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A NOTE ON WEAKLY SYMMETRIC RINGS 
BY 

P. J. HORN 

Introduction. T. Nakayama showed in [2, Theorem 13] that symmetric algebras 
have the property that the left and right annihilators of their two-sided ideals are 
equal. He also gave examples [2, p. 630] to show that QF algebras with this 
property are not necessarily symmetric, and that weakly symmetric algebras need 
not have this property. 

In this note a result of K. R. Fuller [1] is used to show that weakly symmetric 
rings can be characterized in terms of these annihilator conditions. 

Preliminaries. Throughout this paper R denotes a ring with identity and N 
the Jacobson radical of R. If RM is a left jR-module, then the left annihilator of M 
is the ideal 

S(M) = {xeR\xM = 0}. 

Similarly for a right module MR we define the right annihilator t(MR). The injective 
hull and the socle of RM are denoted by E{RM) and $oc{RM) respectively. If RS is 
a simple left i?-module, then the S-socle of R is the ideal 

R[Rs] = 2 {s' ^ RI Rs' = Bs} 
If e a n d / a r e primitive idempotents, we say Re is paired to fR if Soc(Re)c^RflNf 
and Soc(fR)~eRleN. 

LEMMA 1. Let R be an artinian ring with primitive idempotents e andf. 
(a) IfSoc(Re) and Soc(fR) are both simple, then S(Re)=t(fR) if and only if 

Re is paired tofR. 
(b) IfR is a QFring, then Re is paired tofR if and only ifR[RflNf]=R[eRleN]. 

Proof, (a) (=>) Suppose that $oc(Re)^RflNf Then/4(JV>==0 as Soc(ite) is 
simple. ThusfRt(N)e=0 as i(N) is an ideal. Now, since 4(N)e^4(fR)=£(Re)9 

we have t(N)eRe=0. Thus Soc(Re)=t(N)e=0 which contradicts the fact that 
R is artinian. Similarly we show Soc(fR)~eRleN. 

(<=) Now 

</R) = AE(Rf/Nf) by [1. Lemma 1.1], 

= /(£(Son Re)) by hypothesis, 

= ^(Re) as Re is injective by 

[1, Theorem 3.1] 
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(b) (=>) Now Soc(Re)~RfINf implies fo(N)e?*0. But 

MN)e c *(JV)e = Soc(i^e) = R[Rf/Nf], 
and 

/*(JV)e c //(JV)e ç //(AT) = Soc(/R) c £[e#/eiV]. 

Thus R[RflNf] C\R{eRleN]^0. Consequently R[RflNf]=R[eRleN], as both 

these ideals are simple. 
(<=0 As R is a g F ring, assume Soc(Re)~RglNg, where g is a primitive idem-

potent. Thus R[eRleN]=R[RglNg]. But R[eRleN]=R[RflNf] by hypothesis. 
Thus RgjNg^RfjNf and consequently ite is paired to /R since i? is a gor ing . 

LEMMA 2. If Ris an artinian ring and e a primitive idempotent, then £(Re/Ne)= 
4(eR/eN). 

Proof. Obvious. 

Before proceeding to the theorem we recall that an artinian ring R has an orthog
onal set of primitive idempotents eu . . . , en that is basic in the sense that Rel9 . . . , 
Ren represent one copy of each of the indecomposable projective left i£-modules; 
and that R is called a weakly symmetric ring in case R is QFand Soc(Rei)c^ReiINei 

for each / = ! , . . . , « (i.e., in case each Ret is paired to ^JR). 

THEOREM. Let Rbe a QFring and el9 . . . , en a basic set of primitive idempotents. 
Then the following are equivalent. 

(a) R is weakly symmetric, 
(b) S(Ret)=*(eiR)for / = 1 , 2, . . . , n, 
(c) ^(Z)=*(Z) for every idealZ^N, 
(d) ^(Z)==^(Z)for every minimal ideal Z , 
(e) ^(Z)=^(Z)for every maximal ideal Z. 

Proof, (a )o(b) . This follows directly from part (a) of Lemma 1. 
(a):=>(c). If Z is an ideal containing N, then 

/(Z) s t(N) = Soc(l^) = SOCGJR). 

But since ^(Z) is an ideal, we have 

/(Z) = 2JLi RlReJNe,], where m ^ w, with 

renumbering if necessary. Thus 

Z ç *(R[RejNe$ = ^(R[ReJNeJ[) for i = 1, 2, • • •, m, 

with this last step following from part (b) of Lemma 1, Lemma 2 and the fact 
that ^RlReJNe^tiReJNei). Thus S(Z)Ç*(Z). Similarly we show *(Z)£^(Z). 

(c)=>(d). Suppose Z is a minimal ideal in R. Then /(Z) ^ A(N)=N follows since 
Z c *(N) and i? is a g i 7 ring. Consequently by hypothesis we can write 

Z = <*f(Z)) = ^ (Z ) ) . 
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That is Z*f(Z)=0, which proves /(Z)£*(Z). Similarly we show ^(Z)2 <Z). 
(d)=>(b). Consider the minimal ideal Z^RlReJNe^ Now 

^(RlReJNe,]) = ^[ReJNe,]) by hypothesis, 

= ^R^R/e^J) by Lemma 2. 
Therefore 

RlRejNe,] = ^(RlReJNe,]) 

= /KRletRfaNJ), 
= RfcR/e^] as # is gF. 

Thus 
/(jRet) = ^ f l ) by Lemma 1. 

The statement (e) of the theorem is obviously implied by (c), and assuming 
(e) one can readily prove statement (d), as in a goring any minimal ideal is the left 
annihilator of a maximal ideal. 
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