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1. Introduction
The relationship between certain non-associative algebras and the deter-

ministic theory of population genetics was first investigated by Etherington
(3)-(8), who defined the concepts of baric, train and special train algebras.
Gonshor (10) dealt with, among other topics, algebras corresponding to auto-
polyploidy, on the assumption that chromosome segregation operated.f In
this paper ] discuss algebras corresponding to more general systems of inherit-
ance among polyploids, which have been discussed without using algebras by
Haldane (11), Geiringer (9), Moran (13) and Seyffert (16). These algebras
are special cases of what I have defined as segregation algebras, and mixtures
of them. All the algebras corresponding to a fixed ploidy have a relationship
which I have called special isotopy. An example shows that algebras arise in
other genetic systems which are not isotopic to segregation algebras.

2. Segregation algebras
As far as possible 1 have followed the notation of (10). The symbol

Da, {a = 0, ...,«) stands for a gamete containing a dominant and n —a recessive
genes. For convenience the Da will also be used to denote the natural basis
elements of the genetic algebra. Those elements with non-negative coefficients
which add up to unity can be taken to represent populations, and multipli-
cation represents the formation of a filial generation by random mating between
the populations corresponding to the factors. Consequently, from genetic
reasoning, the multiplication table for chromosome segregation is

while for chromatid segregation it is

(see e.g. 13, pp. 29, 30).
This suggests the definition of an w-ploid segregation algebra of degree s

t Added in proof: Gonshor has since published a further paper, dealing largely with
polyploidy, in these Proceedings, vol. 14.

E.M.S.—A
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2 P. HOLGATE

(n, s integers), which will be denoted by A{n, s), as an algebra with basis
Da, {a = 0, ..., n) and multiplication table

D°D"=CrT ,
For s = 1 and s = 2 the algebra has a biological interpretation in terms of
chromosome and chromatid segregation respectively.

For all s, it is convenient to transform to a canonical basis defined by

",?.'->'( •>
which has the inverse transformation

In terms of the weight function of the baric algebra, c0 has unit weight and the
remaining c,- have zero weight (4, 5). In terms of the new basis, the multiplica-
tion table becomes

Writing a+b = m, substituting from (1), and using formulae of the type

i + j = const.

this becomes

On applying the formula
fsk\(u

this reduces to
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the last step following from a formula like (2). The coefficient of ct contains a
factor

Smt =

The factorial power (sfc)(0 can be written as a linear combination of fcO) for
7 = 0 , . . . , / . However

m

which implies Sl
m>, = 0 for t<m. In particular, the whole expression for

cacb vanishes if a+b = m>n. These results can be expressed by saying that
if the multiplication table is

n
CaCb ~ L, tabfit

t = 0

then yabt depends on a and b only through a + b = m (and can be denoted by
ymt), and furthermore is zero for a+b = m>t. Also, for m = t,

and (fcs)(m) = sm&(m) + terms involving factorial powers of k with indices less
than m. Hence

-~m!^o( 1} \k) k

and the coefficient of c_ in cncb with a+b = m is

< 2sn — m/25«V
\n J

(4)
n-m )

The facts that ymt = 0, f<m and y m m # 0 show, on comparison with the
basis definitions, (6) and (10), that A(n, s) is a special train algebra. It is
obvious that every power of the ideal {c1; ..., cn} will have the form [ck, ..., cn}
for some k and will consequently be itself an ideal. The train roots, (10) of
A(n, s) are given by (4) for m = 0, ..., n. In particular Ao = 1, At = -J and

/ I 2 = i ( l 1(2 I . ^ i s not a principal train root, as defined in (4)
V "A "V

but the remaining A( are.

3. Plenary sequences
The right principal powers of "an element x in a non-associative algebra,

or simply the principal powers in the commutative case, are defined by x1 = x,
x"+1 = x"x. The plenary powers are defined by x111 = x, x[ n + 1 ] = xMxl"\
A baric algebra is one which admits a non-trivial homomorphism into its
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coefficient field, x—>w(x). w(x) is called the weight of x, and in the present
case the coefficient field is the real numbers. A train algebra is a baric algebra
in which the coefficients of the rank equation of the principal powers of each
element x, insofar as they depend on x, do so only through »v(.v). Equivalently,
the rank equation of every element of unit weight has constant coefficients,
and the roots of the corresponding scalar polynomial are the principal train
roots of the algebra. It may happen that the sequence of plenary powers of
each element of unit weight satisfies a recurrence equation with constant
coefficients. In this case the plenary powers are said to form a train, the
recurrence equation is called the plenary train equation, its degree the plenary
rank, and the roots of the corresponding scalar polynomial equation the
plenary train roots of the algebra.

In (5) Etherington showed that train algebras of ranks 1, 2 and 3 are
necessarily special train algebras, and that their plenary train roots are simply
related to their principal train roots. In (6) he illustrated the use of the method
of annulling polynomials to obtain the plenary train equation of the algebra
corresponding to three linked loci in haploid gametes. Reiersel (14) proved
that in algebras corresponding to n linked loci in haploids, plenary powers
form a train, and his constructive proof shows how they can be computed by
recursion with respect to n.

To investigate this problem for segregation algebras, let the operator E
be defined by Exm = xtlI+1] and consider a typical element of A{n, s), of unit
weight

A" = C 0 +HiC, + ... + W,,Cn.
If

Ekx =xm =

each v is a polynomial of degree k in ut,..., un. However in view of the condi-
tions on the constants in the multiplication table of A(n, s) given below
equation (3), vt will only contain terms for which the sum of the indices of the
M;, counted according to their multiplicity, does not exceed j . That is, the
coefficient of c} will contain at most y(y, 2*) distinct terms where y(j, q) is the
number of compositions of j having at most q parts. Clearly y(j, q) does not
increase with q for q ^ j . Now consider the operator

which may be thought of as acting on the coefficients in the vector representation
of x. Its effect can be written as

y = 0

From the remarks above, the number of distinct products of powers of the
M'S, when the right-hand side is written out in terms of them, does not increase
for 2m>k. Hence by taking in sufficiently large, a set of /,.(_/ = 1, ..., m) can
be found to make the right-hand side zero. The operator on the left is then
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an annulling operator for «,-. Annulling polynomials can be found in this way
for all the w,(' = 1, •-., «)• For segregation algebras (£— 1) is always necessary
to annul ux, and this also annuls the component c0. Hence the L.C.M. of the
operators found in this way annuls every element of the algebra, thus proving
that in the segregation algebra A(n, s), for all n, s, the plenary powers form
a train.f

4. Particular examples
Gonshor has shown in (10) that for chromosome segregation the multipli-

cation table for the canonical basis has the particularly simple form

2n-m\
)cm.

Since tetraploidy and hexaploidy occur frequently in nature, the multiplication
tables for pure chromatid segregation are recorded here. For tetraploidy,

C0 = C0> C0Cl = 2C1 ~T8C2> C0C2 = C l = TC2

and the remaining products zero. For hexaploidy,

C0 = C0> C0Cl = 2C1 ~2~2C2> C0C2 = C l = TTC2 + T T C 3

C0C3 = C1C2 = T T C 3

and remaining products zero.
For the tetraploid algebras, of rank 3, the plenary rank equations may be

obtained from the results in (5). They are, for chromosome and chromatid
segregation respectively,

*[>-! ] !>-*] = 0, x[x-ljx-f] = 0.

For hexaploidy with chromosome segregation, let a typical element of unit
weight be

X =

Then
Ex =xm =

or
EUi = UU Eu2 = | u 2 + | U i , £t/3 =ToM

It is clear that (£— 1) annuls ux. Recursive computation leads to

E2
Ul =UU E2U2 = T 5 - U + M

and hence
(£2 + l,E+ I2)u2 = ( A

From this it can be seen that the values /j = — y, l2 = \ make the right-hand
side zero, hence £ 2 — \ E + \ = (£—1)(£—-§•) annuals u2. For economy in

t Added in proof: I have since obtained a more general result on these lines, to be
published shortly in the Journal of the London Math. Soc.
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degree consider now the operator (E—l')(E—1)(£—-f-). Further recursion
leads to

( E - / ' ) ( £ - l X £ - i ) « 3 = ( T ^ - ^ r 0 « 3 - ( T T f i n y - T % T n « i « 2 + ( ^ i r - j V n « i

and hence for /' = T^, u3 is annulled. The plenary rank equation is therefore

*[*-l][*-O>-<rV] = 0.
For chromatid segregation, the computation needed is rather more protracted,
and the plenary rank equation is

*[*-i][*--iy[*--M*--rifr] = o-
In all the above cases, the plenary train roots are multiples of the principal train
roots and products of pairs of them.

5. Duplication
Zygotic algebras are derived from gametic algebras by the process of com-

mutative duplication (7). The ordinary commutative duplicates of segregation
algebras are not special train algebras. For instance on duplicating A(2, 1)
and taking as basis elements dab the isomorphs of cacb the multiplication table is

00

02

11

<*00

<*00

^01

w..
dO2

•T
-hd22

dn

•kd22

Tsd22d,

and remaining products zero. The square of the nil ideal is {dllt d12, d22]
but it is not an ideal since e.g. </Oo^n = id02. However, Gonshor (10), adopts
the device of identifying all elements dab with a+b = m and the algebra derived
in this way, which could be called the reduced commutative duplicate, is a
special train algebra. Since the multiplication table of the reduced com-
mutative duplicate of any segregation algebra has the form

dmdn = kdm+n + terms in dj,j>m + n

with k # 0, it is a special train algebra. In passing from the gametic to the
zygotic algebra, the reduced duplicate is clearly what is required in the polyploid
case. This does not hold true in passing from the zygotic to the copular algebra,
which cannot be represented by a special train algebra.

6. Mixture of algebras
Suppose two algebras A0 and A are denned on the same vector space,

with products formed according to " circle multiplication " ao b and " dot
multiplication " a . b. Then the algebra on the same space with multiplication
denned by

axb = <xaob + (l-<x)a.b (0 £ a £ 1) (5)
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will be called a mixture of the two given algebras. Certain modes of inherit-
ance that occur in nature can be described in terms of mixtures of chromosome
and chromatid segregation, although this is unfortunately not possible when
the probability of non-disjunction exceeds 1/7 (see 13, p. 30). The relationship
(5) is preserved under changes in the basis of the vector space. It is clear from
the form of the multiplication tables that a mixture of special train algebras
is again a special train algebra with train roots " mixed " in the same pro-
portions as the algebras. For an algebra representing a mixture of a chromatid
segregation and (1—a) chromosome segregation, the dominant non-unit
principal train root is £—-£j<x for tetraploidy, and \—yya for hexaploidy. It
is implicit in (10), § 2, that the rate of convergence of a sequence of plenary
powers, corresponding to repeated random mating, is ultimately twice the
largest non-unit principal train root, i.e. ^—-^a. and f—yV<* in the above cases.

7. Isotopy and special isotopy
The elements of an algebra A can be taken as vectors of coefficients of the

basis elements, and to each element x = £x,c; = (x0> ..., xn) a matrix Rx can
be made to correspond, denned by y. x = yRx. The properties of A can be
usefully studied in terms of the transformation algebra generated by the Rx

and / (12, 1, 2) and this fact has been used in genetic algebras by Schafer (15).
If the multiplication table of the algebra is (3), the matrix Rx corresponding

n

to (JC0, ..., xn) has (/, ?)th element £ Vyi*y- ^ ^or a n o t n e r algebra (circle
i = o

multiplication) y o x = yRx and non-singular matrices can be found such
that

R°x = PRxQW (6)

the algebras are defined by Albert (1) to be isotopic. An equivalent definition
by Bruck (2) is

y o x = (yP. xQ)W.

Isotopy is an equivalence relation, and so are the specialisations of it obtained
by requiring any set of P, Q, W to be unit matrices. For instance if W = /
the relation of principal isotopy is obtained (1). The genetic algebras studied
here are isotopic with P = Q = I, and I have defined this relation as special
isotopy. It is preserved if each algebra is transformed into an equivalent one
by the same transformation, as can be seen simply by substitutions like those
in § 11 of (1). It reduces to the fact that multiplication in A0 is obtained by
carrying out multiplication according to the rules of A, followed by post-
multiplication by a non-singular matrix. The mutation algebras introduced
by Gonshor (10) are in general special isotopes of those not involving mutation,
and consequently of each other. The exceptions occur because for certain
values of the mutation rates, the mutation mapping may be singular. In view
of the conditions on the yabt obtained for segregation algebras, the matrices
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i?, can be written in the form

00*0

0

0

* 0

0

0

7oi*o + 7n*i 702-

7n*o

0

*1 *2

*0 *1

0 x0 ...

7oo

0

0

«O + 7l2^Cl +722*2

712*0 + 722*1

722*0

7oi

7 n

0

7 0 2 •••

7l2

7 2 2 •••

Since the ymm art non-zero, it follows from this and from (5) that all segregation
algebras and all mixtures of them are specially isotopic.

However, it is possible for algebras to arise corresponding to other genetic
systems which are not even isotopic to a segregation algebra. Consider the
following algebras of order 3: (1) the zygotic algebra for diploid chromosome
segregation, and (ii) any gametic algebra for tetraploidy. With the canonical
bases, the element whose vector representation is (x, y, z) corresponds in (i)
and (ii) respectively to the matrices

X

0

0

\y

\x

0

0

\y

0

X

0

0

\y

ix

0

kz

kz

kz

which cannot be transformed into each other by an equation such as (6).
I am grateful to the referee for a number of helpful suggestions.
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