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R factors in Rietveld analysis: How good is good enough?
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The definitions for important Rietveld error indices are defined and discussed. It is shown that while
smaller error index values indicate a better fit of a model to the data, wrong models with poor quality
data may exhibit smaller values error index values than some superb models with very high quality

data. © 2006 International Centre for Diffraction Data. �DOI: 10.1154/1.2179804�
I. INTRODUCTION

People mastering Rietveld refinement techniques com-
monly ask the same questions: What do the various Rietveld
discrepancy values, i.e., goodness-of-fit, �2, and R factors
mean? Also, which ones are most important? Finally, what
values allow one to distinguish good refinements from poor
ones? These questions are also important to people who re-
view Rietveld results, as well as individuals trying to decide
if the results in a paper are likely to be trustworthy. These
discrepancy values are only one criterion for judging the
quality of Rietveld fits; of greater importance is the “chemi-
cal reasonableness” of the model. Also, as will be discussed
further, graphical analysis of a fit is very valuable.

In this article, I will explain how several of the most
important of these discrepancy terms arise, what they mean,
and what they measure, as well as slipping in a few of my
own opinions—which may not be universally held in the
field. But to start with the last question, there is no simple
way to distinguish a good fit from one that is just plain
wrong based on R factors or other discrepancy values. A
large number of Rietveld indices have been proposed, but I
have yet to see one that can be used as an absolute measure
of refinement quality. The reason for this should be clear by
the end of this article, but to get started, let’s define the
concepts needed for this discussion. In the following para-
graphs, when a term is first defined, it is presented in bold
face to make the definition easier to see.

Diffraction data are a set of intensity values measured at
a set of specific momentum transfer �Q� values, which are
usually expressed as 2� settings. It should be noted that dif-
fraction measurements can also be made with fixed 2� while
the wavelength varies, for example, in time-of-flight or
energy-dispersive diffraction. However, for convenience, I
will assume that data are collected as a function of 2� for this
paper. By convention, the intensity values are labeled yO,i,
where O indicates these are observed values and i indicates
the intensity was measured at 2� value 2�i. To perform
Rietveld analysis, we must have an uncertainty estimate for
yO,i, which I will label �[yO,i]. In the past, this was called
the estimated standard deviation �esd�, but crystallographic
convention now uses the term standard uncertainty �s.u.�
for this �Schwartzenbach et al., 1995, 1996�. The meaning of
�[yO,i] is that if we knew the “true” value for this intensity,
which I will label yT,i, say, by measuring it an infinite num-
ber of times, then on average yO,i will be ±��yO,i� of yT,i.
Another way to express this is that ��yO,i− �yO,i��2�
=�2�yO,i�, where � � indicates the expected value. When in-

tensities are measured by directly counting individual pho-
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tons or neutrons arriving at the detector, e.g., pulse counting,
then yO,i=�2�yO,i�. In cases where intensity values incorpo-
rate implicit scaling factors, the s.u. must be computed from
the number of counts and then be scaled by the same factor
as the intensity. �If yO,i=sIO,i, where IO,i is the actual number
of counts, then s2IO,i=�2�yO,i�.� Examples where this is
needed include the use of variable counting times or scaling
by a monitor detector or from instruments that report counts
per second. Estimation of experimental uncertainties can be
quite difficult for detectors that do not directly count quanta,
e.g., charge coupled detectors, image plates, or energy-
dispersive detectors that automatically correct for detector
dead time.

II. MODEL ASSESSMENT

In Rietveld analysis, we fit a model to the data. If the
model is correct then it will predict what the “true” intensity
values should be. The intensity values simulated from the
model will be labeled as yC,i, where the C indicates they are
computed from the model. The Rietveld algorithm optimizes
the model function to minimize the weighted sum of squared
differences between the observed and computed intensity
values, i.e., to minimize �iwi�yC,i−yO,i�2 where the weight,
labeled as wi, is 1 /�2�yO,i�. Other weighting schemes can be
used, but when errors are purely statistical in nature, the
smallest uncertainties in the fit parameters are obtained
where wi=1/�2�yO,i� �Prince, 2004; David, 2004�. The most
straightforward discrepancy index, the weighted profile
R-factor �Rwp�, follows directly from the square root of the
quantity minimized, scaled by the weighted intensities: Rwp

2

=�iwi�yC,i−yO,i�2 /�iwi�yO,i�2 �Young, 1993�.
As a thought experiment, what happens if we have the

ideal model, one which accurately predicts the true value for
each yO,i value? In that case, the average value of �yC,i

−yO,i�2 will be equal to �2�yO,i�, and the expected value of
wi�yC,i−yO,i�2 is one. The that one would obtain with this
ideal model is thus the best possible value that can ever be
obtained for that set of data, provided that the ��yO,i� values
are correct. This “best possible Rwp” quantity is a very useful
concept and is called the expected R factor �Rexp�. Using N
as a label for the number of data points, Rexp

2

=N /�iwi�yO,i�2 �Young, 1993� �The purist may note that in
fact N should be the number of data points less the number
of varied parameters, a quantity that statisticians call “de-
grees of freedom”, but is better considered as the amount of
statistical overdetermination; for powder diffraction, the

number of data points had better be sufficiently larger than
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the number of varied parameters such that the subtraction of
the latter can be safely ignored.�.

A related statistical concept is that of “Chi squared” or
�2. This can be thought about by again considering that the
expected value for �yC,i−yO,i�2 /�2�yO,i� will be one, when
the model is ideal and s.u. values are correct. The �2 term
is then defined as the average of these values
�2= �1/N��i�yC,i−yO,i�2 /�2�yO,i� �Young, 1993�. Note that
�2 can also be determined from the expected and weighted
profile R factors �2= �Rwp /Rexp�2. The single-crystal litera-
ture often uses the term goodness of fit �G� which is defined
by G2=�2. Goodness of fit is less commonly used in powder
diffraction. For reasons unclear to me, one never sees a ref-
erence to �, only �2.

During the refinement process, �2 starts out large when
the model is poor and decreases as the model produces better
agreement with the data. Mathematically, least-squares re-
finement should never cause �2 to increase, but in practice
small increases do sometimes occur when parameters are
correlated. Any large increase is a sign of problems. Other
refinement techniques, such as Monte Carlo, intentionally
allow �2 to increase as a way of avoiding false minima.

It should be noted that �2 should never drop below one,
or equivalently, the smallest that Rwp should ever be is Rexp.
If a refinement results in �2�1, then ��yC,i−yO,i�2� is less
than �2�yO,i�, which means that one of two things is true: �1�
The standard uncertainties for the data must be overesti-
mated or �2� so many parameters have been introduced that
the model is adjusting to fit noise �which should be unlikely
in powder diffraction�. When �2 is close to one, there is no
guarantee that the model is correct—there may be many
models that will produce more or less equivalent fits—but
the experimental data are not sufficient to produce a more
complex and perhaps more correct model. On the other hand,
if at the end of a refinement �2�1, then either: �1� The
model is reasonable but the s.u. values are underestimated,
�2� the model is incomplete because there are systematic ef-
fects �errors� in the data that are not expressed in the model,
or �3� the model is wrong. As will be discussed further be-
low, high �2 values can occur where data are collected to
very high precision; in these cases, minor imperfections in
the fit become huge with respect to the experimental uncer-
tainty. However, there are also many cases where �2�1 in-
dicates results that are completely untrustworthy. There are
many fine papers published with refinements where �2�1,
but the reasons why the fit is statistically poor must always
be well understood in order to differentiate good results from
garbage.

One important test to make when �2�1 is to note the
difference between the �2 or Rwp value obtained from your
model and the value obtained from a Le Bail or Pawley fit,
where peak intensities are optimized without the constraint
of a structural model �Le Bail et al., 1988; Pawley, 1981�. If
your crystallographic fit is as good as the Pawley/Le Bail fit,
then experimental features in the data �typically peak shape
or background� are not being modeled properly, but the crys-
tallographic model can no longer be improved. More detailed
analysis is needed to know how these features are affecting
the fit of the integrated intensities before knowing if the re-
sulting model can be trusted. If the converse is true and the

Le Bail fit provides a good fit but the Rietveld fit does not,
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then there are systematic crystallographic problems with
your model. There are some systems that cannot be described
well by conventional models; the result may be very useful
even though it is only approximate, but again analysis is
needed to understand the suitability of the results.

Having a model where �2 is far from unity has a very
profound implication with many modern Rietveld programs.
The least-squares minimization method used for Rietveld al-
lows the statistical uncertainty in the data to be extrapolated
to statistical uncertainty in the optimized values for the mod-
el’s adjustable parameters �for example, s.u. values for re-
fined atomic coordinates�. These values are derived from the
least-squares variance-covariance matrix, but this estimate is
accurate only when �2�1 �Prince, 2004�. Many �but not all�
Rietveld programs treat this problem with a Band-Aid, by
multiplying the derived s.u. values by G. The reasons for
doing this are poorly grounded. If the cause of the large �2 is
something that has negligible correlation to the parameter in
question, for example imperfections in peak shape to atomic
coordinates, there is little increase in uncertainty due to the
incomplete fit. On the other hand, if there is a significant
correlation between an unmodeled effect in the data �a.k.a. a
systematic error� with this parameter, the loss of precision
may be much larger than the factor of G. As an example of
this, consider a fit to a flat-plate sample that is too thin, so
that the beam penetrates through the sample. The systematic
error due to this penetration will increase with 2� and thus
will skew atomic displacement parameters �“thermal fac-
tors”�. The induced error in these parameters could be quite
severe, and multiplying by G would likely underestimate the
uncertainty. In the case where �2�1, multiplying the s.u.
values by G reduces them, which is a really bad idea.

The last concept I want to introduce, unlike Rwp, Rexp,
and �2, has no statistical basis, but is still very valuable as a
measure of refinement quality. In single-crystal diffraction, R
factors are computed based on the observed and computed
structure factors, which can be labeled FO,hkl and FC,hkl, re-
spectively. The FC,hkl values are computed directly from the
crystallographic model as an intermediate in Rietveld refine-
ment; but unlike in single-crystal diffraction, FO,hkl values
cannot be measured in a powder diffraction experiment due
to the superposition of multiple reflections into single peaks.
Fortunately, Hugo Rietveld came up with a very nice mecha-
nism for estimating FO,hkl values as part of his method
�Rietveld, 1969�. For each point in the diffraction pattern, the
intensity is apportioned between the contributing reflections
according to the ratio of how the FC,hkl values contribute to
the calculated diffraction pattern. This estimates intensity for
overlapped reflections according to the ratios of the com-
puted structure factors. The closer the model is to
being “correct,” the more valid this process becomes.
R factors based on the FC,hkl and FO,hkl values can be
computed using the same formulas that are applied for
unweighted single-crystal R-factors: RF= ��hkl �FO,hkl �
−�FC,hkl � � / ��hkl �FO,hkl � � or based on F2, RF2 = ��hklFO,hkl

2

−FC,hkl
2 � / ��hklFO,hkl

2 � �Young, 1993�. The label RBragg is some-
times used in the Rietveld literature to refer to reflection
intensity-based R factors, but this term is ambiguous, as it
may refer to RF, RF2, or even RI �RI= ��hklIO,hkl
− IC,hkl� / ��hklIO,hkl��.
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III. DISCUSSION

Now that we have all these R-factors defined, why is it
that someone cannot create a rule-of-thumb for at least one
of them, where having a value above some threshold is a
cause for suspicion, but a value below that threshold indi-
cates a refinement that is generally reliable? One reason is
that these indices measure not just how well the structural
model fits the diffraction intensities, but also how well we
have fit the background and how well the diffraction posi-
tions and peak shapes have been fit. If a large percentage of
the total intensity in a pattern comes from background, then
fitting the background alone can give relatively small �2 or
Rwp values, even without a valid structural model �McCusker
et al., 1999�. Figure 1 shows how significantly these values
can be affected by background levels. Another reason a rule-
of-thumb test fails is that we can always improve the �2 by
using other types of lower-quality data. Note that counting
longer increases the statistical precision in a diffraction mea-
surement. Indeed, as the total number of counts collected for
a diffraction pattern is increased, Rexp decreases. Paradoxi-
cally, counting longer will usually increase the difference
between Rexp and Rwp and thus make �2 worse even though
the model obtained by fitting will be improved. This is be-

Figure 1. A demonstration of the effect of background on a Rietveld fit. Two
simulated fits are shown, where the models have the same discrepancies
from the simulated data and where the Bragg intensities and counting times
are equivalent. However, in case �a� no background is present, Rwp=23%
and �2=2.54, while in case �b�, significant background is present, Rwp

=3.5% and �2=1.31.
cause, when patterns are measured with very large numbers
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of counts, even minor “imperfections” �i.e., features that can-
not be modeled� in the peak shape or peak positions can
make it impossible to obtain small �2 or Rwp values. The
imperfections would be no different with shorter counting
times and would produce the same shifts �if any� to the fitted
parameters. However, as the number of counts increases, the
discrepancies between observed and computed data will be-
come very large compared to the uncertainty in the intensi-
ties. Likewise, improved instrumental resolution is a good
thing—it often provides more crystallographic observables,
so this again allows for more precise �and sometimes more
accurate� models. However, as peak profiles become sharper,
imperfections again become even more obvious, so again
improved data can result in seemingly “worse” discrepancy
indices. Thus, when comparing refinements performed with
differing instruments or conditions, the higher-quality dataset
may provide larger �2 or Rwp values, even though the model
obtained from that data is also of higher quality.

So, if we cannot say a fit with small discrepancy values
is of high quality and a fit with large values is of low quality,
why bother computing these terms? One reason is these are
the only statistically defined parameters that we have; these
are the terms to use when comparing different models fit to
the same data �deciding exactly how to compare R factors
will come in another article�. A second reason is that these
values should be monitored to see that they drop as we pro-
ceed in the refinement, as noted before. When that is not
happening, something is going wrong. Finally, when a re-
finement converges with �2 significantly larger than unity,
then there are experimental factors that are not being ac-
counted for by the model, i.e., significant systematic errors
are present. The source�s� of these errors must be understood
and explained to a reader so that it can be decided if the
results can be believed.

What about the reflection-based R factor? One purpose
for this index is to impress our single-crystal crystallogra-
pher colleagues, who may be loath to accept powder diffrac-
tion crystallography. They like to see RF in the range of a
few percent in single-crystal fits; Rietveld results can fre-
quently be this good or even better. More seriously, the
Rietveld peak integration method can be quite accurate even
when profiles are irregular. Good agreement between the ob-
served and computed reflection, as demonstrated by obtain-
ing a small value for one of the RBragg indices, provides a
valuable indication that the model is doing a good job of
reproducing the crystallographic observations. Conversely,
when these values are more than, say, 5% for RF or a bit
higher for the other RBragg indices, then the question must be
asked, “Why is the model not fitting better?” Some materials
have structures that are more complex than what can be mod-
eled with standard crystallographic approaches; the Rietveld
result may be the best that can be done, and may be of great
value, but inspection is needed to understand the discrepan-
cies, and this must be discussed as part of any publication. It
should be noted that the integration used for the RBragg indi-
ces starts to fail when peaks have very long tails or have
significant unmodeled asymmetry, because parts of the peak
are not included in the intensity estimate. Also, be aware that
RBragg is biased toward the model, since information from the

model is used to apportion intensity between overlapped re-
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flections. In practice, this is not a major problem, but it
should be remembered that RBragg has no statistical validity.

Many, many other R-factor and discrepancy indices have
been suggested for use in Rietveld refinements. This would
be a very long article indeed, if I reviewed them all. Each has
some minor justification. For example, the Durban–Watson
statistic measures if the errors between adjacent points are
correlated or random. When errors are correlated, peaks are
not being fit as well as statistics would predict. However, one
knows this from the value of �2, as long as experimental
standard uncertainties are correct. Background adjusted R
factors reduce, but do not eliminate, the contribution of back-
ground fitting—except in the cases where background is
poorly fit.

In my experience, the most important way to determine
the quality of a Rietveld fit is by viewing the observed and
calculated patterns graphically and to ensure that the model
is chemically plausible. Future articles will discuss these
concepts in more detail.

ACKNOWLEDGMENT

Use of the Advanced Photon Source was supported by

the U.S. Department of Energy, Office of Science, Office of

70 Powder Diffr., Vol. 21, No. 1, March 2006

0.1154/1.2179804 Published online by Cambridge University Press
Basic Energy Sciences, under Contract No. W-31-109-ENG-
38.

David, W. I. F. �2004�. “Powder diffraction: Least-squares and beyond,” J.
Res. Natl. Inst. Stand. Technol. 109, 107–123.

Le Bail, A., Duroy, H., and Fourquet, J. L. �1988�. “Ab Initio structure
determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res.
Bull. 23, 447–452.

McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P.
�1999�. “Rietveld refinement guidelines,” J. Appl. Crystallogr. 32, 36–
50.

Pawley, G. S. �1981�. “Unit-cell refinement from powder diffraction scans,”
J. Appl. Crystallogr. 14, 357–361.

Prince, E. �2004�. Mathematical Techniques in Crystallography and Mate-
rials Science 3rd ed. �Springer, New York�.

Rietveld, H. M. �1969�. “A profile refinement method for nuclear and mag-
netic structures,” J. Appl. Crystallogr. 2, 65–71.

Schwartzenbach, D., Abrahams, S. C., Flack, H. D., Prince, E., and Wilson,
A. J. C. �1995�. “Statistical descriptors in crystallography,” Acta Crys-
tallogr., Sect. A: Found. Crystallogr. 51, 565–569.

Schwartzenbach, D., Abrahams, S. C., Flack, H. D., Prince, E., and Wilson,
A. J. C. �1996�. “Statistical descriptors in crystallography, Uncertainty of
measurement,”
�http://journals.iucr.org/iucr-top/comm/cnom/statdes/uncert.html�.

Young, R. A. �1993�. “Introduction to the Rietveld method,” The Rietveld
Method, edited by R. A. Young �Oxford University Press, Oxford�, pp.

1–38.

70Brian Toby

https://doi.org/10.1154/1.2179804

