline{s}$; define $M_{s}=\{x \mid x \in M$ and $x E s\}$, and say $x E_{s}^{y}$ if and only if $x, y \in M_{s}$ and $x E y$. Then (M, E) is an elementary extension of $\left(M_{s}, E_{s}\right)$.

2. The system T

The language L_{u} of T is obtained by adding to L a constant symbol u.

The axioms are the universal closures of
(TI) $(\forall t)(t \in x \leftrightarrow t \in y) \rightarrow x=y$,
(T2) ($\exists t)(t \in u)$,
(T3) $(\forall x)(\exists y)(\forall t)(t \in y \leftrightarrow t \in x \wedge \varphi)$ where φ is a formula of L_{u} with free variables among t, x,
(T4) $y \in x \wedge x \in u \rightarrow y \in u$,
(T5) $x \in u \wedge(\forall t)(t \in y \rightarrow t \in x) \rightarrow y \in u$,
(т6)
$(\forall x)(x \in u \wedge(\exists x)(\forall t)(\varphi(x, t)) \rightarrow t \in x) \rightarrow$ $(\exists z)(z \in u \wedge(\forall t)(\varphi(x, t) \rightarrow t \in z))$, for each formula φ of L with free variables t, x.

Let $\operatorname{Rn}(x, y)$ be the formula
$\operatorname{Ord}(x) \wedge(\exists z)((\forall w)(w \in x \rightarrow(\exists v) \mathrm{Rl}(w, v, z))$
$(\forall w, v)\left((w \in x \wedge \operatorname{Ri}(w, v, x)) \vee(w=x \wedge v=y) \rightarrow(\forall t)\left(t \in v \leftrightarrow\left(\exists w^{\prime}, v^{\prime}\right)\right.\right.$ $\left.\left.\left.\left(w^{\prime} \in w \wedge \operatorname{RI}\left(w^{\prime}, v^{\prime}, z\right) \wedge t \subset v^{\prime}\right)\right)\right)\right)$,
where $\mathrm{Rl}(x, y, z)$ is the formula

$$
(\exists v)(v=(x, y) \wedge v \in z)
$$

(T7) $\quad(\forall x)(\exists \beta)(\exists y)(\operatorname{Rn}(\beta, y) \wedge x \in y)$.
If we interpret u as the class of all sets of Ackermann, we can easily show that in T the axioms of A hold (for the axioms of A see Reinhardt [4]).

DEFINITION 1. Let φ be a sentence of A. The u-transform of φ in T, φ_{u}, is obtained by replacing in φ every part of the form $x \in M$ by $x \in u$.

THEOREM 1. If φ is a theorem of A then φ_{u} is a theorem of T.
Proof. It is enough to show that the u-transforms of the axioms of A are theorems in T.

Trivially we have $(\mathrm{Al})_{u},(\mathrm{~A} 2)_{u}$, and $(\mathrm{A} 3)_{u}$.
The u-transform of (A4) is
$(\forall x \in u)((\forall t)(\varphi(t) \rightarrow t \in u) \rightarrow(\exists z)(z \in u \wedge(\forall t)(t \in z \leftrightarrow \varphi(t))))$.
Taking $x=u$, by (T6) we have
$(\exists z)(z \in u \wedge(\forall t)(\varphi(t) \rightarrow t \in z))$.
Let $w=\{t \mid t \in u \wedge \varphi(t)\} . w \subset z$ and $z \in u$, so $w \in u$ and $(\forall t)(\varphi(t) \leftrightarrow t \in w)$.

As for Ackermann set theory, u cannot be defined in T, using the language L, that is, if $\varphi(t, x)$ is a formula of L we can show that

$$
\sim(\exists x)(x \in u \wedge(\forall t)(t \in u \leftrightarrow \varphi(t, x)))
$$

In fact, suppose

$$
(\forall t)(t \in u \leftrightarrow \varphi(t, x)) \text { and } x \in u
$$

By (T6),

$$
(\exists z)(z \in u \wedge \forall t(t \in z \leftrightarrow \varphi(t, x)))
$$

By (T1), $z=u$ and then $u \in u$. By (T3),
$(\exists y)(\forall t)(t \in y \leftrightarrow t \in u \wedge t \vDash t)$,
and we have $y \subset u$. Then $y \in u$ and we obtain a contradiction, $y \in y \leftrightarrow y \neq y$.

DEFINITION 2. Let $M=(M, U, R)$ be a model of T. We say that $A \subset M$ is definable in (M, B) if and only if there is a formula $\varphi(v, x)$ of L and elements b of B such that for every $t \in M$, $t \in A \leftrightarrow M \neq \varphi(t, b)$; that is,

$$
A=\{t \in M \mid M \models \varphi(t, \mathbf{b})\}
$$

THEOREM 2. If $M=(M, U, R)$ is a model of T, then U is not definable in (M, U).

Proof. Suppose U is definable. Then there exists a formula $\varphi(v, x)$ of L and elements b of U such that for every $t \in M$,

$$
\begin{equation*}
t \in U \leftrightarrow M \models \varphi(t, \mathrm{~b}), \tag{6}
\end{equation*}
$$

that is $U=\{t \in M \mid M \models \varphi(t, b)\}$. Hence,

$$
M \vDash \mathrm{~b} \in u \wedge(\forall t)(\varphi(t, \mathrm{~b}) \rightarrow t \in u)
$$

Since $M F(T 6)$,

$$
M \vDash \exists z(z \in u \wedge \forall t(t \in z \leftrightarrow \varphi(t, b))) .
$$

Hence there is $y \in U$ such that for every $t \in M$,

$$
t \in y \leftrightarrow M \vDash \varphi(t, \mathrm{~b}) .
$$

Since $M \neq$ (TI) , by (6) we have $y=U$ and $U \in U$.
We construct now in T a syntactic model of $2 F / \underline{s}$.
DEFINITION 3. Let φ be a sentence of $\mathrm{ZF} / \underline{s}$. The u-transform of φ in T, φ_{u}, is obtained replacing in φ every part of the form $x \in \underline{s}$ by $x \in u$.

THEOREM 3. If φ is a theorem of $\mathrm{ZF} / \underline{s}$, then φ_{u} is a theorem of T.

We need a lemma.
LEMMA 1.
(a) $\operatorname{Rn}(\alpha, y) \wedge \operatorname{Rn}\left(\alpha, y^{\prime}\right) \rightarrow y=y^{\prime}$;
(b) $\mathrm{Rn}(\alpha, y) \rightarrow \mathrm{Sc}(y)$;
(c) $\alpha \in u \wedge y \in u \rightarrow(\operatorname{Rn}(\alpha, y) \leftrightarrow y=R(\alpha))$;
(d) $(\forall \alpha \in u)(\exists y \in u) \operatorname{Rn}(\alpha, y)$;
(e) $(\forall \alpha)(\exists y) \operatorname{Rn}(\alpha, y)$.

All (a)-(e) can be proved in A (see Lévy [2] and Lévy and Vaught [3]), so, by Theorem 1, also in T.

Proof of Theorem 3. It is enough to show in T the u-transforms of the axioms of $\mathrm{ZF} / \underline{\text { s }}$.

Trivially we have $(2)_{u},(3)_{u}$, and (4) ${ }_{u}$.
The u-transform of (5) is

$$
\left.(\forall x)\left(x \in u \rightarrow\left(\varphi^{(u)}(x)\right) \leftrightarrow \varphi(x)\right)\right)
$$

If φ has no quantifiers then $\varphi^{(u)}$ is simply φ.
Assume φ of the form $\exists t \psi$, where ψ is a formula of L with free variables t, x. So we have to show that

$$
(\forall x)(x \in u \wedge(\exists t) \psi \rightarrow(\exists t \in u) \psi)
$$

Assume the hypothesis. By (T7) there exists β and z such that $\operatorname{Rn}(\beta, z), \quad t \in z$ and ψ. Also by (T7) there exists α and y such that $\operatorname{Rn}(\alpha, y)$ and $z \in y$. Let $a=\{x \mid \operatorname{Rn}(\alpha, y) \wedge x \in y \wedge \Phi(x)\}$, where $\Phi(x)$ is the formula $(\exists \gamma)(\operatorname{Rn}(\gamma, x) \wedge(\exists t \in x) \psi)$.

Since $z \in y, \operatorname{Rn}(\beta, z)$, and $\Phi(z), a$ is not empty. Therefore, there exists $b \in a$ such that
(i) $(\forall x)(x \in a \rightarrow x \notin b)$.

For b we can prove
(ii) $(\forall x)(x \in a \rightarrow b \subset x)$.

In fact, since $b \in a, b \subset x$ or $x \subset b$. But if $x \subset b$, we have $x \in b$ because $\Phi(x)$, which contradicts (i). b is the set of elements v such that for all $x, \Phi(x)$ implies $v \in x$; that is,
(iii) $\forall v(v \in b \leftrightarrow \forall x(\Phi(x) \rightarrow v \in x))$.

In fact, if $\forall x(\Phi(x) \rightarrow v \in x)$, then $v \in b$, since $b \in a$, and then $\Phi(b)$.

Conversely, suppose $v \in b$ and $\Phi(x)$. We have $x \subset z$ or $z \subset x$.
If $x \subset z \in y$ then $x \in y$ and $x \in a$. By (i), $b \subset x$ and then $v \in x$. If $z \subset x$, since $z \in a$, by (ii), $b \subset z \subset x$ and then $v \in x$.

Finally we apply (T6) to the formula

$$
(\forall x)(\Phi(x) \rightarrow t \in x)
$$

By (iii), $t \in b$, and then

$$
(\exists z)(z \in u \wedge(\forall t)((\forall x)(\Phi(x) \rightarrow t \in x) \rightarrow t \in z))
$$

By $(T 4), b \subset z \subset u$ and $t \in u$.
It remains to show that the axioms of ZF are provable in \mathbb{T}. It is enough to show their relativizations.

The extensionality axiom follows from (Tl).
The empty set axiom follows from (T2) and (T5).
The unordered pairs axiom: let φ be the formula $t=a \vee t=b$. φ implies $t \in u$. By (T3) there exists y such that $y=\{t \mid \varphi\}$. By (T6) there exists $z \in u$ such that $y \subset z$. Therefore, by (T5), $y=\{a, b\} \in u$.

The union set axiom: let φ be the formula $t \in a \wedge a \in b$. We have $\varphi \rightarrow t \in u$ and there exists y such that $y=\{t \mid \varphi\}$. By (T6) there exists $z \in u$ such that $y \subset z$. By (T5), $y=U b \in u$.

The power set axiom: let φ be the formula $t \subset \alpha$. φ implies $t \in u$ and there exists y such that $y=\{t \mid \varphi\}$. Therefore there exists $z \in u$ such that $y \subset z$. So we have $y=P a \in u$.

The axiom of infinity: let $\varphi(z)$ be the formula

$$
(\forall y)(0 \in y \wedge \forall t(t \in y \rightarrow t \cup\{t\} \in y) \rightarrow z \in y)
$$

$\varphi(z)$ implies $z \in u$, since $0 \in u$ and $\forall t(t \in u \rightarrow t \cup\{t\} \in u)$. Then there exists $w \in u$ such that $w=\{z \mid \varphi(z)\}$. This w can be easily seen to be as required by the axiom of infinity.

The replacement axiom schema: the relativization of the replacement axioms is as follows, for any formula φ of L with free variables x, y, α, z in all:
$\forall a, z \in u\left(\forall x, y_{1}, y_{2} \in u\left(\varphi^{(u)}\left(x, y_{1}\right) \wedge \varphi^{(u)}\left(x, y_{2}\right) \rightarrow y_{1}=y_{2}\right)\right) \rightarrow$ $(\exists b \in u)(\forall y \in u)\left(y \in b \leftrightarrow \exists x\left(x \in a \wedge \varphi^{(u)}(x, y)\right)\right)$.

Let ψ be the formula

$$
\begin{aligned}
\left(\forall x, y_{1}, y_{2}\right)\left(\varphi\left(x, y_{1}\right) \wedge \varphi\left(x, y_{2}\right) \rightarrow\right. & \left.y_{1}=y_{2}\right) \rightarrow \\
& (\exists b)(\forall y)(y \in b \leftrightarrow \exists x(x \in a \wedge \varphi(x, y))) .
\end{aligned}
$$

By (5) u we have
(i) $z, x, y \in u \rightarrow\left(\varphi \leftrightarrow \varphi^{(u)}\right)$, and
(ii) $z, x \in u \rightarrow\left(\exists y \varphi \leftrightarrow(\exists y \in u) \varphi^{(u)}\right)$.

Then,
(iii) z, $x \in u \rightarrow(\exists y \varphi \leftrightarrow(\exists y \in u) \varphi)$.

Let φ be a function and $b=\{y \mid \exists x \in a \varphi(x, y)\}$. By (iii), $b \in u$ since $a \subset u$ and then $x \in u$. Therefore

$$
z, a \in u \rightarrow \psi .
$$

But, by (5) ${ }_{u}, z, a \in u \rightarrow\left(\psi \leftrightarrow \psi^{(u)}\right)$. Then $z, a \in u \rightarrow \psi^{(u)}$ and this completes the proof.

The foundation axiom follows from (T7) and Lemma 1. The proof is now complete.

Consider the theory T ' obtained from T by replacing ($T 3$) by
(T3)' $(\forall x)(\forall x)(\exists y)(\forall t)(t \in y \leftrightarrow t \in x \wedge \varphi(t, x))$, for each formula φ of L with free variables t, x.

In $Z F / \underline{s}$ we can construct a syntactic model of T^{\prime}.
DEFINITION 4. Let φ be a sentence of T^{\prime}. The s-transform of φ in $\mathrm{ZF} / \underline{s}, \varphi_{\underline{s}}$, is obtained replacing in φ every part of the form $x \in u$ by $x \in \underline{s}$.

THEOREM 4. If φ is a theorem of T^{\prime}, then $\underline{\varphi}_{\underline{s}}$ is a theorem of ZF/s.

Proof. It is enough to show in $2 F / \underline{s}$ the \underline{s}-transforms of the axioms of T^{\prime}.

Evidently we have (T1) $\underline{s},{ }^{(T 2)} \underline{\underline{s}},{ }^{(T 3)} \underline{s}^{\prime},{ }^{(T 4)} \underline{s}$, and (T5) \underline{s}. We show (T6) ${ }_{\underline{s}}$; that is
$(\forall \mathrm{x})((\mathrm{x} \in \mathrm{s} \wedge(\exists x)(\forall t)(\varphi(t, \mathrm{x})) \rightarrow t \in x)) \rightarrow$

$$
(\exists z)(z \in s \wedge(\forall t)(\varphi(t, x) \rightarrow t \in z)) .
$$

Assume the hypothesis. Let ψ be the formula

$$
(\forall t)(\varphi(x, t) \rightarrow t \in x) .
$$

By (5),

$$
\mathrm{x} \in \underline{s} \rightarrow\left((\exists x)(\forall t)(\varphi \rightarrow t \in x) \leftrightarrow(\exists x \in \underline{s})(\forall t \in \underline{s})\left(\varphi{ }^{(\underline{s})} \rightarrow t \in x\right)\right) .
$$

Hence
(i) $(\exists x \in \underline{s})(\forall t \in \underline{s})\left(\varphi^{(\underline{s})} \rightarrow t \in x\right)$.

We also have
(ii) $\quad(\forall t \in \underline{s})\left(\varphi^{(\underline{s})} \rightarrow t \in x\right)$.

Since $x \in \underline{s}$ and $x \in \underline{s}$,
(iii) $\psi \leftrightarrow \psi^{(s)}$.

Then by (ii) we obtain ψ and this completes the proof.
Finally we show $(T 7)_{\underline{s}}$.
Let $\sigma=\{\alpha \mid \alpha \in \underline{s} \wedge \operatorname{Ord}(\alpha)\}$. Then σ is an ordinal and is the least one not in s. Moreover, σ is a limit ordinal with $\sigma>\omega$, and furthermore we have $\underline{s}=R(\sigma)$.

$(T 7)_{\underline{s}}^{(\underline{s})} \quad \forall x \in \underline{s} \exists y \in \underline{s} \exists z \in \underline{s}(\operatorname{Rn}(y, z) \wedge x \in z)$, and this follows from Lemma 1 and the fact that $\underline{s}=R(\sigma)$.

The proof is now complete.

References

[1] Solomon Feferman, "Set-theoretical foundations of category theory", Reports of the Midwest Category Seminar III, 201-232 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
[2] Azriel Lévy, "On Ackermann's set theory", J. Symbolic Logic 24 (1959), 154-166.
[3] A. Lévy and R. Vaught, "Principles of partial reflection in the set theories of Zermelo and Ackermann", Pacific J. Math. 11 (1961), 1045-1062.
[4] William N. Reinhardt, "Ackermann's set theory equals ZF", Ann. Math. Logic 2 (1970), 189-249.

Institut de Mathématiques,
Université de Louvain,
Belgium;
Instituto de Matemática,
Universidade Estadual de Campinas, Brasil.

