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Abstract

We consider a programming problem in which the objective function is
the sum of a diflerentiable function and the p norm of Sx, where S is a
matrix and p>\. The constraints are inequality constraints defined by
differentiable functions. With the aid of a recent transposition theorem of
Schechter we get a duality theorem and also a converse duality theorem for
this problem. This result generalizes a result of Mond in which the objective
function contains the square root of a positive semi-definite quadratic
function.

Introduction

Consider the programming problem

(P) Minimize F(x) = f(x) +1| Sx ||p (p > 1)

subject to g (x) § 0

where / and g are differentiable functions from R" into R and Rr

respectively, S is a k x n matrix and the p norm is given by

Here necessary and sufficient conditions are given for a point to be
optimal for (P). A dual problem involving the conjugate norm is formulated
and appropriate duality theorems established. Since F may not be differenti-
able at the optimal point the Kuhn-Tucker conditions for a differentiable
problem may not be applicable. This point is taken care of by using a special
case of the general solvability theorem appearing in {9]. This procedure is
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similar to that carried out in [6], where the objective function contains the
square root of a positive semi-definite quadratic form. In fact we show that
the result of [6] is a special case of ours.

In order to use the transposition theorem it is necessary to impose a
constraint qualification. This contraint qualification may be described in terms
of directional derivatives, as discussed in [7] and from this description it can
be seen that a number of classical constraint qualifications, such as the
generalized Slater constraint qualification, imply the one we introduce here.

1. The transposition theorem

The following theorem appears in [9]:

THEOREM. Let X be a finite dimensional real inner product space, let K be a
closed convex cone and C a closed convex set, both in X. Let s be the support
function of C. Then

< x, y > S s(x) for all x in K if and only if

yEc\(K"+C)

where for any set A

A"={y | <x, y > g 1 for all x e A}.

We get our desired transposition theorem by an appropriate choice of
X, K and C. We will use the following standard notation and facts: p and q
are called conjugate exponents if 1/p + \/q = 1. The conjugate exponent of 1 is
°° and, on R \

| |y||.= max{|y,|, i = \,...,k).

If p g 1 and p and q are conjugate exponents then the Holder inequality [3]
says

(1)

LEMMA 1.1 Let S be a k x n matrix, K p S o o and p and q conjugate
exponents. Let

C = {y I y = S'z for some z £ R\\\ z ||, S 1}. Then

C° = {x\\\Sx\\p^\}.
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PROOF. Let ,

D={x\\\Sx\\p^l}

If x is in D and y = S'z with ||z||, § 1 then x'y = x'S'z = (Sx)'z S
|| Sx ||p II z ||, g 1 where we have used (1). This shows that D C C°.

Conversely, suppose x lies in C°, let £ = Sx. We want to prove that
|| £ ||p g 1, if £ = 0 we are finished. If not we will produce a vector z such that
|| z ||, = 1 and £ 'z = || £ ||p. If p < °° then z is given by

z, =(sgni)\{ir'(Ul)'-p

where sgn t = + 1 if / = 0 and — 1 otherwise. If p = o° then let r be an integer
such that || £ ||p = |£|. Define z by z, = sgn £ and 2, = 0 if iV r. It is easily
verified that z has the desired properties in either case. Since x lies in C° and
|| z ||, = 1 we have

therefore x lies in D, hence C° C D.
Now we can get our desired transposition theorem immediately.

THEOREM 1.1. Let A be an m x n matrix, S a k x n matrix, l S p g
and Up + \lq = 1. Then

Ax s 0 implies c'x+\\ Sx \\p § 0

if and only if there exists y and v such that

A'y = c + S'v, yi=o, II«11,^1.

PROOF. In the theorem from [9] quoted above put

lC={x\Ax^0}.
Then it is easily verified that

K° = {-A'y, ySO}.
Put

C = {y|y = S'z for some z E Rk, | |z||, §1}.

C is closed and convex and contains the origin. The support function of C
is the gauge function of C° (see [8] or [9]) and from Lemma 1.1 we see that
this function is exactly || Sx \\p. C is compact hence the sum K° + C is closed so
the theorem follows by substitution in the theorem quoted above, replacing y
by — c.

The transposition theorem of Eisenberg [1, 2] follows as a special case of
our Theorem 1.1 when p = 2. This may be shown by a technique which will be
used in Section 4 to show that our duality theorem includes the one proved by
Mond in [6].
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2. Notation and preliminaries

We will be dealing with the gradient of the p norm frequently in what
follows, so we begin by listing a number of easily verified formulas. We take
1 < p < 3° throughout. If x^ 0 then || x ||p is a differentiable function of x and
V|| x ||p has as its /'th component sgn x, | x, |p"'(|| x ||P)'~P. From this we easily get
the following two facts:

* ' V ( | M | P ) = |I*IIP- (2)

l|V(||x||P)||, = l. (3)

To make the next computation possible we must have a name for the p
norm function. Accordingly, we define the function hp by hp(x) = ||x ||p. Then
with S a matrix of appropriate dimensions we have

V(hp(Sx))=S'Vhp(Sx) (4a)

or more precisely

V(hp°S)=S'(yhp)°S. (4b)

We have in this last formula taken the gradient of a scalar valued
function to be a column and we will consistently follow this convention. If g is
a vector valued function then Vg will denote the matrix which has Vg, as its
/'th column. From this it follows that if / is a scalar valued function then
V2f = V(V/) is the matrix of second partial derivatives of /. It also follows that
if g is a vector valued function and y is a constant vector then V(y'g) = (Vg)y.

Next, returning to the problem (P) we want to evaluate the directional
derivative of the objective function F. We denote the directional derivative of
F at the point x,, in the direction z by F\xtt;z). If Sxf)^O then F is
differentiable at xlt and so F'(x,,;z) = [VF(x(1)]'z. This gives, using (4a)

)]lz + [S'Vhp(Sxo)]'z, (Sx,,^0). (5a)

If Sxu = 0 we use the definition of directional derivative to evaluate
h'p(Sxc,;z)

h'p(Sx,,;z)= lim r ' [ | |Sx n + tSz ||p - || Sx»\\p]

= limr'|USz||,=||Sz|U

hence

F(*,,;z) = [V/(jt,,)]'z + || Sz I (Sx0 = 0). (5b)
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Now, for a given feasible point x0 define the set Zo as follows:

zEZo if [Vg,(xo)]'zi=0 when g,(xo) = 0

and also F'(xo;z)<0.

We know from [7] that if the generalized Slater constraint qualification is
satisfied then Zo is empty when x0 is optimal.

3. Necessary and sufficient conditions

From this point on p will be a fixed number > 1 and q will be its
conjugate exponent.

THEOREM 3.1. Suppose x0 is optimal for (P) and Zo is empty. Then there
exists y in Rm and v in Rk satisfying

S'i; (6)

y § 0 (7)

yfg(*>) = o (8)

II » 1 1 , ^ 1 • ( 9 )

u'Sxo = ||SXn||p. (10)

PROOF. Suppose first that Sxo/0. Then at the optimal point xo the
Kuhn-Tucker conditions [4] are applicable. According to these there exists
y SO such that y'g(xo)=0 and VF(x«,)-Vy'g(xo) = 0. Using (4a) or (4b) to
evaluate VF(x0) this gives

VF(JC0)- Vy'g(x0) = V/(xo)+ S'V/ip(Sx0)- Vy'g(xo) = 0

where hp(x) = \\x \\p.
Let v = VhpiSx,,). Then from (3), || v ||, = 1 and from (2), v'Sxit = || Sxo||p,

therefore this choice of v and y satisfies conditions (6)-(10).
Now suppose Sxo = 0. Let A be the matrix with rows [Vg,(x0)]' for those

j's for which g,(xo) = 0. Since Zo is empty we know that

AzSO implies F'(xo;z)>0.

From (5b) we therefore have

Az^O implies [V/(x0)]'z + || Sz ||p ^ 0.
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Then Theorem 1.1 tells us that there exist yo = 0 and v with || v ||, § 1 such that

A'y=Vf(xo)+S'v.

Finally, defining y, = 0 for 1 g i < m, g,(x0)^ 0, we see that this choice of y
and v satisfies (6)-(10).

This last theorem tells us that, if Zo is empty, conditions (6)-(10) are
necessary for x,, to be optimal. The next theorem gives sufficient conditions
for Xo to be optimal.

THEOREM 3.2. / / / is convex and g concave and there exists (xo,y,v)
satisfying (6)-(10) with g(xo)^0 then xo is optimal for the problem (P).

PROOF. Let x be feasible for (P). We will show that F(x)SF(x0).

F(x ) - F(x0) = f(x ) - /(Xo) + || Sx ||p - || Sx0 ||p

= (x - Xn)' V/(x,,)+ || Sx ||p - || Sx0 ||P (by the convexity of / )

= (x - x())'Vy'g(xo)- (x - xo)'S'u + || Sx ||p - || Sxo||P by (6))

(where we have used the concavity of g, (7) and (10))

gy 'g (x) -x 'S ' U + ||Sx||p||HI<,^0

where we have used (8), (9) and the Holder inequality (1).

4. Duality

It will be assumed henceforth that / is convex and g is concave. Under
this hypothesis we shall establish duality relationships between problem (P)
and the following problem:

(D) Maximize G(y, u, v) = / ( « ) - y'g(u)+ u'[Vy'g(u)- V/(«)]

subject to

Vylg(u) = Vf(u)+Slv (11)

II « II, ^ 1 ( 1 2 )
yso. (13)

T H E O R E M 4 .1 . (Weak Duality) If x is feasible for (P) and (y,u,v) is

feasible for D then F ( x ) g G(y , u, v).
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PROOF. F(X)- G(y, u, v)

^ x'Vf(u) + \\Sx\\p + y'g(u)- u'Vy'g(u) (by the convexity of /)

= xl[Vy-g(u)-S'v] + \\Sxl + ylg{u)-ulVylg(u) (by (11))

= y'g(x)-x'S'v +\\Sx\\p (by the concavity of g)

S0- | |Sx | | p | | i ; | | ,+ | |SJC| | P (by the feasibility of x, (13) and (1))

§ 0 by(12).

THEOREM 4.2. (Strong Duality) If x0 is optimal for (P) and Zo is empty
then there exists (y, u, v) with u = x0 which is optimal for the dual and the
extreme values are equal.

PROOF. By Theorem 3.1 there exist y and v satisfying (6)—(10). From (6),
(7) and (9), (y, x0, v) is feasible for the dual problem (D). By weak duality
(Theorem 4.1) (y, xn, v) will be optimal if G(y, x0, u ) = F(x0). Now

F(jc0) = /(*„) + || Sx01 = f(x0) + v 'Sx0

= f{xo)+vlSxo-y
lg(xo)

= /(*<>) -y'g (x0) + xo1 [Vy 'g (x0) - V/(x0)] = G (y, x0, v).

Now we want to prove a theorem going in the opposite direction, i.e.,
showing how from an optimal solution of (D) we can get an optimal solution
of (P). It will be convenient to note first the following computational facts: if /
and g are vector valued functions then

V(/'g) = (V/)g + (Vg)(/). (14)

Also, the gradient of the vector valued identity functions is the identity
matrix; i.e., if u is a vector variable then

VM(«)=/. (15)

THEOREM 4.3. (Converse Duality) If (yu,uo, v0) is an optimal solution of
the dual problem (D) and the matrix V2yig(u0)- V2f(u0) is non-singular then
Mo is optimal for the primal problem (P) and the two extreme values are equal.

PROOF. In the dual problem (D) one of the constraints (12), may be
non-differentiable at the optimal point; this will be the case if vo = 0. Note,
however, that if we replace the constraint (12) by

h(v) = (\\v\\qy§\ (16)
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we have a problem which is clearly equivalent to (D) and which has both
objective function and constraints differentiable. Furthermore (y0, u0, v0) is
optimal for this new problem and hence the generalized Fritz John conditions
are satisfied, [5]. Accordingly let a and A be scalars, x and z vectors in R"
and Rm respectively and consider the function

J(y, u, v) = - aG(y, u, v)-xl[S'v + V / (M)- Vy'g(u)] +

From [5] we may assume that (a,A,x,z) has been chosen so that a, A and
z g 0, (a,\,x,z) ^ 0 and the partial derivatives of J all vanish at (y0, u0, v0). We
evaluate these partial derivatives using (14) and (15).

= [V2yo'g(Mo)- V2f(u0)](x - au0) = 0 (17)

Vy/(yo,uo,t;0)=ag(Mo)+[Vg(Mo)]'(x-aUo)-z = 0 (18)

Vj(y0,u0,vo) = -Sx+Wh (i)0) = 0 (19)

where h(v) = (|| v ||,)«.

In addition the Fritz John conditions give

l]-* 'yo = 0. (20)

By our hypothesis the matrix appearing in (17) is non-singular therefore,
(17) implies x = au0. Thus if a = 0 then x = 0 and by (18), z = 0. If v0 ̂  0 then
a simple calculation gives V/t(u0)/ 0 so that (19) implies A = 0. If v0 = 0 then
we deduce from (20) that A = 0, so that in either case A = 0 and hence if a = 0
then (a,\,x,z) = 0. This is contrary to our assumption, therefore a >0 . By
appropriate normalization we may therefore suppose that a = 1. Then we get
from (17), x = u0 and from (18), g(u0) = 2 § 0 . Hence u0 is feasible for the
primal problem (P).

Since (y0, u0, v0) is feasible for (D) we know from (12) or (16) that
h (v0) g 1 and from (20) that A [h (u0) - l ] g 0 , hence either A = 0 or h (vo) = 1
or both. If A = 0 then (19) tells us that Sx = 0, so vo'Sx = 0 = || Sx ||p.

If, on the other hand, h(vo)= 1, then from (19)

VoSx = \vo Vh(vo) = Ag and also

Therefore in either case, vl,Sx = || Sx \\p.
Now, we can show the optimality of u = x0 as follows
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F(x) = f(x) + \\Sx ||, =i/(Ho)- yog(«o)+ Vo'SUo

(since yi(M0) = 0)

= /(««)-yig(«o)+«i[Vyig(«o)-V/(MO)] (by (11))

= G(y 0 , Mo, fo).

This inequality together with weak duality (Theorem 4.1) completes the
proof.

Finally, we want to show how the results we have obtained contain those
of [6] as a special case. To begin with we observe that if B is an n x n positive
semi-definite matrix then there exists an n x n matrix S such that B = S'S.
This follows from the fact that B is orthogonally equivalent to a diagonal
matrix with non negative entries. This diagonal matrix may be written D2

where D is another diagonal matrix and we can, therefore, write B = P'D2P
where P is some orthogonal matrix. The desired result follows with S = DP.

Now, in the primal problem (P) put p = 2 and choose S so that S'S = B,
where B is a given positive semi-definite matrix. Then, (P) takes the form

(P') minimize f(x) + (x 'Bx ) m

subject to g(x)§0 .

Let (y0, Mo, v0) be feasible for the corresponding dual problem. Since R"
is the direct sum of the range of S and the null space of S' we may write
Do = Sw + v, for some w and some t>i satisfying S'y, = 0. Furthermore, Sw
and vt are orthogonal so that

II-|| v01|2 = || Sw ||2 + || o,||2g || Sw |

hence the constraints (11) and (12) of (D) imply

Vy'g(u) = Vf(u)+S'Sw =Vf(u) + Bw (21)

w 'Bw = (Sw)' (Sw) = (|| Sw \\2f S (|| v0 \\2f § 1. (22)

Conversely if (y, u, w) satisfies (21) and (22) then (y, u, Bw) satisfies (11) and
(12). Noting that v does not appear in the objective function of (D) we have
shown that (D) is equivalent to the following:

(D') Maximize / ( « ) - y'g(u)+ u'[Vy'g(u)- V/(M)]

subject to Vy'g(u) = Vf(u)+Bw

w'BwSl, ygO.

(P') and (D') are exactly the dual pair discussed in [6] and our results contain
the results of that paper.
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