ON THE MÖBIUS FUNCTION OF $\operatorname{Hom}(P, Q)$

T.P. Speed

A formula is given for the Möbius function of the poset $\operatorname{Hom}(P, Q)$ of all order-preserving maps between two finite posets P and Q. Two applications of the formula are presented.

1. Introduction

Let P and Q be arbitrary finite partially ordered sets (posets) with zeta and Möbius functions ζ_{P}, ζ_{Q} and μ_{P}, μ_{Q} respectively. We give a formula for the Möbius function μ of the poset $\operatorname{Hom}(P, Q)$ of all order-preserving maps $\varphi: P \rightarrow Q$ in terms of $\zeta_{P}, \zeta_{Q}, \mu_{P}$ and μ_{Q}; see equation (1) below. An earlier result due to Rota ([6], p. 350) attacks the same problem, but the formula obtained there seems less explicit.

Two applications of our formula are given. The first rederives the well-known expression for the Möbius function of a finite distributive lattice L by using the anti-isomorphism of L with $\operatorname{Hom}(P, 2)$, where $P=P(L)$ is the poset of all join-irreducible elements of L and 2 is the 2-element chain. In our second application of (1) we obtain combinatorial generalisations on $\operatorname{Hom}(P, P(\underline{\underline{m}}))$ of the familiar descending powers $(n)_{r}=n(n-1) \ldots(n-r+1)$ which are related to ordinary powers n^{r} via the Möbius function of the lattices $P(\underline{\underline{m}})$ of all partitions of the set $\underline{\underline{m}}=\{1, \ldots, m\}$. These results are required for some applications to

Received 12 October 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 00049727/84 $\$ \mathrm{~A} 2.00+0.00$.
statistics in which the orbits on m-tuples of the action of a generalised wreath product of symmetric groups play a prominent role; see Praeger et al [5].

2. The formula

PROPOSITION 1. The Möbius function μ of $\operatorname{Hom}(P, Q)$ is given by

$$
\begin{equation*}
\mu(\varphi, \psi)=\prod_{p \in P}\left\{\mu_{Q}(\varphi(p), \psi(p)) \prod_{p^{\prime}>p} \zeta_{Q}\left(\psi(p), \varphi\left(p^{\prime}\right)\right)\right\} \tag{1}
\end{equation*}
$$

where $\varphi, \psi \in \operatorname{Hom}(P, Q)$.
Proof. We begin by recalling the zeta function ζ of $\operatorname{Hom}(P, Q)$ which, since the ordering on $\operatorname{Hom}(P, Q)$ is componentwise, takes the form

$$
\begin{equation*}
\zeta(\psi, x)=\prod_{p \in P} \zeta_{Q}(\psi(p), x(p)) \tag{2}
\end{equation*}
$$

Let us denote the right hand side of (1) by $\vartheta(\varphi, \psi)$; our aim is to take its product with (2) and sum over ψ, and if we can obtain the result $\delta(\varphi, X)=1$ if $\varphi=X, \delta(\varphi, X)=0$ otherwise, the result will be proved. If we regard the sum as being over $\psi(p) \in Q$ subject to the constraints $\varphi(p) \leq \psi(p) \leq \chi(p)$ and $\psi(p) \leq \varphi\left(p^{\prime}\right)$ for all $p^{\prime}>p$, as well as those imposed by the motonicity requirement $\psi(p) \leq \psi\left(p^{\prime}\right)$ for all $p^{\prime}>p$, and then sum over $p \in P$, the whole summation can be evaluated by working down from the maximal elements of P.

More precisely, let us suppose that p is a maximal element of P. Then we can sum over $\psi(p)$ in the product $\vartheta(\varphi, \psi) \zeta(\psi, \chi)$ subject only to the constraint $\varphi(p) \leq \psi(p) \leq x(p)$, and by the definition of μ_{Q} we obtain $\delta_{Q}(\varphi(p), X(p))$, where δ_{Q} is the (Kronecker) delta function on $Q: \delta_{Q}\left(q, q^{\prime}\right)=1$ if $q=q^{\prime}$ and $\delta_{Q}\left(q, q^{\prime}\right)=0$ otherwise. This argument can be used for all maximal elements of P.

Now suppose that p is an arbitrary element of P and that we have summed over $\psi\left(p^{\prime}\right)$ for all $p^{\prime}>p$, respecting the constraints noted above, and that in each case the result was $\delta\left(\varphi\left(p^{\prime}\right), \chi\left(p^{\prime}\right)\right)$. Then we may sum over $\psi(p)$ subject only to the constraint $\varphi(p) \leq \psi(p) \leq \chi(p)$, since the remaining constraints $\psi(p) \leq \varphi\left(p^{\prime}\right)$ and $\psi(p) \leq \psi\left(p^{\prime}\right)$ for all $p^{\prime}>p$ are automatically satisfied when $\varphi\left(p^{\prime}\right)=\chi\left(p^{\prime}\right)$ for all $p^{\prime}>p$, and this
is true by our inductive hypothesis. Thus we obtain the term $\delta(\varphi(p), \psi(p))$ once more and our inductive proof is complete.

It is well known, see for example Birkhoff [3], that every finite distributive lattice L is anti-isomorphic to the lattice $\operatorname{Hom}(P, 2)$ where $P=P(L)$ is the set of all join-irreducibles of L and 2 is the 2-element chain. Using this fact we can re-derive the following known result.

COROLLARY. The Möbius function μ_{L} of a finite distributive lattice L is given by

$$
\mu_{L}(a, b)= \begin{cases}1 & \text { if } a=b, \\ (-1)^{m} & \text { if } b \text { is the join of } m \text { elements covering } a, \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. We represent L as the dual of $\operatorname{Hom}(P, 2)$ where $P=P(L)$ is the poset of join-irreducibles of L via the map $a \rightarrow \varphi_{a}$ where $\varphi_{a}: P \rightarrow 2$ is given by

$$
\varphi_{a}(p)= \begin{cases}0 & \text { if } p \leq a \\ 1 & \text { otherwise }\end{cases}
$$

Clearly we must have $\mu_{L}(a, b)=\mu\left(\varphi_{b}, \varphi_{a}\right)$, where μ is the Möbius function of $\operatorname{Hom}(P, 2)$ and we use (1) to find the expression above for μ_{L}.

Suppose that $a<b$. Then $\mu\left(\varphi_{b}, . \varphi_{a}\right)$ given by (1) is the product of terms taking the form

$$
\begin{equation*}
\mu_{2}\left(\varphi_{b}(p), \varphi_{a}(p)\right) \prod_{p^{\prime}>p} \zeta_{2}\left(\varphi_{a}(p), \varphi_{b}\left(p^{\prime}\right)\right), p \in P \tag{3}
\end{equation*}
$$

Define the sets $P_{1}=\left\{p \in P: \varphi_{a}(p)=0\right\}, P_{2}=\left\{p \in P: \varphi_{b}(p)=1\right\}$ and $P_{3}=\left\{p \in P: \varphi_{b}(p)=0, \varphi_{a}(p)=1\right\}$. Then it is clear that if $p \in P_{1}$, the expression (3) takes the value 1 ; similarly if $p \in P_{2}$. Finally, if $p \in P_{3}$, then (3) takes the value -1 as long as there is no
$p^{\prime}>p$ also belonging to P_{3}; otherwise (3) takes the value 0 . Thus $\mu\left(\varphi_{b}, \varphi_{a}\right)=(-1)^{m}$ if $\left|P_{3}\right|=m$ and no pair of elements in P_{3} is comparable, $\left|P_{3}\right|=0$ otherwise. In the former case b is the sup of the m elements $\left\{a \vee p: p \in P_{3}\right\}$ which cover a, and the corollary is proved.

3. $\operatorname{Hom}(P, P(\underline{\underline{m}}))$

When $Q=P(\underline{\underline{m}})$, the lattice of all partitions of the set $\underline{\underline{m}}=\{1, \ldots, m\}$, we can obtain natural extensions of some standard formulae. These extensions are required for some statistical applications which build upon the main result proved in Praeger et al [5] namely, that the orbits of the action of a generalised wreath product group on m-tuples of elements of the basic set are labelled by $L=\operatorname{Hom}(P, P(\underline{\underline{m}}))$. These applications required not only the Möbius function μ_{L} of L but also some natural generalisations of ascending and descending powers.

Let us review the results on $P(\underline{m})$ (the case P a singleton) which we wish to generalise. When σ is a partition of $\underline{\underline{m}}$ into $b=b(\sigma)$ blocks, write $n^{\sigma}:=n^{b(\sigma)}$ and $(n)_{\sigma}=n(n-1) \ldots(n-b(\sigma)+1), n \in \mathbb{N}$. Then the following formulae are well known, see Aigner [1]:

$$
\begin{equation*}
n^{\sigma}=\sum_{\tau} \zeta(\sigma, \tau)(n)_{\tau}, \tag{4a}
\end{equation*}
$$

$$
\begin{equation*}
(n)_{\sigma}=\sum_{\tau} \mu(\sigma, \tau) n^{\tau}, \tag{4b}
\end{equation*}
$$

where ζ and μ are the zeta and Möbius functions of $P(\underline{m})$. A related number is $(n)(\rho, \tau)$ defined by

$$
\begin{equation*}
{ }^{(n)}(\rho, \tau)=\sum_{\pi} \mu(\rho, \pi) \zeta(\pi, \tau) n^{\pi} \tag{5}
\end{equation*}
$$

The number $(n)_{\sigma}$ can be viewed as the number of maps $h: \underline{\underline{n}} \rightarrow \underline{\underline{\underline{m}}}$ whose kernel equivalence ker $h=\sigma$. The corresponding result for ${ }^{(n)}(\rho, \tau)$ is the following lemma.

LEMMA. For arbitrary elements $\rho, \tau \in \mathbb{P}(\underline{\underline{m}})$ with $\rho \leq \tau$,

Proof.

$$
\begin{aligned}
\sum_{\pi} \mu(\rho, \pi) \zeta(\pi, \tau) n^{\pi} & =\sum_{\pi} \mu(\rho, \pi) \zeta(\pi, \tau) \sum_{\sigma} \zeta(\pi, \sigma)(n)_{\sigma} \text { by (4a) } \\
& =\sum_{\sigma}\left\{\sum_{\pi} \mu(\rho, \pi) \zeta(\pi, \tau \wedge \sigma)\right\}(n)_{\sigma} \\
& =\sum_{\sigma} \delta(\rho, \tau \wedge \sigma)(n)_{\sigma}
\end{aligned}
$$

and the result follows from the remark preceding the lemma.
It is clear that ${ }^{(n)}(\rho, \rho)=n^{\rho},(n)_{(\rho, \underline{\underline{m}})}=(n)_{\rho}$ where $\underline{\underline{m}}$ is the single block partition of $\underline{\underline{m}}$. Partitions π such that $\pi \wedge \tau=0$ and hence ${ }^{(n)}(0, \tau)$ also play a role in certain combinatorial matters, see Doubilet [4]; here 0 denotes the partition $0=1|2| \ldots \mid m$ of m into singletons. There is no simple general expression for ${ }^{(n)}(\rho, \tau)$, $\rho, \tau \in P(\underline{m})$.

Another view of the numbers $(n)_{\sigma}, n^{\sigma}$ and $(n)(\rho, \tau)$ follows from the fact that the orbits of the symmetric group S_{n} acting on ordered m-tuples $\underline{\underline{\underline{\underline{m}}}} \underline{\underline{\underline{M}}}$ of elements from $\underline{\underline{n}}=\{1, \ldots, n\}$ are naturally labelled by partitions $\sigma \in P(\underline{\underline{m}})$. Indeed if we denote them by $\left\{0_{\sigma}: \sigma \in P(\underline{\underline{m}})\right\}$, then

$$
\left|\underset{\sigma \wedge \tau=\rho}{U} O_{\sigma}\right|={ }^{(n)}(\rho, \tau)
$$

Our desired extensions of these results concern group actions $\left(i_{n_{p}}, n_{p}\right), p \in P$, labelled by a poset P, where $S_{n_{p}}$ is the symmetric group on n_{p} elements and $\underline{\underline{n}}_{p}=\left\{1, \ldots, n_{p}\right\}$, and their generalised wreath product $\left(G, \underline{\underline{n}}_{p}\right)$ where $\underline{\underline{n}}_{p}=\prod_{p \in P} \underline{n}_{p}$. This product is defined and
studied in Bailey et al [2], and further in Praeger et al [5] where it is proved that the orbits of G acting on $\underline{\underline{n}} \overline{\overline{\bar{P}}}$ take the form

$$
0_{\sigma}=\left\{h \in \underline{\underline{n}} \underline{\overline{\underline{p}}}: \varphi^{h}=\varphi\right\}, \varphi \in \operatorname{Hom}(P, P(\underline{\underline{m}})\},
$$

where $\varphi^{h}: P \rightarrow P(\underline{\underline{m}})$ is given by $\varphi^{h}(p)=\Lambda\left\{\operatorname{ker} h_{p^{\prime}}: p^{\prime} \geq p\right\}$.
By analogy with $\boldsymbol{P}(\underline{\underline{m}})$ we make the following definitions, noting that our use of n is now symbolic, being an abbreviation for $\left\{n_{p}, p \in P\right\}$,

$$
\begin{aligned}
n^{\varphi} & =\prod_{p \in P} n_{p}^{\varphi(p)} \\
(n)_{\varphi} & =\prod_{p \in P}\left(n_{p}\right)\left(\varphi(p), \wedge\left\{\varphi\left(p^{\prime}\right): p^{\prime}>p\right\}\right)
\end{aligned}
$$

and

$$
{ }_{(\varphi, \chi)}=\sum_{\psi} \mu_{L}(\varphi, \psi) \zeta_{L}(\psi, \chi) n^{\psi}
$$

where $\varphi, \chi \in L=\operatorname{Hom}(P, P(\underline{\underline{m}}))$. With these definitions we have complete analogues of the results for $G=S_{n}$ acting on $\underline{\underline{n}} \underline{\underline{\underline{m}}}$.

PROPOSITION 2. For every pair $\varphi, \chi \in \operatorname{Hom}(P, P(\underline{m}))$ we have

$$
\begin{equation*}
n^{\varphi}=\sum_{\psi} \zeta_{L}(\varphi, \psi)(n)_{\psi}, \tag{7a}
\end{equation*}
$$

$$
\begin{align*}
(n)_{\varphi} & =\sum_{\psi} \mu_{L}(\varphi, \psi) n^{\psi}, \tag{7b}\\
(n)_{(\varphi, \chi)} & =\left|\left\{h \in \underline{\underline{\underline{n}}}: \varphi^{h} \wedge \chi=\varphi\right\}\right| . \tag{8}
\end{align*}
$$

Proof. It suffices to prove (7b) as (7a) follows by Möbius inversion and (8) is proved in the same way as (6). Substituting the expression (1) for μ_{L} into the right-hand side of (7 b) we find that we must simplify

$$
\sum_{\psi} \prod_{p \in P}\left\{\mu(\varphi(p), \psi(p)) \prod_{p^{\prime}>p} \zeta\left(\psi(p), \varphi\left(p^{\prime}\right)\right) n_{p}^{\varphi(p)}\right\} .
$$

The result then follows by summing over $\psi \in \operatorname{Hom}(P, P(\underline{\underline{m}}))$ in the same way as we did in the proof of (1), that is, by first summing over $\psi(p)$ for p
maximal, and then only summing over $\psi(p), p$ non maximal, after having summed over all $\psi\left(p^{\prime}\right), p^{\prime}>p$.

As was the case in our earlier discussion these formulae also give the number of elements in orbits; in particular

$$
\left|0_{\varphi}\right|=\left|\left\{h \in \underline{\underline{\underline{m}}} \underline{\underline{\underline{m}}}: \varphi^{h}=\varphi\right\}\right|=(n) \varphi, \quad \varphi \in \operatorname{Hom}(P, P(\underline{\underline{m}})) .
$$

EXAMPLE. Suppose that P is the 2 -element chain (with $2<1$) and $m=2$. Then for $\varphi=(1|2,1| 2)$ say,

$$
(n)_{\varphi}=\left(n_{1}\right)_{\varphi(1)}\left(n_{2}\right)_{(\varphi(2), \varphi(1))}=n_{1}\left(n_{1}-1\right) n_{2}^{2}
$$

Similarly if $m=3$ and $\varphi=(1|23,1| 2 \mid 3)$, then

$$
(n)_{\varphi}=n_{1}\left(n_{1}-1\right) n_{2}^{2}\left(n_{2}-1\right)
$$

The preceding results enable a theory of functions which are symmetric under the generalised wreath product groups to be developed in a manner similar to that adopted by Doubilet [4] in his approach to the classical symmetric functions. These ideas, and their applications to statistics, will be reported elsewhere.

References

[1] Martin Aigner, Combinatorial theory (Die Grundlehren der mathematischen Wissenschaften, 234. Springer-Verlag, Berlin, Heidelberg, New York, 1979).
[2] R.A. Bailey, Cheryl E. Praeger, C.A. Rowley and T.P. Speed, "Generalized wreath products of permutation groups", Proc. London Math. Soc. (3) 47 (1983), 69-82.
[3] Garret† Birkhoff, Lattice theory, Third Edition (American Mathematical Society Colloquium Publications, 25. American Mathematical Society, Providence, Rhode Island, 1967).
[4] Peter Doubilet, "On the foundations of combinatorial theory VII: symmetric functions through the theory of distribution and occupancy", Stud. Appl. Math. 51 (1972), 377-396.
[5] Cheryl E. Praeger, C.A. Rowley and T.P. Speed, "A note on generalised wreath product groups", submitted.
[6] Gian-Carlo Rota, "On the foundations of combinatorial theory I. Theory of Möbius functions", 2. Wahrsch. Verw. Gebiete 2 (1963/64), 340-368.

Division of Mathematics and Statistics, CSIRO,

GPO Box 1965,
Canberra,
ACT 2601,
Australia.

