Nonoscillation of arbitrary order retarded differential equations of non-homogeneous type

R.S. Dahiya

The object of the present paper is to study the delay differential equation of arbitrary order namely

$$
y^{(n)}(t)+a(t) y_{\tau}(t)=f(t), \quad n \geq 2 \quad \text { (an integer) }
$$

and prove a nonoscillation theorem under the general situation in which $a(t)$ and $f(t)$ are allowed to oscillate arbitrarily often on some positive half real line. This is accomplished by way of two differential inequalities of nth order.

1.

Recently Onose [2] and Singh [3] studied the oscillation properties of the solutions of the equations

$$
\begin{gather*}
y^{(n)}(t)+a(t) y(t)=0 \tag{1.1}\\
y^{(2 n)}(t)+a(t) y(t-\tau(t))=0 \tag{1.2}
\end{gather*}
$$

under the restrictive assumption that a be eventually non-negative on some positive half real axis. The purpose here is to study the delay differential equation of arbitrary order namely

$$
\begin{equation*}
y^{(n)}(t)+a(t) y_{\tau}(t)=f(t), \quad n \geq 2 \quad \text { (an integer) } \tag{1.3}
\end{equation*}
$$ and prove a nonoscillation theorem under the general situation in which a

Received 19 February 1974.
and f are allowed to oscillate arbitrarily often on some positive half real line. This is accomplished by way of two differential inequalities of nth order. The following assumptions will hold throughout this paper:
(i) $y_{\tau}(t) \equiv y(t-\tau(t))$,
(ii) $a:(-\infty, \infty) \rightarrow(-\infty, \infty)$ is continuous,
(iii) $\tau:[0, \infty) \rightarrow[0, \infty)$ is continuous and bounded.

In what follows, it will be shown that if g and h are eventually positive functions such that

$$
\begin{align*}
& g^{(n)}(t)+t^{n-1}|a(t)| g(t) \leq 0, \tag{1.4}\\
& h^{(n)}(t)+t^{n-1}|f(t)| h(t) \leq 0,
\end{align*}
$$

then equation (1.3) has bounded nonoscillatory solutions. It is interesting to note that these differential inequalities are independent of the delay term.

We call a function $F \in C\left[t_{0}, \infty\right)$ oscillatory if it has arbitrarily large zeros on $\left[t_{0}, \infty\right)$. Otherwise we call it nonoscillatory.

We shall only consider continuous and extendable solutions of equatior (1.3) over some half line $\left[t_{0}, \infty\right), t_{0}>0$.

2.

THEOREM 1. Let g and h be n times differentiable functions on some half line $[T, \infty), T \geq t_{0}>0$ such that

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\lim \inf } g(t)>0, \quad \underset{t \rightarrow \infty}{\lim \inf } h(t)>0, \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& g^{(n)}(t)+t^{n-1}|a(t)| g(t) \leq 0 \tag{2.2}\\
& h^{(n)}(t)+t^{n-1}|f(t)| h(t) \leq 0 \tag{2.3}
\end{align*}
$$

eventually. Then equation (1.3) has bounded nonoscillatory solutions.
Proof. Let T be large enough so that $g(t)>0$ in $[T, \infty)$. Then by inequality (2.2), there exists $T_{1}>T$ such that

$$
\begin{equation*}
g^{(n)}(t) \leq 0, g(t)>0, \quad t \geq T_{1} \tag{2.4}
\end{equation*}
$$

Conclusion (2.4) forces all preceding derivatives to be monotonic. Two cases arise.

Case 1. $g^{\prime}(t) \geq 0, \quad t \geq T_{1}$.
Conclusion (2.4) also implies that $g^{(n-1)}(t) \geq 0$ because otherwise $g(t)$ will eventually become negative. Dividing (2.2) by $g(t)$ and integrating between $\left[T_{1}, t\right]$, we have
(2.5)

$$
\begin{aligned}
& \frac{g^{(n-1)}(t)}{g(t)}-\frac{g^{(n-1)}\left(T_{1}\right)}{g\left(T_{1}\right)}+\int_{T_{1}}^{t} \frac{g^{(n-1)}(s) g^{\prime}(s)}{g^{2}(s)} d s+ \\
& \quad+\int_{T_{1}}^{t} s^{n-1}|a(s)| d s \leq 0
\end{aligned}
$$

Since $g^{(n-1)}(t)$ and $g^{\prime}(t)$ are nonnegative for $t \geq T_{1}$, (2.5) implies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{T_{1}}^{t} s^{n-1}|a(s)|<\infty \tag{2.6}
\end{equation*}
$$

Case 2. $\quad g^{\prime}(t)<0, \quad t \geq T_{1}$.
Here again conclusion (2.4) implies that for $t \geq T_{1}, g^{(n)}(t) \leq 0$, $g^{(n-1)}(t) \geq 0, g^{\prime}(t)<0, g(t)>0$. Again, we will show that (2.6) holds. Suppose to the contrary

$$
\begin{equation*}
\int_{T_{1}}^{\infty} t^{n-1}|a(t)| d t=+\infty \tag{2.7}
\end{equation*}
$$

Then from (2.5) and (2.7), it follows

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{T_{1}}^{t} \frac{g^{(n-1)}(s) g^{\prime}(s)}{g^{2}(s)} d s=-\infty \tag{2.8}
\end{equation*}
$$

But

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \int_{T_{1}}^{t} \frac{g^{(n-1)}(s) g^{\prime}(s)}{g^{2}(s)} d s \geq \lim _{t \rightarrow \infty}\left[g^{(n-1)}\left(T_{1}\right) \int_{T_{1}}^{t} \frac{g^{\prime}(s)}{g^{2}(s)} d s\right] \\
&=\lim _{t \rightarrow \infty}\left\{g^{(n-1)}\left(T_{1}\right)\left[-\frac{1}{g(t)}+\frac{1}{g\left(T_{1}\right)}\right]\right\}>-\infty
\end{aligned}
$$

by condition (2.1). This contradiction shows that (2.6) holds. Similarly (2.3) leads to

$$
\int^{\infty} t^{n-1}|f(t)| d t<\infty
$$

To complete the proof, we set up the following integral equation
(2.9) $y(t)=\frac{1}{2}-K \int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!} a(t) y(t-\tau(t))+K \int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!} f(t) d t$,
where $K=1$ when n is even and $K=-1$ when n is odd. It is obvious that a solution of (2.9) is also a solution of equation (1.3).

We now set up a sequence of estimates:
$(2.10) y_{0}(t) \equiv I$,
(2.11) $y_{j}(t)=\frac{1}{2}-K \int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!} a(t) y_{j-1}(t-\tau(t)) d t+K \int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!} f(t) d t$, and choose t large enough so that

$$
\begin{equation*}
\int_{t}^{\infty} t^{n-1}|a(t)| d t<1 / 4 \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{\infty} t^{(n-1)}|f(t)| d t<1 / 4 \tag{2.13}
\end{equation*}
$$

Due to the boundedness of τ all estimates in (2.11) are well defined to the right of some large $T>0$.

From (2.10), (2.11), (2.12) and (2.13),

$$
\begin{aligned}
\left|y_{1}(t)\right| & \leq 1 / 2+\int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!}|a(t)| d t+\int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!}|f(t)| d t \\
& \leq 1 / 2+1 / 4+1 / 4=1 .
\end{aligned}
$$

Similarly for each j,

$$
\left|y_{j}(t)\right| \leq 1
$$

Now in the manner of Theorem 3 of [1], $\left|y_{j+1}-y_{j}\right| \leq 1$ for all j, and $\left\{y_{j}\right\}$ converges uniformly to a solution of (2.9); and the proof is complete.

3.

EXAMPLE 1. Consider the equation

$$
\begin{equation*}
y^{(5)}(t)+\frac{\cos t}{1+t^{12}} y(t-\pi)=\frac{\sin t}{1+t^{12}} \tag{3.1}
\end{equation*}
$$

Let $g(t)=t^{3 / 2}$. Now

$$
\begin{aligned}
g^{(5)}(t)+t^{4}|a(t)| g(t) & =-\frac{45}{32} t^{-7 / 2}+\frac{t^{4} \cdot t^{3 / 2}|\cos t|}{1+t^{12}} \\
& =-\frac{45}{32} t^{-7 / 2}\left[1-\frac{32}{45} \frac{t^{9}}{1+t^{12}}|\cos t|\right]<0 \text { for large } t
\end{aligned}
$$

Similarly when $h(t)=t^{3 / 2}, f(t)=\frac{\sin t}{1+t^{12}}$, then

$$
h^{(5)}(t)+t^{4}|f(t)| h(t)<0 \text { for large } t
$$

Hence equation (3.1) has a bounded nonoscillatory solution.
EXAMPLE 2. Consider the equation

$$
\begin{equation*}
y^{(6)}(t)+\frac{\cos t}{1+t^{12}} y(t-\pi)=\frac{\sin t}{1+t^{12}} \tag{3.2}
\end{equation*}
$$

Here we take $g(t)=t^{5 / 2}$,

$$
\begin{aligned}
g^{(6)}(t)+t^{5}|a(t)| g(t) & =-\frac{225}{64} t^{-7 / 2}+\frac{t^{5} \cdot t^{5 / 2}|\cos t|}{1+t^{12}} \\
& =-\frac{225}{64} t^{-7 / 2}\left[1-\frac{64}{225} \frac{t^{11}}{1+t^{12}}|\cos t|\right] \\
& <0 \text { for large } t
\end{aligned}
$$

and

$$
\begin{aligned}
h(t) & =t^{5 / 2}, f(t)=\frac{\sin t}{1+t^{12}} \\
h^{(6)}(t)+t^{5}|f(t)| h(t) & =-\frac{225}{64} t^{-7 / 2}\left[1-\frac{64}{225} \frac{t^{11}}{1+t^{12}}|\sin t|\right] \\
& <0 \text { for large } t .
\end{aligned}
$$

Thus (3.2) has a bounded nonoscillatory solution.
If we take $n=3, f(t)=0$ in (1.3), then we arrive at known results (see [4]).

References

[1] R.S. Dahiya and B. Singh, "On oscillatory behavior of even order delay equations", J. Math. Anal. Appl. 42 (1973), 183-189.
[2] Hiroshi Onose, "Oscillatory property of ordinary differential equations of arbitrary order", J. Differential Equations 7 (1970), 454-458.
[3] B. Singh, "Oscillation and nonoscillation of even order nonlinear delay differential equations", Quart. Appl. Math. (to appear).
[4] Bhagat Singh and R.S. Dahiya, "Nonoscillation of third order retarded equations", BulZ. Austral. Math. Soc. 10 (1974), 9-14.

Department of Mathematics,
Iowa State University,
Ames, lowa, USA.

