ON MAXIMAL SETS OF MUTUALLY ORTHOGONAL IDEMPOTENT LATIN SQUARES

BY
\section*{N. S. MENDELSOHN}

It is a well-known trivial fact that for a given integer n there exists at most $n-2$ pairwise orthogonal idempotent latin squares. In the following note we prove that for n a prime power there always exists $n-2$ such squares.

Theorem. Let $n=p^{r}$ be a prime power. Then there exist $n-2$ pairwise orthogonal idempotent latin squares.

Proof. The latin squares will be represented as multiplication tables of idempotent quasigroups. The elements of the quasigroups will be those of $G F\left(p^{r}\right)$ and the i th quasigroup will have its multiplication given by $A *_{i} B=i A+(1-i) B$. Here A and B range over $G F\left(p^{r}\right)$ and i takes on all values in $G F\left(p^{r}\right)$ except 0 and 1.

In order to show that $*_{i}$ and $*_{j}$ are orthogonal operations it is simply necessary to show that the equations $X *_{i} Y=A$ and $X *_{j} Y=B$ have unique solutions for X and Y where A and B are given elements of $G F\left(p^{r}\right)$ and $i \neq j$.

But these equations become $i X+(1-i) Y=A$ and $j X+(1-j) Y=B$ with determinant $i-j$. Hence they have a unique solution.

