A NOTE ON WEAKLY SYMMETRIC RINGS

BY P. J. HORN

Introduction. T. Nakayama showed in [2, Theorem 13] that symmetric algebras have the property that the left and right annihilators of their two-sided ideals are equal. He also gave examples [2, p. 630] to show that QF algebras with this property are not necessarily symmetric, and that weakly symmetric algebras need not have this property.

In this note a result of K. R. Fuller [1] is used to show that weakly symmetric rings can be characterized in terms of these annihilator conditions.

Preliminaries. Throughout this paper R denotes a ring with identity and N the Jacobson radical of R. If $_RM$ is a left R-module, then the left annihilator of M is the ideal

$$\ell(M) = \{ x \in R \mid xM = 0 \}.$$

Similarly for a right module M_R we define the right annihilator $\iota(M_R)$. The injective hull and the socle of $_RM$ are denoted by $E(_RM)$ and $Soc(_RM)$ respectively. If $_RS$ is a simple left *R*-module, then the *S*-socle of *R* is the ideal

$$R[_{R}S] = \sum \left\{ S' \le R \mid _{R}S' = _{R}S \right\}$$

If e and f are primitive idempotents, we say Re is paired to fR if $Soc(Re) \simeq Rf/Nf$ and $Soc(fR) \simeq eR/eN$.

LEMMA 1. Let R be an artinian ring with primitive idempotents e and f.

- (a) If Soc(Re) and Soc(fR) are both simple, then $\ell(Re) = \iota(fR)$ if and only if Re is paired to fR.
- (b) If R is a QF ring, then Re is paired to f R if and only if R[Rf|Nf] = R[eR|eN].

Proof. (a) (\Rightarrow) Suppose that Soc(Re) $\ddagger Rf/Nf$. Then fi(N)e=0 as Soc(Re) is simple. Thus fRi(N)e=0 as i(N) is an ideal. Now, since $i(N)e \subseteq i(fR) = \ell(Re)$, we have i(N)eRe=0. Thus Soc(Re)=i(N)e=0 which contradicts the fact that R is artinian. Similarly we show Soc(fR) $\simeq eR/eN$.

(⇐) Now

$$i(fR) = \ell(E(Rf/Nf) \text{ by [1. Lemma 1.1]},$$
$$= \ell(E(\text{Son } Re)) \text{ by hypothesis,}$$
$$= \ell(Re) \text{ as } Re \text{ is injective by}$$
$$[1, \text{ Theorem 3.1]}$$

Received by the editors February 21, 1973 and, in revised form, May 25, 1973.

531

[December

(b) (\Rightarrow) Now Soc(*Re*) $\simeq Rf/Nf$ implies $fr(N)e \neq 0$. But

$$f_{i}(N)e \subseteq i(N)e = \operatorname{Soc}(Re) = R[Rf/Nf],$$

and

$$fi(N)e \subseteq f\ell(N)e \subseteq f\ell(N) = \operatorname{Soc}(fR) \subseteq R[eR/eN].$$

Thus $R[Rf/Nf] \cap R[eR/eN] \neq \emptyset$. Consequently R[Rf/Nf] = R[eR/eN], as both these ideals are simple.

(\Leftarrow) As *R* is a *QF* ring, assume Soc(*Re*) $\simeq Rg/Ng$, where *g* is a primitive idempotent. Thus R[eR/eN] = R[Rg/Ng]. But R[eR/eN] = R[Rf/Nf] by hypothesis. Thus $Rg/Ng \simeq Rf/Nf$, and consequently *Re* is paired to *fR* since *R* is a *QF* ring.

LEMMA 2. If R is an artinian ring and e a primitive idempotent, then $\ell(Re/Ne) = \iota(eR/eN)$.

Proof. Obvious.

Before proceeding to the theorem we recall that an artinian ring R has an orthogonal set of primitive idempotents e_1, \ldots, e_n that is *basic* in the sense that Re_1, \ldots, Re_n represent one copy of each of the indecomposable projective left R-modules; and that R is called a *weakly symmetric* ring in case R is QF and Soc $(Re_i) \simeq Re_i/Ne_i$ for each $i=1, \ldots, n$ (i.e., in case each Re_i is paired to e_iR).

THEOREM. Let R be a QF ring and e_1, \ldots, e_n a basic set of primitive idempotents. Then the following are equivalent.

(a) R is weakly symmetric,

(b) $\ell(Re_i) = i(e_iR)$ for i = 1, 2, ..., n,

- (c) $\ell(Z) = i(Z)$ for every ideal $Z \supseteq N$,
- (d) $\ell(Z) = \iota(Z)$ for every minimal ideal Z,
- (e) $\ell(Z) = i(Z)$ for every maximal ideal Z.

Proof. (a) \Leftrightarrow (b). This follows directly from part (a) of Lemma 1. (a) \Rightarrow (c). If Z is an ideal containing N, then

$$\ell(Z) \subseteq \ell(N) = \operatorname{Soc}(R_R) = \operatorname{Soc}(R_R).$$

But since $\ell(Z)$ is an ideal, we have

$$\ell(Z) = \sum_{i=1}^{m} R[Re_i/Ne_i], \text{ where } m \leq n, \text{ with}$$

renumbering if necessary. Thus

$$Z \subseteq \iota(R[Re_i/Ne_i]) = \ell(R[Re_i/Ne_i]) \text{ for } i = 1, 2, \cdots, m,$$

with this last step following from part (b) of Lemma 1, Lemma 2 and the fact that $i(R[Re_i/Ne_i]) = i(Re_i/Ne_i)$. Thus $\ell(Z) \subseteq i(Z)$. Similarly we show $i(Z) \subseteq \ell(Z)$.

(c) \Rightarrow (d). Suppose Z is a minimal ideal in R. Then $\ell(Z) \supseteq \ell i(N) = N$ follows since $Z \subseteq i(N)$ and R is a QF ring. Consequently by hypothesis we can write

$$Z = i(\ell(Z)) = \ell(\ell(Z)).$$

532

That is $Z\ell(Z)=0$, which proves $\ell(Z)\subseteq \iota(Z)$. Similarly we show $\ell(Z)\supseteq \iota(Z)$. (d) \Rightarrow (b). Consider the minimal ideal $Z=R[Re_i/Ne_i]$. Now

$$i(R[Re_i/Ne_i]) = \ell(R[Re_i/Ne_i])$$
 by hypothesis,
= $i(R[e_iR/e_iN])$ by Lemma 2.

Therefore

$$R[Re_i/Ne_i] = \ell i (R[Re_i/Ne_i])$$

= $\ell i (R[e_iR/e_iN]),$
= $R[e_iR/e_iN]$ as R is QF.

Thus

 $\ell(Re_i) = i(e_iR)$ by Lemma 1.

The statement (e) of the theorem is obviously implied by (c), and assuming (e) one can readily prove statement (d), as in a QF ring any minimal ideal is the left annihilator of a maximal ideal.

References

1. K. R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115.

2. T. Nakayama, On Frobeniusean algebras I, Ann. of Math. 40 (1939), 611-633.

DEPARTMENT OF MATHEMATICS, BOX 5717 NORTHERN ARIZONA UNIVERSITY, FLAGSTAFF, ARIZONA 86001 U.S.A.

1974]