
Adv. Appl. Prob. (SGSA) 37, 279–296 (2005)
Printed in Northern Ireland

© Applied Probability Trust 2005

THE POISSON–VORONOI TESSELLATION:
RELATIONSHIPS FOR EDGES

L. MUCHE ∗

Abstract

In a unified approach, this paper presents distributional properties of aVoronoi tessellation
generated by a homogeneous Poisson point process in the Euclidean space of arbitrary
dimension. Probability density functions and moments are given for characteristics of the
‘typical’ edge in lower-dimensional section hyperplanes (edge lengths, adjacent angles).
We investigate relationships between edges and their neighbours, called Poisson points or
centres; namely angular distributions, distances, and positions of neighbours relative to
the edge. The approach is analytical, and the results are given partly explicitly and partly
as integral expressions, which are suitable for the numerical calculations also presented.
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1. Introduction

The Voronoi tessellation is a popular stochastic geometrical model applied in many fields
of science and engineering; see Okabe et al. [16]. A commonly used special case is that of
complete randomness, in which the generating point pattern is a homogeneous Poisson point
process. This so-called Poisson–Voronoi tessellation has been studied by many researchers,
both analytically and by means of simulation.

Probability density functions of edge lengths of a tessellation generated by a Poisson
point process in the two- and three-dimensional Euclidean spaces (R2 and R

3) were given
by Brakke [1], [2]. Møller [11], [12] gave a formula for means of edge lengths in R

d , and
corresponding s-dimensional sections (1 ≤ s ≤ d), and discussed a method of calculating
probability density functions in general. Muche and Stoyan [15] determined the probability
density functions of chord lengths generated by linear sections (s = 1) through the Poisson–
Voronoi tessellation in R

d , 2 ≤ d ≤ 7.
Muche [13] provided a method of calculating the probability density functions of edge

lengths and gave results in dimension d, 2 ≤ d ≤ 5, with s = d and s = 2 (planar sections).
Muche [14] summarized the case d = 3 with formulae valid for 1 ≤ s ≤ 3, while Schlather [18]
gave a method that allows the determination of the probability density functions of edge lengths
in arbitrary dimension d and for arbitrary s-dimensional section, 1 ≤ s ≤ d.

Other characteristics of interest are the distances of an edge to its neighbours (namely centres,
generating points, seeds, or atoms – here considered members of the Poisson point process).
The neighbourhood of each edge of the Poisson–Voronoi tessellation in R

d is completely
characterized by d + 2 points of the generating Poisson point process: each edge endpoint
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(vertex) is surrounded by d + 1 Poisson points, which are located on the boundary of a sphere
centred at the endpoint. Consequently, d of these Poisson points, called neighbours of the
edge, belong to both vertices and lie in a (d − 1)-dimensional hyperplane perpendicular to the
edge, all at the same distance from the edge. (Analogously, an edge in a section of dimension
s, 1 ≤ s ≤ d , has s neighbours in a perpendicular (d − 1)-dimensional hyperplane and one
further Poisson point on either side of it.) In the planar case d = s = 2, there are two
neighbours symmetric to the edge. Their distance was studied by Collins [3], [4] and Brakke
[1]; Collins also discussed an extension to the spatial case. Furthermore, distributions of the
neighbour–vertex–edge angle were studied in [3], [4], and [9]. Probability density functions
of vertex–neighbour distances and the angles at vertices were investigated by Miles [10] in the
case d = s = 2. Distributional properties of the neighbourhood around a vertex of the Poisson–
Voronoi tessellation in R

d were also studied there. These basic formulae are fundamental to
the investigation of many other geometrical characteristics of the Poisson–Voronoi tessellation.

This paper takes up methods given in [5], [8], and [13]. In a unified approach, we find
general results valid for arbitrary dimension d ≥ 2 and all corresponding s-dimensional
sections, 1 ≤ s ≤ d . In contrast to earlier results, the formulae given here allow numerical
calculations. The method employs a basic identity concerning the distributional properties in
the neighbourhood of the ‘typical’ vertex investigated in [8]; the word ‘typical’ is used in the
sense of [19, p. 117]. Another foundation is the fact that the distribution of the typical edge
coincides with the distribution of a randomly chosen edge emanating from the typical vertex;
see [8]. Finally, we also exploit the symmetry of distributional properties with respect to both
endpoints of the typical edge.

The paper presents probability density functions and moments of

• the length of the typical edge of the Poisson–Voronoi tessellation,

• the angles at the endpoints of the typical edge spanned by a neighbour,

• the angle at a neighbour spanned by the endpoints of the typical edge,

• the distance from a neighbour to the typical edge, and

• the position of a neighbour with respect to the typical edge.

In addition to the classical applications of Voronoi tessellations in agriculture and forestry,
astrophysics, cell biology, crystallography, geography, metallography, zoology, and ecology,
there are two very recently developed fields, namely telecommunications (see [6]) and molecular
physics.

Edges of the Voronoi tessellation play an important role in modern investigations of macro-
molecular structures; see [7], [17], and references therein. In this context, the separation of
neighbouring atoms into pairs of direct and indirect neighbours is important. Two neighbouring
atoms are direct neighbours if the straight line (Voronoi edge) between them intersects the corre-
sponding joint Voronoi face (facet); otherwise they are indirect neighbours. The understanding
of many phenomena in real structures requires knowledge of properties of Voronoi edges.

The paper is structured as follows. In Section 2, we describe our method and, in Section 3,
we present the main results. Further results obtained by application of the method are given
in Section 4. In Section 5, we discuss numerical calculations in some special cases and
present tables and figures with the results. Finally, the proofs of our results are given in
Section 6.
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2. Fundamentals

Let V be the Voronoi tessellation generated by a stationary and isotropic Poisson point
process � of intensity λ in the d-dimensional Euclidean space R

d . The cells of V are
d-dimensional bounded open convex polytopes (d-facets). Their boundaries are pieces of
hyperplanes of dimension smaller than d , called (d −1)-, (d −2)-, . . . , 2-, 1-, 0-facets. We call
1-facets edges. Each boundary point can be assigned to one k-facet (0 ≤ k < d) uniquely.
Each k-facet is characterized by d − k + 1 Poisson points, called neighbours, which are all
within the same distance from the facet, with no Poisson point closer.

Let S denote an s-dimensional section hyperplane through V, with s = 1, 2, . . . , s ≤ d.
Without loss of generality, S can be considered to be the hyperplane spanned by the
x1-, x2-, . . . , xs-axes of a Cartesian coordinate system. The intersection Vs = V ∩ S is
a stationary and isotropic tessellation of dimension s. The edges of Vs are intersections
between (d − s + 1)-facets and the intersection hyperplane S, and the vertices of Vs are
intersections of (d−s)-facets. Note that the occurrence of intersection points is weighted by the
(d − s)-volume of the corresponding (d − s)-facet. (The concept of k-volume is used in the
sense of k-dimensional Lebesgue measure.) A vertex in Vs has s +1 neighbours, meaning that
s + 1 points of the generating point process � have the same distance to it and there are no
neighbours closer. Analogously, an edge in S has s neighbours located on a (d−1)-dimensional
hyperplane perpendicular to it. We denote the typical vertex of Vs by o and one of its associated
edges by E0

d,s . Without loss of generality, we denote its neighbours (belonging to the generating
point process) by z0, . . . , zs−1, and denote the additional neighbour of o by zs . There are thus
s + 1 nearest neighbours having the same distance �d,s to o. The distributional properties
with respect to the typical vertex were investigated in [8], which is based on the theory of Palm
distributions. The basic property given there in Lemma 1 and Lemma 1′, shown for s = 2 and
s = d in detail, is valid for all the other cases 1 ≤ s ≤ d, by analogy; see [5]. The Palm version
of the point process of vertices of the Poisson–Voronoi tessellation is characterized by a sphere
b(o, �d,s) containing no neighbours in its interior, but s +1 neighbours on its boundary. (Here
b(x, y) stands for the compact closed d-dimensional sphere of radius y centred at x, whereas
∂b(x, y) denotes its boundary.) The point pattern in the space outside b(o, �d,s) can be handled
as a Poisson point process.

The typical vertex o of Vs is the joint endpoint of s + 1 edges in Vs . Consider one of these
s + 1 edges, say E0

d,s , chosen at random and each with the same probability. Let E0
d,s have

second endpoint l (with coordinate l on the positive x1-axis). Then, the following relationships
must hold:

�(bint(o, ‖z0‖) ∪ bint(l, ‖z0 − l‖)) = 0,

�(∂b(o, ‖z0‖) ∩ ∂b(l, ‖z0 − l‖)) = s,

�(∂b(o, ‖z0‖) \ b(l, ‖z0 − l‖)) = 1,

�(∂b(l, ‖z0 − l‖) \ b(o, ‖z0‖)) = 1,

where ‖ · ‖ denotes the Euclidean norm in R
d . In other words, the interior of the union

of the two spheres around the endpoints of E0
d,s must be empty. The intersection of their

boundaries contains s Poisson points (neighbours of E0
d,s), and on either side of them there

is a further Poisson point on the rest of the boundary. These geometrical relationships allow
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the determination of the probability density function fL0
d,s

of the length L0
d,s of the edge E0

d,s

emanating from the typical vertex. The corresponding result of [13] is

fL0
d,s

(l) = λ

∫ ∞

0

∫ π

0
f�d,s

(δ)fBd,s
(β)

dν0
d (l, δ, β)

dl
exp(−λν0

d (l, δ, β)) dβ dδ, (1)

where the variables δ and β correspond to the distance �d,s = ‖z0‖ and the angle
Bd,s = 	 (z0, o, l), with the probability density functions f�d,s

(δ) and fBd,s
(β), respectively,

and ν0
d (l, δ, β) denotes the d-volume of the union

b(o, ‖z0‖) ∪ b(l, ‖z0 − l‖) = b(o, δ) ∪ b(l,
√

l2 + δ2 − 2lδ cos β).

These results can be translated so as to apply to the typical edge E1
d,s . From [8], E0

d,s and
E1

d,s have identical distributional properties. This means that the distribution function FE0
d,s

of
any geometrical characteristic of a randomly chosen edge emanating from the typical vertex is
identical to the distribution function FE1

d,s
of the equivalent characteristic of the typical edge

E1
d,s :

FE0
d,s

≡ FE1
d,s

. (2)

The proof of (2) in [8, Lemma 2 and Lemma 2′], given, in the respective lemmas, for s = d

and s = 2, can be generalized to the other cases analogously.
The probability density function of the length L1

d,s of the typical edge E1
d,s of Vs can be

given in the form

fL1
d,s

(l) = λ

∫ π

0

∫ π−β1

0
f�d,s

(
l

sin β2

sin(β1 + β2)

)
fBd,s

(β1)ν
′
d(l, β1, β2)

∣∣∣∣ ∂(β, δ)

∂(β1, β2)

∣∣∣∣
× exp(−λνd(l, β1, β2)) dβ2 dβ1, (3)

where �d,s = ‖z − v1‖ and we have angles B1d,s
= 	 (z, v1, v2) and B2d,s

= 	 (z, v2, v1).
Here, v1 and v2 denote the endpoints of E1

d,s and z denotes one of its s neighbours lying in the
(d − 1)-dimensional hyperplane perpendicular to it. Furthermore, νd(l, β1, β2) corresponds to
the d-volume ν0

d (l, δ, β) of the union of two overlapping spheres, used in (1), and ν′
d(l, β1, β2)

corresponds to its derivative dν0
d (l, δ, β)/dl. Thus, (1) can be transformed into (3) by the

transformation of variables

β = β1, δ = l
sin β2

sin(β1 + β2)
,

∣∣∣∣ ∂(β, δ)

∂(β1, β2)

∣∣∣∣ = l
sin β1

sin2(β1 + β2)
, (4)

and, conversely, by

β1 = β, β2 = arccot
l − δ cos β

δ sin β
,

∣∣∣∣∂(β1, β2)

∂(β, δ)

∣∣∣∣ = l sin β

l2 − 2lδ cos β + δ2 . (5)

Henceforth, we denote the typical edge E1
d,s of Vs by Ed,s and the random lengths by

L0
d,s = L1

d,s = Ld,s .

The use of both (1) and (3), identity (2), and the symmetry property

fLd,s
(l, β1, β2) = fLd,s

(l, β2, β1)

leads to numerous results. We give these in the following section.
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3. Characteristics of edges

This section contains the main results of the paper and generalizes and simplifies earlier
results. All numbered equations represent new results explicitly describing the distributional
properties of Voronoi edges for all dimensions d and s, with 2 ≤ d and 1 ≤ s ≤ d.

A vertex in an s-dimensional section Vs has s + 1 equidistant nearest neighbours. The
probability density function of the distance �d,s of the typical vertex o of Vs from each of its
neighbours is

f�d,s
(δ) = d(λωd)s+1−s/d


(s + 1 − s/d)
δ(d−1)(s+1) exp(−λωdδd), 0 ≤ δ < ∞, (6)

where ωd = π1/2/
(1 + 1
2d) denotes the d-volume of a unit sphere b(o, 1). This formula

generalizes earlier results given in [1] and [9] (for f�2,2(δ)), [10] and [12] (for f�d,d
(δ), d ≥ 2),

[15] (for f�d,1(δ), d ≥ 2), and [13] (for f�d,2(δ) and f�d,d
(δ), 2 ≤ d ≤ 5). Schlather [18]

used (6) implicitly.
The corresponding moments are

E �k
d,s = 
(s + 1 + (k − s)/d)


(s + 1 − s/d)

(
1

λωd

)k/d

, k = 0, 1, 2 . . . . (7)

In (1) and (3), expressions are used for the d-volume (the d-dimensional Lebesgue measure,
recall) of two overlapping spheres and its derivative with respect to the midpoint distance. In
the following, expressions for νd(l, β1, β2) and ν′

d(l, β1, β2) are given for arbitrary dimension
d ≥ 2. The union of two overlapping spheres can be thought of as the union of two truncated
spheres and, thus, written as

νd(l, β1, β2) = �d

(
l

sin β2

sin(β1 + β2)
, β1

)
+ �d

(
l

sin β1

sin(β1 + β2)
, β2

)
. (8)

Here, the d-volume of a truncated sphere of radius r and intersection longitude β is given by

�d(r, β) = rdωd

�d/2�∑
i=0

ai(β), (9)

where �x� denotes the greatest whole number smaller x (the integer part of x) and

a0(β) =
⎧⎨
⎩1 − β

π
, d even,

cos2 1
2β, d odd,

ai(β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos β

2
√

π


(i)


(i + 1
2 )

sin2i−1 β, d even,

cos β

2
√

π


(i + 1
2 )


(i + 1)
sin2i β, d odd,

i = 1, . . . , � 1
2d�.

(10)

For β = π , the d-volume vanishes and, for β = 0, the d-volume is that of a complete sphere:

�d(1, π) = 0, �d(1, 0) = ωd = πd/2


( 1
2d + 1)

.
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The derivative ν′
d(l, β1, β2) of νd(l, β1, β2) is

ν′
d(l, β1, β2) = dωd

(
l sin β1

sin(β1 + β2)

)d−1 �(d−1)/2�∑
i=0

bi(β2), (11)

with

b0(β) =
⎧⎨
⎩

(π − β) cos β + sin β

π
, d even,

cos2 1
2β, d odd,

bi(β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

4
√

π


(i)


(i + 3
2 )

sin2i+1 β, d even,

− 1

4
√

π


(i − 1
2 )


(i + 1)
sin2i β, d odd,

i = 1, . . . , � 1
2 (d − 1)�.

(12)

Consequently, the probability density function of the neighbour–vertex–edge angle of Ed,s is

fBd,s
(β) = (d − 1)s
( 1

2 (d + 1))
( 1
2 (ds + d − s))


( 1
2d)
( 1

2 (ds + d − s + 1))
sinds−s−1 β

�(d−1)/2�∑
i=0

bi(β),

0 ≤ β < π. (13)

This formula is a generalization of results given in [1], [3], [9], and [12] (for fB2,2(β)), [13] (for
fBd,s

(β) with 2 ≤ d ≤ 5, s = 2, d), and [14] (for fB3,s (β), s = 1, 2, 3). A more complicated
formula, equivalent to (13), containing an integral expression is given in [18].

The corresponding moments are

E B = 1

2
π −

√
π

2


( 1
2 (d + 1))
( 1

2 (ds + d − s))
( 1
2 (ds − s + 1))


( 1
2d)
( 1

2 (ds + d − s + 1))
( 1
2 (ds − s + 2))

, (14)

E(sin B)k = (d − 1)s
( 1
2 (ds + d − s))
( 1

2 (ds + d + k − s + 1))

(ds + k − s)
( 1
2 (ds + d − s + 1))
( 1

2 (ds + d + k − s))
, k = 0, 1, 2, . . . ,

(15)

E(cos B)k = 
( 1
2 (d + 1))
( 1

2 (ds + d − s))
( 1
2 (ds − s + 2))
( 1

2 (k + 2))


( 1
2d)
( 1

2 (ds + d − s + 1))
( 1
2 (ds + k − s + 2))

, k odd.

(16)

The joint probability density function of the length L of the typical edge Ed,s of Vs and the
two adjacent angles B1 and B2 spanned by its neighbours is

f{L,B1,B2}d,s
(l, β1, β2)

= 2dπ [d(s+2)−s]/2
( 1
2 (ds + d − s + 1))λs+2−s/d

(d − 1)s
( 1
2 (d + 1))
( 1

2 (ds + d − s))
(s + 1 − s/d){
( 1
2d + 1)}s+1−s/d

× ld(s+2)−s−1(sin β1 sin β2)
d

sinds+2d−s(β1 + β2)
fB1(β1)fB2(β2) exp(−λνd(l, β1, β2)) (17)
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or, equivalently,

f{L,B1,B2}d,s
(l, β1, β2)

= cd,sλ
s+2−s/d ld(s+2)−s−1 (sin β1 sin β2)

ds+d−s−1

sinds+2d−s(β1 + β2)

(�(d−1)/2�∑
i=0

bi(β1)

)(�(d−1)/2�∑
i=0

bi(β2)

)

× exp

(
−λ

πd/2ld


( 1
2d + 1)

{
sind β2

sind(β1 + β2)

�d/2�∑
i=0

ai(β1) + sind β1

sind(β1 + β2)

�d/2�∑
i=0

ai(β2)

})
,

(18)

with 0 ≤ l < ∞, 0 ≤ β1 < π, 0 ≤ β2 < π − β1, and

cd,s = d4π [d(s+2)−s]/2
( 1
2 (d + 1))
( 1

2 (ds + d − s))

2{
( 1
2d + 1)}s+3−s/d
(s − s/d)
( 1

2 (ds + d − s + 1))
.

The probability density function of the length of the typical edge Ed,s of Vs is given by

fLd,s
(l) =

∫ π

0

∫ π−β1

0
f{L,B1,B2}d,s

(l, β1, β2) dβ2 dβ1. (19)

The formulae (17), (18), and (19) generalize results given in [1] (for fL2,2(l)), [2] (for fL3,3(l)),
[12] (for fLd,d

(l), d = 2, 3), [15] (for fLd,1(l), 2 ≤ d ≤ 7), [13] (for fLd,2(l) and fLd,d
(l),

2 ≤ d ≤ 5), and [14] (for fL3,s (l), s = 1, 2, 3). An equivalent general expression is given in
[18].

The formula for the moments of Ld,s , which is E Lk
d,s = ∫ ∞

0 lkfLd,s
(l) dl, can be simplified

to

E Lk
d,s = cd,s
(s + 2 + (k − s)/d){
( 1

2d + 1)}s+2+(k−s)/d

dπ [d(s+2)+k−s]/2λk/d

×
∫ π

0

∫ π−β1

0
(sin β1 sin β2)

ds+d−s−1 sink(β1 + β2)

×
(�(d−1)/2�∑

i=0

bi(β1)

)(�(d−1)/2�∑
i=0

bi(β2)

)

×
{

sind β2

�d/2�∑
i=0

ai(β1) + sind β1

�d/2�∑
i=0

ai(β2)

}−[s+2+(k−s)/d]
dβ2 dβ1,

k = 0, 1, 2, . . . , (20)

replacing the three-fold integral by a two-fold one. The first moment of edge length can be
given explicitly by the use of symmetry arguments. The mean of the projection of z onto Ed,s

is its midpoint. Hence,

E Ld,s = 2 E �d,s E cos Bd,s

= 
( 1
2 (d + 1))
( 1

2 (ds + d − s))
( 1
2 (ds − s + 2))
(s − (s − 1)/d)

{
( 1
2 (d + 2))}1−1/d
( 1

2 (ds + d − s + 1))
( 1
2 (ds − s + 1))
(s + 1 − s/d)λ1/d

.

This result was given in [11].
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4. Characteristics concerning neighbours

The probability density function of the angle Ad,s = 	 v1zv2, at the neighbour z of Ed,s , is

fAd,s
(α)

= 2(d − 1)s
( 1
2 (d + 1))
( 1

2 (ds + d − s + 2))


( 1
2d)
( 1

2 (ds + d − s + 1))

×
∫ π−α

0
(sin β1 sin(α + β1))

ds+d−s−1
(�(d−1)/2�∑

i=0

bi(β1)

)(�(d−1)/2�∑
i=0

bi(π − α − β1)

)

×
{

sind(α + β1)

�d/2�∑
i=0

ai(β1) + sind β1

�d/2�∑
i=0

ai(π − α − β1)

}−[s+2−s/d]
dβ1,

0 ≤ α ≤ π. (21)

This generalizes a result given in [1] (for fA2,2(α)). The corresponding means are given by

E Ad,s = π − 2 E Bd,s =
√

π
( 1
2 (d + 1))
( 1

2 (ds + d − s))
( 1
2 (ds − s + 1))


( 1
2d)
( 1

2 (ds + d − s + 1))
( 1
2 (ds − s + 2))

.

We call an edge incentric or excentric if the joint foot of the perpendiculars of its neighbours is
inside or outside the edge, respectively. In the special case d = 2, an incentric edge corresponds
to a pair of direct neighbours and an excentric one to a pair of indirect neighbours. For d ≥ 2,
each excentric edge represents a pair of indirect neighbours, but each incentric edge does not
necessarily represent a pair of direct neighbours. The probabilities of the typical edge Ed,s to
be incentric or excentric are respectively given by

pd,s,inc = 
( 1
2 (d + 1))
( 1

2 (ds + d − s))


( 1
2d)
( 1

2 (ds + d − s + 1))
,

pd,s,exc = 1 − 
( 1
2 (d + 1))
( 1

2 (ds + d − s))


( 1
2d)
( 1

2 (ds + d − s + 1))
.

(22)

The probability density function of the length of the typical edge can be split into two parts,
one for the typical incentric edge and one for the typical excentric edge, as follows:

fLd,s,inc(l) = 1

pd,s,inc

∫ π/2

0

∫ π/2

0
f{L,B1,B2}d,s

(l, β1, β2) dβ2 dβ1,

fLd,s,exc(l) = 2

pd,s,exc

∫ π

π/2

∫ π−β1

0
f{L,B1,B2}d,s

(l, β1, β2) dβ2 dβ1.

The probability density function of the height Hd,s over Ed,s of the neighbour z (the distance
from z to the foot of its perpendicular onto the typical edge or onto the straight line containing it)
is given by

fHd,s
(h) = d(d − 1)s
( 1

2 (d + 1))
( 1
2 (ds + d − s))(λωd)s+1−s/d


( 1
2d)
( 1

2 (ds + d − s + 1))
(s + 1 − s/d)

×
∫ π

0

h(d−1)(s+1)

sind+1 β

{�(d−1)/2�∑
i=0

bi(β)

}
exp

(
−λωdhd

sind β

)
dβ, h ≥ 0. (23)
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In the special case d = 2, the function can be simplified to

fH2,s (h) = s(λπ)s/2


( 1
2 (s + 3))

{√
λπhs exp(−λπh2) + hs−1

∫ ∞

h
√

λπ

exp(−x2) dx

}
, h ≥ 0.

(24)
This is a generalization of a result given by Brakke [1] and Collins [3], [4] for d = s = 2.
Brakke and Collins considered the distance between two neighbours positioned symmetrically
on either side of the edge, which is twice H2,2. Collins also indicated a formulation for d = 3.
The moments corresponding to (23) are

E Hk
d,s = 
( 1

2 (ds + d − s))
( 1
2 (ds + d + k − s + 1))
(s + (k − s)/d)


( 1
2 (ds + d + k − s))
( 1

2 (ds + d − s + 1))
(s − s/d)(λωd)k/d
,

k = 0, 1, 2, . . . . (25)

Finally, consider the position of the neighbour z relative to Ed,s . We scale the space by
a factor of Ld,s , so that the typical edge is just a segment of unit length with endpoints at
− 1

2 and 1
2 on the x1-axis. Denote by X the random position of z on the x1-axis (the coordinate

of its projection), and by Y the distance of z to the x1-axis (the length of the perpendicular).
Then the joint probability density function of the (scaled) location of z = (X, Y ) is

f{X,Y }d,s
(x, y) = 2(d − 1)s
( 1

2 (d + 1))
( 1
2 (ds + d − s + 2))


( 1
2d)
( 1

2 (ds + d − s + 1))

× yds−s−1{ρ+ρ−}d−1
(�(d−1)/2�∑

i=0

bi

(
1

2
π − arctan

1
2 + x

y

))

×
(�(d−1)/2�∑

i=0

bi

(
1

2
π − arctan

1
2 − x

y

))

×
{
ρd+

�d/2�∑
i=0

ai

(
1

2
π − arctan

1
2 + x

y

)

+ ρd−
�d/2�∑
i=0

ai

(
1

2
π − arctan

1
2 − x

y

)}−[s+2−s/d]
, (26)

with −∞ < x < ∞, 0 ≤ y < ∞, ρ+ = [( 1
2 + x)2 + y2]1/2, and ρ− = [( 1

2 − x)2 + y2]1/2.

5. Numerical calculations and special values

The characteristics considered in this section were calculated by numerical evaluation of
the integral formulae in Sections 3 and 4. The numerical computations were made partly by
the use of MATHEMATICA® and partly by procedures written by the author. Probability
density functions of the length Ld,s of the typical edge and the angle Ad,s spanned at one of its
neighbours are given for the special cases d = 2 and d = 3, including all corresponding
sections (1 ≤ s ≤ d), and for d = 25 with s = 1, 13, 25; see Figures 1 and 2 and
Tables 1 and 2. Furthermore, Table 2 gives the location y∗ of the maximum value f{X,Y }d,s

(0, y∗)
of the probability density function of the position of the neighbours relative to the typical edge,
when scaled to a segment of unit length. (Some other tables and figures of further characteristics
investigated in this paper can be obtained from the author.)
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Figure 1: Probability density function of the length Ld,s of the typical edge, plotted against l for (a) d = 2,
(b) d = 3 (this plot is given in [14]), (c) d = 25, and (d) d = 25.
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Figure 2: Probability density function of the angle Ad,s spanned, at a neighbour of the typical edge, by
its endpoints, plotted against α for (a) d = 2, (b) d = 3, (c) d = 25, and (d) d = 25.

https://doi.org/10.1239/aap/1118858626 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858626


The Poisson–Voronoi tessellation SGSA • 289

Table 1: Moments E Lk
d,s of the length Ld,s of the typical edge.

d s k = 1 k = 2 k = 3 k = 4 k = 5

2 1 0.785 398 0.806 079 0.960 132 1.273 35 1.839 90
2 2 0.666 667 0.630 072 0.713 921 0.915 693 1.291 94
3 1 0.687 182 0.631 044 0.667 220 0.773 694 0.961 232
3 2 0.522 612 0.403 531 0.376 644 0.396 673 0.455 961
3 3 0.430 858 0.290 878 0.245 190 0.238 011 0.255 703

25 1 0.473 580 0.343 279 0.307 221 0.314 522 0.354 664
25 13 0.055 900 9 5.98 × 10−3 9.21 × 10−4 1.82 × 10−4 4.33 × 10−5

25 25 0.030 385 5 1.80 × 10−3 1.57 × 10−4 1.78 × 10−5 2.46 × 10−6

Table 2: Moments of the angle Ad,s spanned, at a neighbour of the typical edge, by its endpoints,
and moments of the corresponding cosine; the position y∗ of the maximum f{X,Y }d,s

(0, y∗); and the
corresponding maximum value f{X,Y }d,s

(0, y∗) itself.

d s E Ad,s E A2
d,s E(cos Ad,s) E(cos Ad,s)

3 y∗ f{X,Y }d,s
(0, y∗)

2 1 1.570 80 3.333 33 −1.714 81 × 10−3 1.817 17 × 10−3 0.000 0 3.332 2
2 2 1.047 20 1.679 75 0.400 882 0.320 078 0.253 4 1.485 8
3 1 1.178 10 2.002 54 0.299 916 0.241 124 0.233 8 2.496 0
3 2 0.736 311 0.874 620 0.644 065 0.503 758 0.441 0 1.150 7
3 3 0.536 893 0.491 878 0.785 343 0.638 107 0.616 0 0.671 02

25 1 0.359 921 0.202 693 0.903 379 0.775 919 1.107 1.261 9
25 13 0.038 264 9 2.816 × 10−3 0.998 594 0.995 812 8.764 0.016 553
25 25 0.020 262 6 8.038 × 10−4 0.999 599 0.998 798 16.49 0.005 926 1

In the following, values of probability density functions for particular arguments are given.
First, we have

fBd,s
(0) =

{
1
4π, d = 2, s = 1,

0, d + s > 3.

The use of (5) for l = 0 gives

fLd,s
(0) = d2(λωd)1/d
( 1

2 (d + 1))
( 1
2 (ds + d − s))
(s + 2 − (s + 1)/d)


(s − s/d)
( 1
2d)
( 1

2 (ds + d − s + 1))

∫ π

0
w(β) dβ,

where

w(β) = sinds−s−1 β

(�(d−1)/2�∑
i=0

bi(β)

)(�(d−1)/2�∑
i=0

bi(π − β)

)
.

From

fLd,s,exc(0) = 2d2(λωd)1/d
( 1
2 (d + 1))
( 1

2 (ds + d − s))
(s + 2 − (s + 1)/d)


(s − s/d){
( 1
2d)
( 1

2 (ds + d − s + 1)) − 
( 1
2 (d + 1))
( 1

2 (ds + d − s))}
×

∫ π

π/2
w(β) dβ,

fLd,s,inc(0) = 0,
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we see that only excentric edges contribute to the probability density function of the length of
the typical edge at l = 0. Finally, we have

fAd,s
(0) = 2(d − 1)s
( 1

2 (d + 1))
( 1
2 (ds + d − s + 2))


( 1
2d)
( 1

2 (ds + d − s + 1))

×
∫ π

0
sinds−s−2 β1

(�(d−1)/2�∑
i=0

bi(β1)

)(�(d−1)/2�∑
i=0

bi(π − β1)

)
dβ1,

fAd,s
(π) =

⎧⎪⎨
⎪⎩

π

8

(
3 log(

√
2 + 1)√
2

− 1

)
≈ 0.341 521, d = 2, s = 1,

0, d + s > 3,

fHd,s
(0) =

{
1
2πλ1/2, d = 2, s = 1,

0, d + s > 3,

f{X,Y }d,s
(0, 0) =

⎧⎪⎨
⎪⎩

3π

2
√

2
, d = 2, s = 1,

0, d + s > 3.

6. Proofs

Three basic integrals often used in the following are

∫ ∞

0
ta exp(−btc) dt = 1

c



(
a + 1

c

)(
1

b

)(a+1)/c

, (27)

∫ π

0
sina t dt = √

π

( 1

2 (a + 1))


( 1
2 (a + 2))

, (28)∫ π

0
(π − t) sina t cos t dt = 1

a + 1

∫ π

0
sina+1 t dt, (29)

with 0 < a, b, c ∈ R. Furthermore, summation formulae for 
-terms are, for d > 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d/2−1∑
i=1


(i)
( 1
2 (m + 2i + 1))


(i + 3
2 )
( 1

2 (m + 2i + 2))

= 8√
πm


( 1
2 (m + 3))


( 1
2 (m + 2))

− 4

m


( 1
2d)


( 1
2 (d + 1))


( 1
2 (d + m + 1))


( 1
2 (d + m))

, d even,

1
2 (d−1)∑

i=1


(i − 1
2 )
( 1

2 (m + 2i))


(i + 1)
( 1
2 (m + 2i + 1))

= 2
√

π
( 1
2m)


( 1
2 (m + 1))

− 4

m


( 1
2d)


( 1
2 (d + 1))


( 1
2 (d + m + 1))


( 1
2 (d + m))

, d odd,

(30)

for m = 1, 2, . . . .
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Proof of (30). The equality can be shown immediately for d = 3 and d = 4 for each m ≥ 1.
To handle the case of even d by induction, we write

Kd,m =
d/2−1∑
i=1


(i)


(i + 3
2 )


( 1
2 (m + 2i + 1))


( 1
2 (m + 2i + 2))

= 8√
πm


( 1
2 (m + 3))


( 1
2 (m + 2))

− 4

m


( 1
2d)


( 1
2 (d + 1))


( 1
2 (d + m + 1))


( 1
2 (d + m))

;

the second equality holds for d = 4. Then,

Kd+2,m = Kd,m + 
( 1
2d)


( 1
2 (d + 3))


( 1
2 (d + m + 1))


( 1
2 (d + m + 2))

= 8√
πm


( 1
2 (m + 3))


( 1
2 (m + 2))

− 4

m


( 1
2d + 1)


( 1
2 (d + 3))


( 1
2 (d + m + 3))


( 1
2 (d + m + 2))

proves the first line of (30). The equality can be shown analogously for odd d.

Proof of (9). The d-volume of a truncated sphere of radius r and intersection longitude β is
given, without loss of generality, by

�d(r, β) =
d︷ ︸︸ ︷∫

· · ·
∫

{xi : ∑d
i=1 x2

i ≤r2,xd≤r cos β}

d∏
i=1

dxi

= rd�d(1, β),

with Cartesian coordinates xi, i = 1, . . . , d, which can be simplified by recursion to

�d(r, β) = rd

∫ cos β

−1
�d−1(

√
1 − x2

d , 0) dxd

= rd�d−1(1, 0)

∫ cos β

−1
(1 − x2

d )(d−1)/2 dxd.

Here, (1 − x2
d )1/2 is the radius of the intersection between the complete sphere b(o, 1) and the

hyperplane x = xd . For complete spheres, the relationship

�k(1, 0) = �k−1(1, 0)

∫ π

0
sink ϕ dϕ, k > 1,

holds. Repeated recursion and the substitution xd = cos ϕ lead to

�d(1, β) =
d−1∏
i=1

(∫ π

0
sini ϕ dϕ

) ∫ π

β

sind ϕ dϕ, d ≥ 2.
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Integration by parts and recursion give∫ π

β

sinn+2 ϕ dϕ = n + 1

n + 2

∫ π

β

sinn dϕ + 1

n + 2
sinn+1 β cos β, n ≥ 0,

which leads to∫ π

β

sind ϕ dϕ

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


( 1
2 (d + 1))


( 1
2d + 1)

(√
π

(
1 − β

π

)
+ cos β

2

d/2∑
i=1


(i)


(i + 1
2 )

sin2i−1 β

)
, d even,


( 1
2 (d + 1))


( 1
2d + 1)

(√
π cos2 1

2
β + cos β

2

(d−1)/2∑
i=1


(i + 1
2 )


(i + 1)
sin2i β

)
, d odd,

d ≥ 2,

and use of (28) gives (9) and (10). The union of two overlapping spheres with radii
l sin β2/sin(β1 +β2) and l sin β1/sin(β1 +β2) and midpoint distance l is the same as the union
of two truncated spheres with intersection longitudes β1 and β2 and radii l sin β2/sin(β1 + β2)

and l sin β1/sin(β1 + β2), respectively. This observation leads to (8).

Proof of (6). Recall that each vertex in the s-dimensional section Vs is the intersection point
with a (d −s)-facet of V in R

d . Consider the typical vertex o of Vs , which has s+1 equidistant
nearest neighbours at a distance δ. The interior of the sphere b(o, δ) contains no neighbours, but
its boundary ∂b(o, δ) contains s +1 neighbours. Following [8], the point configuration outside
b(o, δ) can be handled in the same way as can a Poisson point process. The statement given in
[8, Lemmas 1 and 1′] can be generalized to section hyperplanes of each dimension s =
1, 2, . . . , d. The region in b(o, δ) can be considered to be a Poisson point process conditioned
on the event that there are s + 1 points on the boundary ∂b(o, δ) and none in its interior. To
determine the distribution function F�d,s

of the distance �d,s of the nearest neighbours to
the typical vertex, it can be imagined that these s + 1 neighbours are located in a thin hull
b(o, δ + ε) \ bint(o, δ). (The probability of the event that there are more than s + 1 points in
this hull is neglected.) Then F�d,s

can be written as a conditional probability in the following
way:

F�d,s
(δ) = lim

ε↓0

∫ δ

0 P(�(bint(o, x)) = 0, �(b(o, x + ε)) = s + 1) dx∫ ∞
0 P(�(bint(o, x)) = 0, �(b(o, x + ε)) = s + 1) dx

.

The use of well-known distributional properties of Poisson point patterns gives

F�d,s
(δ) = lim

ε↓0

∫ δ

0 (λωd)s+1/(s + 1)! {(x + ε)d − xd}s+1 exp(−λωd(x + ε)d) dx∫ ∞
0 (λωd)s+1/(s + 1)! {(x + ε)d − xd}s+1 exp(−λωd(x + ε)d) dx

.

Neglect of all O(ε2) terms in the integrand, and differentiation, lead to (6), while use of (27)
yields (7).

Proof of (11). The derivative ν′
d(l, β1, β2) is the volume of the difference set

b(l + dl, ‖z0 − (l + dl)‖) \ b(l, ‖z0 − l‖)
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divided by dl or, equivalently, the derivative dνd(l, β1, β2(l, δ, β))/dl in (1) transformed
according to (4). For a generic function f , let f ′ denote the derivative df (l, β1, β2(l, δ, β))/dl

transformed according to (4). Then we obtain the following relationships:((
l sin β1

sin(β1 + β2)

)d)′
= d

(
l sin β1

sin(β1 + β2)

)d−1

cos β2,((
l sin β1

sin(β1 + β2)

)d

(π − β2)

)′
=

(
l sin β1

sin(β1 + β2)

)d−1

(d(π − β2) cos β2 + sin β2),((
l sin β1

sin(β1 + β2)

)d

cos β2 sinn β2

)′
=

(
l sin β1

sin(β1 + β2)

)d−1

× sinn β2(d − n − (d − n − 1) sin2 β2), n ≥ 0,

and ((
l sin β2

sin(β1 + β2)

)d)′
=

((
l sin β2

sin(β1 + β2)

)d

(π − β1)

)′

=
((

l sin β2

sin(β1 + β2)

)d

cos β1 sinn β1

)′
= 0.

For even d, these expressions lead to

ν′
d(l, β1, β2)

= ωd

(
l sin β1

sin(β1 + β2)

)d−1{
d(π − β2) cos β2 + sin β2

π

+ 1

2
√

π

d/2∑
i=1


(i)


(i + 1
2 )

((d − 2i + 1) sin2i−1 β2 − (d − 2i) sin2i+1 β2)

}

= ωd

(
l sin β1

sin(β1 + β2)

)d−1{
d(π − β2) cos β2 + sin β2 + (d − 1) sin β2

π

+ 1

2
√

π

d/2−1∑
i=1

({
− 
(i)


(i + 1
2 )

(d − 2i) + 
(i + 1)


(i + 3
2 )

(d − 2i − 1)

}
sin2i+1 β2

)}

and, thus, the first line of (12) is shown. The proof for odd d is analogous.

Proof of (13). Inserting (11), (6), and (4) into the integrand of (3) and using the symmetric
property fL,B1,B2(l, β1, β2) = fL,B1,B2(l, β2, β1) gives

fBd,s
(β) ∼ sinds−s−1 β

�(d−1)/2�∑
i=0

bi(β), 0 ≤ β < π.

To find the correct normalization, consider the integral expression

Id,s =
∫ π

0
sinds−s−1 β

�(d−1)/2�∑
i=0

bi(β) dβ.
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The use of (28) and (29) gives, for d > 2,

Id,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds − s + 1√
π(d − 1)s


( 1
2 (ds − s + 1))


( 1
2 (ds − s + 2))

−1

4

d/2−1∑
i=1


(i)


(i + 3
2 )


( 1
2 (ds − s + 2i + 1))


( 1
2 (ds − s + 2i + 2))

, d even,

√
π

2


( 1
2 (ds − s))


( 1
2 (ds − s + 1))

−1

4

(d−1)/2∑
i=1


(i − 1
2 )


(i + 1)


( 1
2 (ds − s + 2i))


( 1
2 (ds − s + 2i + 1))

, d odd,

and simplification using (30) leads to the normalization factor given in (13). The use of (29)
and

∫ π

0 β sinn β dβ = 1
2π

∫ π

0 sinn β dβ gives (14) and (16) for odd k, while the use of (30)
leads to (15).

Proof of (17), (18), (19), and (20). The use of (6), (13), (8), (9), (10), (11), (12), and (4) in
(1) leads to (17), (18), and (19), while the use of (27) yields (20).

Proof of (21). The joint density of the neighbour–vertex–edge angles, obtained from (17)
and (27), is

f{B1,B2}d,s
(β1, β2) = 2(d − 1)s
( 1

2 (d + 1))
( 1
2 (ds + d − s + 2))


( 1
2d)
( 1

2 (ds + d − s + 1))

× (sin β1 sin β2)
ds+d−s−1

(�(d−1)/2�∑
i=0

bi(β1)

)(�(d−1)/2�∑
i=0

bi(β2)

)

×
{

sind β2

�d/2�∑
i=0

ai(β1) + sind β1

�d/2�∑
i=0

ai(β2)

}−[s+2−s/d]
,

0 ≤ β2 < π − β1, 0 ≤ β1 < π. (31)

This formula generalizes results given in [13] for f{B1,B2}d,s
(β1, β2) with 2 ≤ d ≤ 3, 2 ≤ s ≤ d.

An expression equivalent to (31) is given in [18]. Using the substitution β2 = π − α − β1 and
integrating with respect to β1 yields (21).

Proof of (22). The probability that the typical edge Ed,s is incentric is

pd,s,inc = P(B1d,s
, B2d,s

≤ 1
2π).

From the symmetry of (31), the probability that the typical edge Ed,s is excentric can be written
as

pd,s,exc = P(either B1d,s
or B2d,s

is greater than 1
2π)

= 2
∫ π

π/2

∫ π−β1

0
f{B1,B2}d,s

(β1, β2) dβ2 dβ1 = 2
∫ π

π/2
fBd,s

(β) dβ.

The use of (13), (28), (29), and (30) gives (22).
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Proof of (23). The distance Hd,s from z to the foot of its perpendicular on Ed,s , or simply
the height of z, is equivalent to the product of �d,s and sin Bd,s . The distribution function can
be written as

FHd,s
(h) =

∫ ∞

0

∫ π

0︸ ︷︷ ︸
Hd,s<h

f�d,s
(δ)fBd,s

(β) dδ dβ.

Using the substitution δ = h/sin β and differentiating with respect to h leads to

fHd,s
(h) =

∫ π

0
f�d,s

(
h

sin β

)
fBd,s

(β)
1

sin β
dβ, h ≥ 0,

and, thus, (23). The moments (25) are obtained from E Hk
d,s = E �k

d,s E sink Bd,s , using (7)
and (15).

To simplify (23) for the special case d = 2, we write

Jρ(h) = hs exp(−ρh2) and Jτ (h) = hs−1
∫ ∞

τh

exp(−x2) dx.

Then, evaluation of the expression

r

∫ ∞

0
hkJρ(h) dh + t

∫ ∞

0
hkJτ (h) dh

= r

2

(
1

ρ

)(k+s+1)/2


( 1
2 (k + s + 1)) + t

2(k + s)

(
1

τ

)k+s


( 1
2 (k + s + 1))

= E Hk
2,s , k = 0, 1, 2, . . . ,

using (27) and (25), allows the determination of r, ρ, t , and τ via comparison of coefficients,
and leads to (24).

Proof of (26). Finally, applying the transformation

β1 = 1

2
π − arctan

1
2 + x

y
, β2 = 1

2
π − arctan

1
2 − x

y
,∣∣∣∣∂(β1, β2)

∂(x, y)

∣∣∣∣ = y

(( 1
2 + x)2 + y2)(( 1

2 − x)2 + y2)

in (31) leads to (26).
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