
PSEUDO-REGULARITY 

NATHAN DIVINSKY 

Introduction. An element x is said to be right-quasi-regular (r.q.r.) if there 
exists an element y such that x + y + xy = 0. This concept had its inception 
in the fact that (for rings with unity) if 1 + x has an inverse, written as 
1 + y, then (1 + x)(l + y) = 1, x + y + xy = 0. Thus in rings without 
unity elements it seemed (1; 3; 12) profitable to consider this latter equation. 
Jacobson (9) was able to employ this concept in obtaining a structure theory 
for rings without chain conditions. 

Our point of departure is in considering the expression x + y + xy not as 
stemming from (1 + x)(l + y), but as a special case of the more general 
expression x + xny + xn+1y. Our considerations seem to bear most fruit in the 
case n = 1 for commutative rings. We call an element x right-pseudo-regular 
(r.p.r.) if there exists an element y such that x + xy + x2y = 0. 

In §1 we show the existence of a maximal r.p.r. ideal R, called the subradical; 
and show that with some mild restrictions on the ring, it is simply the Jacobson 
radical / , thus obtaining a new representation of / . In general however, 
R < / . We also obtain some radical-like properties of R, as well as a definite 
relationship between R and J. 

In §2 we use the techniques of Brown and McCoy and in the commutative 
case are able to show that A — R is isomorphic to a subdirect sum of sub-
directly irreducible rings, some of which are simple with unity (fields) and 
others are bound to their maximal nil ideal in the sense of Hall (8). 

1. An element x of a ring A shall be called right-pseudo-regular (r.p.r.) of 
degree n, if there exists an element y of A such that 

x + xny + xn+ly = 0. 

It is clear that for n — 0 we get the familiar right-quasi-regularity. We shall 
be primarily interested in the case n — 1, and refer to it simply as r.p.r. It 
is also clear that if x is r.p.r. of degree n, then x is r.p.r. of degree » — 1 

x + xn~l. x y + xn . xy = 0; 

and so in particular, if x is r.p.r. it is r.q.r. {right-quasi-regular). The converse 
of this last statement is not true, since in the ring of even integers modulo 4, 
the element 2 is r.q.r., since 

2 + 2 + 2.2 = 0 (mod4) , 
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but it is not r.p.r. The exact relationship between right-pseudo-regularity and 
right-quasi-regularity is obtained in 

LEMMA 1. An element x of a ring A is r.p.r. of degree n, x + xny + xn+1y = 0, 
if and only if x is r.q.r. and there exists an element x' such that xnxf = x. 

Proof. If x is r.p.r. of degree n, then clearly x is r.q.r. and xnxf = x with 
x' = —y — xy. Conversely if x is r.q.r., x + z + xz = 0, and if there exists 
an x' such that xnxf = x, then setting y = —xf — x'z we find that 

x + xny + xn+1y = x + xn( — x' — x'z) + xn+1(—xr — x'z) 

= x — x — xz — x2 — x2z 

= —x(z + x + xz) = 0. 

COROLLARY 1. An element x of a ring A is r.p.r. if and only if x is r.q.r. and 
there exists an element x' in A such that XX —"• X » 

COROLLARY 2. If x is in xA for every x of A, then right-quasi-regularity and 
right-pseudo-regularity are equivalent concepts. 

A more unexpected result is 

LEMMA 2. Right-pseudo-regularity of degree 2 and right-pseudo-regularity of 
degree nfor all n > 1, are equivalent concepts. 

Proof. Clearly, if x is r.p.r. of degree n, n > 1, it is r.p.r. of degree 2. Con
versely, if x is r.p.r. of degree 2, then by Lemma 1, x is r.q.r. and there exists 
an xr such that X X *•—~ X. Notice that this is precisely strong regularity. Then 

^n v'n— 1 _ vn—2 V 2 V ' v'«—2 — vn—l v/n—2 _- — /y.2v' — v 

Thus there is an element w = x , n _ 1 such that #ww = #. Therefore by Lemma 1, 
x is r.p.r. of degree n. 

A right ideal Q will be called r.p.r. of degree n if all of its elements are r.p.r. 
of degree n. To consider the existence of maximal r.p.r. of degree n right ideals 
we shall make use of the following 

LEMMA 3. Ifx^O, is r.p.r., x + xy + x2y = 0, then its right-pseudo-inverse 
(r.p.i.) y is not in the Jacobson radical J. 

Proof. If y is in / , then y + xy is in / and there exists an element z such 
that 

y + xy + z + (y + xy)z = 0. 

We have 
0 = x + xy + x2y + (x + xy + x2;y)z 

= x + x(y -\- xy + z + yz + xyz) 

~ x + x .0 = x. 
This contradicts the fact that x ^ 0 and therefore ;y is not in / . 
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If we can show the existence of a maximal right ideal Rn, which is r.p.r. of 
degree n, for every n, then by Lemma 2, R2 = R* = . . . = Rn. This is in fact 
true but they are all equal to zero ! 

THEOREM 1. If, for any n > 1, Q is a right ideal all of whose elements are 
r.p.r. of degree n, then Q = 0. 

Proof. Let Q be r.p.r. of degree 2. If x is in Q then x + x2y + xzy — 0. 
Then x is r.p.r. with r.p.i. xy. But xy is in Q; and since Q is a right ideal all of 
whose elements are r.q.r., Q is in / , and xy is in / . This contradicts Lemma 3 
unless x = 0, Q = 0. 

Though Theorem 1 proves that there are no right ideals all of whose ele
ments are r.p.r. of degree n, n > 1, there may be many elements which are 
r.p.r. of degree n. Let A be a division ring. Then every element F^ — 1 is r.q.r. 
Furthermore x2x~l = x and thus by Lemma 1, every element F^ — 1 is r.p.r. 
of degree 2 and thus by Lemma 2, every element F^ — 1 is r.p.r. of degree n 
for every n. 

We shall now show the existence of a maximal r.p.r. ideal, which is not 
always zero. The first step is to show that the sum of two r.p.r. right ideals is 
again an r.p.r. right ideal. To this end we prove a slightly more general result 
akin to Kaplansky's (10, Lemma 1). 

LEMMA 4. If x is r.p.r. and if a belongs to an r.p.r. right ideal Ç, then x + a 
is r.p.r. 

Proof. By Lemma 1, Corollary 1, it is sufficient to show that x + a is r.q.r. 
and that there exists an element v such that (x + a)v = x + a. The fact that 
x + a is r.q.r. follows immediately from Kaplansky's lemma, since x being 
r.p.r. is also r.q.r. and Q being an r.p.r. right ideal is an r.q.r. right ideal. 

To find the element v, we first define u = a — ax' where xx' = x. Since a 
is in Q, u is in Q, and there exists an element u' such that uu1 = u. Define 
y = xf + u' — x'u'. Then (x + a)v = x + a follows from xv = x and 

av — ax' + (a — ax')u' = ax' + uu' = ax' + u = a. 

We now define R to be the join of all the r.p.r. right ideals of the ring A. 
By Lemma 4, R is an r.p.r. right ideal. It is clear that R is the set of all ele
ments that generate r.p.r. right ideals, i.e., all x such that xi + xa is r.p.r. 
for every integer i and every element a of A. We now show that R is a two-
sided ideal. 

Let x be any element in R and a be any element in A. We must show that 
ax is in R, i.e., that axi + axb is r.p.r. for every integer i and every b of A. 
Since x is in R, xi + xb is in R. Let ŷ = xi + x&. Then it is sufficient to show 
that ay is r.p.r. for any y in R. Since R is a right ideal, ya is in i£ and therefore 
there exists a s such that ya + yaz + (ya)2z = 0. Then 

ay + ( — ay — ayazy) + ay(-~ ay — ayazy) 
= ay — ay — a(yaz + ya + yayaz)y = 0 — a . 0 . ^ = 0. 
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Therefore ay is r.q.r. Furthermore, since y is in i?, y is r.p.r., there exists a y' 
such t h a t ^ y = y. Therefore ay .y' = ay. Therefore, by Lemma 1, Corollary 1, 
ay is r.p.r. We have proved 

THEOREM 2. If A is an arbitrary ring, the join R of all the r.p.r. right ideals 
of A is an r.p.r. two-sided ideal. 

We shall call R the right subradical of A. Most of the time R < J, but 
using Corollary 2, Lemma 1 we have 

THEOREM 3. If x is in xA for every x of A, or of J, then J — R. 

By considering left-pseudo-regularity we could, by exactly the same tech
niques, prove the existence of a maximal l.p.r. two-sided ideal L, which we 
call the left subradical of A. We would find that if A had a left unity, or if x 
was in Ax for every x of / , then J — L. It should be clear that though / 
enjoys certain left-right symmetric properties, the ideals R and L have no 
such well-roundedness. Of course if A has a unity element, then / = R = L; 
however in the general case, R and L are different. To see this, consider the set 
A of all two by two matrices of the form 

(j i) 
where a and b are integers mod 4. Then A contains 16 elements. The Jacobson 
radical / has 8 elements, namely those with a = 0 or 2, and b = 0, 1, 2 or 3. 
Furthermore, A has a right unity, 

(i n 
(in fact A has four different right unity elements) and therefore by Theorem 3, 
J = R. However A does not have a left unity and one can easily see that L 
has only the one element 

Though R is occasionally equal to / , it is often equal to 0. By Lemma 3, it 
is clear that if A is a radical ring, A = J , then R = 0. And also therefore, there 
is no nonzero ring which is equal to its right subradical. 

The right subradical R has the usual radical-like properties. 

THEOREM 4. The difference ring A — R is sub-semi-simple, that is, it has 
zero subradical. 

Proof. Let R be the subradical of A = A — R. If x is in R, then there exists 
an element y in Â such that z + xy + x2y = 0, that is, x + xy + x2y is in R. 
Then there exists an element z in A such that 

x + xy + x23> + (x + xy + x230s + (x + xy + x2y)2z = 0. 
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Rewriting this we have 

x + (x + x2) (y + z + yz + 3>xs + X3/S + yxyz + 3W2;y:s) = 0. 

Therefore x is r.p.r. Furthermore, since x is in R, xi + xâ is in R for every 
integer i and every â in Â. As for #, we can show that xi + xa is r.p.r. for 
every i and a, and therefore x is in Rf x = Ô, R = 0. 

Jacobson has shown (9) that Jn — J (An), where An is the set of all nby n 
matrices with elements in A, Jn is the set of all n by n matrices with elements 
in / , and J(An) is the Jacobson radical of An. The corresponding result for 
subradicals is true and the proof is straightforward. 

THEOREM 5. The subradical R(An) is equal to Rn. 

LEMMA 5. The subradical R — RAn for every integer n. 

Proof. Since R is an ideal, RAn < R. Conversely, if x is in R, there exists an 
element x' such that x = xx', x is in RA. Therefore R < RA, R < RAn, 
R = RAn. 

LEMMA 6. The subradical R < Mh the intersection of all the maximal left 
ideals. 

Proof. Jacobson has shown (9) that / . A < Mh Since R < / . A,R < M,. 

We shall now obtain a more definite relationship between / and R. 

LEMMA 7. Let A be a non-nilpotent ring with the descending chain condition 
on right ideals, having all its idempotents in the centre. In particular A may be 
any commutative ring with d.c.c. Then if An = An+1, An has a unity element. 
In particular if A = A2, A has a unity element. 

Proof. By d.c.c. (2) there exists an idempotent e such that 

A = Ae + B 

where B is the set of all x — xe for x in A, and B is nilpotent. Furthermore 
Ae . B — B . Ae = 0 since e is assumed to be in the centre. Therefore 
A2 = (Ae)2 + B2, 

Am = (Ae)m + Bm. 

Since A > A2 > . . . > Am > . . . i s a descending chain of right ideals, there 
exists an integer n such that An = An+1. It is clear that Bn = Bn+1, since if x is 
in Bn then xe = 0. And since x — a + b, with a in (Ae)n+1 and b in JBW+1, we 
have xe = 0 = ae + be = a + 0. Therefore a = 0 and x = & in JBW+1. There
fore Bn < £w+1 < £w. Since B is a nilpotent ideal, Bn = 0, ,4* = (.4e)w. But 
01e)n = Anen = ,4we. Then 4̂W = Ane, e is a unity element for ^4\ It is clear 
that e = en is in ̂ 4n. 

LEMMA 8. / / .23 w aw ideal of A, then the radical of the ring B, J(B), is equal 
to JC\B, where J is the Jacobson radical of A. 
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This result is due to Pedis (13). 

LEMMA 9. If B is an ideal of A, then R (B) < RC\B, where R is the subradical 
of A. 

The proof uses Lemma 8 and is straightforward. Note that it is impossible 
to prove that R{B) = RC\B, since if we take B = J, R(B) = 0, whereas 
RC\B = RC\J = R. 

THEOREM 6. If A is a ring with d.c.c. on right ideals, having all its idem-
potents in the centre, then R = JAn~l, where n is the smallest integer such that 
An = An+K W h m n = 1 R = = j 

Proof. If A is nilpotent, An = 0, R = JAn~l = 0 by the remark just before 
Theorem 4. If A is not nilpotent, by d.c.c. there exists a least integer n such 
that An = An+1 5* 0. Then by Lemma 7, An has a unity element and by Theo
rem 3, R(An) = J{An). By Lemma 9, R> R(An). By Lemma 8, J{An) = Jf\An. 
Therefore 

R > R{An) = J(An) = JC\An > JAn~\ 

Conversely, by Lemma 5, R = RAn~\ Thus R < JAn~\ Therefore R = JAn~\ 
By similar techniques we can show that the left subradical L is contained 

in Mr, the intersection of all the maximal right ideals, and that L = An~l J. 

Discussion of Theorem 6. Theorem 6 is not true without d.c.c, as the 
following example, mentioned to the author in a discussion with Professor 
Zassenhaus, proves. Let xa be a basis for a commutative algebra, where the 
a's are real, 0 < a < 1. Define xa x$ = xa+p if ot + fi < 1, and equal to 0 if 
a + 0 > 1. Then it is clear that every element is nilpotent. Thus A = J, 
and R = 0. However and therefore A = A2. To be sure, A is nil, 
but not nilpotent. 

Whether the theorem is true if A has d.c.c, but not the restriction that the 
idempotents lie in the centre, seems to be an open question. Since every ring 
with d.c.c can be expressed (7) as A = M + M* where M is the maximal 
regular ideal, and M* is bound to its radical in the sense of Hall (8), and 
MM* = M*M = 0, the condition A = A2 implies M* = M*2. Thus the first 
step seems to be to decide whether there exists a ring, say B, with d.c.c, bound 
to its radical, without a right or left unity element and such that B = B2. 

Another attack on this question can be made using a technique due to 
Baer (4). Since we can write A = Ae + B, where B is the set of all x — xe 
with x in A, and with B in / , we embed Ae'ma. maximal left ideal F (we assume 
if necessary a.c.c). Then A = (F, J). Since J is contained in every maximal 
modular1 left ideal, if F were modular, A = F, a contradiction. Thus either Ae 
is already A, in which case A has a right unity, R = J, and we are well away 
to proving Theorem 6; or F is not modular. The condition A = A2, together 

1A left ideal L is called modular if there exists an element e in the ring A, such that xe — x 
is in L for every x of A. 
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with d.c.c, imply that every maximal ideal is modular and that for every 
maximal left ideal, and in particular for F, A — F is an irreducible A -module. 
Then A — F is A -isomorphic to A — Q where Q is a maximal modular left 
ideal of A. I t is not clear though that F must be modular. 

With regard to the following properties : 
(a) A has a right unity element; 
(b) For every x in A, x is in xA ; 
(c) A = A2; 

it is interesting to observe that (a) implies (b), and (b) implies (c). Lemma 7 
proves that with d.c.c. and idempotents in the centre, (c) implies (a) and thus 
that the three conditions are equivalent. The above-mentioned example due 
to Zassenhaus shows that (c) does not imply (b) without d.c.c. To see that (b) 
does not imply (a) without d.c.c, consider the set of all infinite diagonal 
matrices, elements in a field, each matrix having only a finite number of 
nonzero entries. 

2. Following Brown and McCoy (5; 6), we associate with every element a 
in A, the ideal 

R'{a) = {ax — a2x + £ yiazt — S ^ a ^ i ) . 

We call an element a, ^'-regular if a is in R'(a). We call an ideal / , ^'-regular 
if every element of / is i^-regular. In this way we obtain the set R" of all 
elements that generate ^'-regular ideals. The set R" is simply a special case 
of Brown and McCoy's F-radical. If a is an element of the subradical R, then 
— a is also in R, 

— a — ab + a2b = 0, a = a( — b) — a2( — b), 

a is .R'-regular. Thus it is clear that R < R". In the commutative case R = R", 
though in general they are different. From (5) we have the following important 
results about R". 

THEOREM 7. The set R" is an ideal of A. 

THEOREM 8. R"(A - R") = 0. 

THEOREM 9. The ring A — R" is isomorphic to a subdirect sum of sub-
directly irreducible rings each having their R" = 0. 

THEOREM 10. A subdirectly irreducible ring A, has its R" = 0 if and only 
if there exists an element e T^ 0 in the minimal ideal K of A such that R'{e) = 0. 

THEOREM 11. A has its R" = 0 if and only if it is isomorphic to a subdirect 
sum of subdirectly irreducible rings each having their R" = 0. 

Let A be a subdirectly irreducible ring with R" = 0. Then by Theorem 10, 
there exists an element e ^ 0 in the minimal ideal K of A such that R' (e) = 0. 

{ex — e2x + 2Z ytCZi — S y% e2 %i} = 0. 

Therefore ex = e2x for every x in A. Thus e2 = e3, ez = e4, e2 = e4. We will use 
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LEMMA 10. If there exists a nonzero idempotent ef, both in the centre and in 
the minimal ideal K of a subdirectly irreducible ring A, then A is simple with e' 
as unity. 

Proof. Consider the Peirce decomposition of A for e'. A = A\ + A2, where 
A1 = Ae', and A2 is the set of all x — xef for x in A and is the set of all x such 
that xe' = 0. Since A 2 is an ideal which cannot contain e', and since e' is in 
every nonzero ideal, A2 = 0. Therefore A = Ai = Ae'. Since e' is in K, 
A = K, A is simple (A2 = Ae' . Aef contains e' and is therefore not zero), 
and has e' as unity element. 

Therefore if e2 ^ 0 and e is in the centre, in the subdirectly irreducible ring A 
with R" = 0, K contains a nonzero idempotent in the centre, and A is a simple 
ring with unity. Otherwise e2 = 0, and then ex = 0 for every x in A. Thus 
eA = 0, J^4 = 0. We have proved 

THEOREM 12. 7/ a nwg A has all its idempotents in the centre, then it has 
R" = 0 if and only if A is isomorphic to a subdirect sum of subdirectly irredu
cible rings some of which are simple with unity, others (call them Bt) have the 
property that KtBi = 0, where Kt is the minimal ideal of Bt. 

With some mild conditions on A we can remove the nonsimple components. 

THEOREM 13. If a ring A has all its idempotents in the centre and either of 
the following properties: (a) if xA < I, then x is in I, for every ideal I; (b) every 
ideal M such that A —Mis subdirectly irreducible, is modular ; then A has R" = 0 
if and only if A is isomorphic to a subdirect sum of simple rings with unity. 

Proof. Consider the components Bt of Theorem 12, that are not simple, 
i.e., the ones that satisfy KtBi — 0. For every i, there exists an ideal Mt in A 
such that A — Mt ~ Bt. If A satisfies (a), then etA < Mt implies et is in 
Mf. Thus if eiBi = 0 in Bt, etA < Mu et is in Mu e% = 0 in Bf. This con
tradicts the fact that et =̂  0 in B{. Therefore there are no nonsimple com
ponents. Finally, if A satisfies (b), then A — Mt has a unity element. There
fore et Bi cannot be zero. 

We now turn our attention to the commutative case. Here R = R". 
McCoy (11) made a study of all commutative subdirectly irreducible rings 

and considered them in two large classes : those having at least one element not 
a divisor of zero, and others all of whose elements are divisors of zero. We 
obtain more information about them in 

THEOREM 14. If A is a commutative subdirectly irreducible ring with sub-
radical R zero, and with at least one element not a divisor of zero, then A is afield. 

If A is a commutative subdirectly irreducible ring all of whose elements are 
divisors of zero, then its subradical is zero and it is bound to its maximal nilideal 
N, and therefore also bound to its Jacob son radical J. Furthermore, if A has 
either d.c.c. or a.c.c, A is nilpotent. 
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Proof. By Theorem 12, a commutative subdirectly irreducible ring A with 
subradical R zero is either a simple ring with unity or eA = 0, e 7e 0. Therefore 
if A is fortunate enough to possess an element which is not a divisor of zero, 
eA ^ 0, A is simple with unity, A is a field. 

From (11) we learn that if A is a commutative subdirectly irreducible ring 
all of whose elements are divisors of zero, then the minimal ideal K — (e, 2e, . . . 
pe = 0) and eA = 0. Therefore KA = 0 and by Theorem 12, i? = 0. Further
more, if A 9e N, the maximal nilideal, then let x be any element not in N. 
Since in the commutative case N is the set of all nilpotent elements, x is not 
nilpotent, the ideal xA ^ 0, and the ideal x2A ^ 0. Since e is in every nonzero 
ideal, e = x2y. Then 

(xy)2 = x2y . y = ey = 0, 

since eA — 0. Therefore xy is nilpotent, xy is in N. Thus x . xy = e j* 0, 
xN T^ 0. Thus if xN = 0, x must be in JV, i.e. A is bound to N. Then of course 
-4 is bound to / , since if xJ = 0, xN = 0, x is in N < J . 

Assume now that 4̂ has d.c.c. If A is not nilpotent, and therefore not nil, 
there exists an element x which is not nilpotent. Consider the chain 
xA > x2A > . . . , and get an integer n such that xnA — xn+lA. Thus there is 
an element y such that xn+1 = xn+1y. Since xn+1A is a nonzero ideal, e is in it, 
e = xn+lz. Then 

ey = 0 = xw+1^s = xw+12 = e ^ 0. 
This contradiction shows that x must be nilpotent, A is nil and therefore 
nilpotent. 

Assume now that A has a.c.c. If A is not nil, then again let x be any non-
nilpotent element. Then all the ideals xlA are nonzero and therefore each of 
them contains e. Therefore 

e = xyi = x2y2 = . . . = xnyn — . . . . 

Define Vt to be the set of all z that annihilate x\ I t is clear that the Vt are 
ideals and that V\ < V2 < . . . < Vt < . . . . Since 

ex = 0 = x*ytx = xi+1yu 

yt is in Fi+i, but is not in V\. Therefore this is a properly ascending chain 
which does not stop after a finite number of steps. (Since x is not nilpotent, 
no Vi is equal to the whole ring.) This contradicts a.c.c. and therefore A is 
nil. By a result of Zassenhaus as yet unpublished, which states that in the 
presence of a.c.c. the maximal nil ideal is nilpotent, A is nilpotent. 

Combining Theorems 12 and 14 we have our main result: 

THEOREM 15. If A is a commutative ring whose subradical R is zero, then A is 
isomorphic to a subdirect sum of subdirectly irreducible rings Ai,A2, . . . , 
B'u B21 • • • » where the At are fields and the Bj are bound to their maximal nil-
ideals. If in addition, for every ideal M such that A — M is subdirectly irreducible, 
A — M satisfies either d.c.c. or a.c.c, and in particular if A satisfies d.c.c. or 
a.c.c, then the Bj are nilpotent. 

https://doi.org/10.4153/CJM-1955-043-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-043-5


410 NATHAN DIVINSKY 

REFERENCES 

1. A. A. Albert, Structure of algebras (Amer. Math. Soc. Colloquium Publications, 24t 1939). 
2. E. Artin, C. J. Nesbitt and R. M. Thrall, Rings with minimum condition (Ann Arbor, 1946). 
3 . R. Baer, Radical ideals, Amer. J . Math., 65 (1943), 537-568. 
4. , Kriterienfilr die Existenz eines Einselements in Ringen, Math. Z., 56 (1952), 1-17. 
5. B. Brown and N. McCoy, Radicals and subdirect sums, Amer. J . Math., 69 (1947), 46-58. 
6. , The radical of a ring, Duke Math. J., 15 (1948), 495-499. 
7. , The maximal regular ideal of a ring, Proc. Amer. Math. Soc , 1 (1950), 165-171. 
8. M. Hall, The position of the radical in an algebra, Trans. Amer. Math. Soc , 1^8 (1940), 

391-404. 
9. N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math., 67 (1945), 

300-320. 
10. I. Kaplansky, Topological rings, Amer. J. Math., 69 (1947), 153-183. 
11. N. McCoy, Subdirectly irreducible commutative rings, Duke Math. J., 12 (1945), 381-387. 
12. S. Perlis, A characterization of the radical of an algebra, Bull. Amer. Math. Soc , Ifi (1942), 

128-132. 
13. , A note on the radical of an ideal, Bull. Amer. Math. Soc , 53 (1947), 907, abstract 

53-9-306. 

University of Manitoba 

https://doi.org/10.4153/CJM-1955-043-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-043-5

