Canad. Math. Bull. Vol. 14 (3), 1971

ON MAXIMAL SETS OF MUTUALLY ORTHOGONAL IDEMPOTENT LATIN SQUARES

BY

N. S. MENDELSOHN

It is a well-known trivial fact that for a given integer n there exists at most n-2 pairwise orthogonal idempotent latin squares. In the following note we prove that for n a prime power there always exists n-2 such squares.

THEOREM. Let $n=p^r$ be a prime power. Then there exist n-2 pairwise orthogonal idempotent latin squares.

Proof. The latin squares will be represented as multiplication tables of idempotent quasigroups. The elements of the quasigroups will be those of $GF(p^r)$ and the *i*th quasigroup will have its multiplication given by $A *_i B = iA + (1-i)B$. Here A and B range over $GF(p^r)$ and *i* takes on all values in $GF(p^r)$ except 0 and 1.

In order to show that $*_i$ and $*_j$ are orthogonal operations it is simply necessary to show that the equations $X *_i Y = A$ and $X *_j Y = B$ have unique solutions for X and Y where A and B are given elements of $GF(p^r)$ and $i \neq j$.

But these equations become iX+(1-i)Y=A and jX+(1-j)Y=B with determinant i-j. Hence they have a unique solution.

UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA