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Abstract

Pseudodifferential operators are formal Laurent series in the formal inverse ∂−1 of the derivative operator
∂ whose coefficients are holomorphic functions on the Poincaré upper half-plane. Given a discrete
subgroup 0 of SL(2,R), automorphic pseudodifferential operators for 0 are pseudodifferential operators
that are 0-invariant, and they are closely linked to Jacobi-like forms and modular forms for 0. We
construct linear maps from the space of automorphic pseudodifferential operators and from the space of
Jacobi-like forms for 0 to the cohomology space of the group 0, and prove that these maps are compatible
with the respective Hecke operator actions.
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1. Introduction

Modular forms are holomorphic functions on the Poincaré upper half-plane H
satisfying a certain transformation formula with respect to the linear fractional action
of a discrete subgroup 0 of SL(2,R), and they play a major role in number theory
and are also related to various other areas of mathematics. In particular, it is well
known that the space of modular forms for 0 of a given weight corresponds to some
cohomology group of the discrete group 0 (see [1, 2, 8]).

Pseudodifferential operators are formal Laurent series in the formal inverse ∂−1 of
the derivative operator ∂ whose coefficients are complex-valued functions, and they
have been studied extensively over the years in connection with a variety of topics
in pure and applied mathematics. For example, they play a critical role in the theory
of nonlinear integrable partial differential equations, also known as soliton equations
(see, for example, [5]). If the coefficients of a pseudodifferential operator 9 belong to
the space R of holomorphic functions onH, then the usual linear fractional action of 0
on H induces an operation of the same group on 9. Pseudodifferential operators that
are invariant under such an operation are automorphic pseudodifferential operators
for 0, and they are closely linked to modular forms. Indeed, given an automorphic
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pseudodifferential operator 9 for 0, a certain linear combination of derivatives of
coefficients of 9 determines a modular form for 0, and conversely, each coefficient of
9 can be expressed as a linear combination of derivatives of modular forms for 0 of
various weights. These relations can be used to establish a one-to-one correspondence
between automorphic pseudodifferential operators and certain sequences of modular
forms. One of the applications of this correspondence is the construction of a lifting
map from modular forms to automorphic pseudodifferential operators.

Jacobi-like forms for 0 are formal power series with coefficients in R satisfying
a certain functional equation, and they are in one-to-one correspondence with
automorphic pseudodifferential operators for 0. Jacobi-like forms generalize the usual
Jacobi forms developed by Eichler and Zagier [7] in some sense, and they are also
related to vertex operator algebras and the conformal field theory as is suggested
in [6, 20]. Various aspects of automorphic pseudodifferential operators and Jacobi-
like forms were studied systematically by Cohen et al. in [4] (see also [20]). Some of
their results can be extended to the case of several variables, so that pseudodifferential
operators and Jacobi-like forms of several variables correspond to certain sequences
of Hilbert modular forms (see [12]).

Hecke operators are certain averaging operators acting on the space of automorphic
forms (see [1, 16, 18]), and they are an important component of the theory
of automorphic forms. For example, they are used to obtain Euler products
associated with modular forms which lead to some multiplicative properties of Fourier
coefficients of those automorphic forms. In light of the fact that modular forms
for 0 are closely linked to the cohomology of 0, it would be natural to study
the Hecke operators on the cohomology of discrete groups associated with modular
forms or other automorphic forms as was done in a number of papers (see, for
example, [9–11, 19]). Hecke operators on the cohomology of more general groups
were also investigated by Rhie and Whaples in [17], and they can also be introduced
on the spaces of automorphic pseudodifferential operators and Jacobi-like forms
(see [3, 13, 14]).

In this paper we construct linear maps from the space of automorphic
pseudodifferential operators and from the space Jacobi-like forms for 0 to the
cohomology space of the group 0 and prove that these maps are compatible with the
respective Hecke operator actions.

2. Hecke operators on group cohomology

In this section we review Hecke operators acting on group cohomology in terms
of homogeneous cochains introduced by Rhie and Whaples [17]. We also describe
these operators in terms of nonhomogeneous cochains and apply this description to
the case of the cohomology of a discrete subgroup of SL(2,R) to obtain the usual
Hecke operators on such cohomology (see, for example, [8, 18]).

Let G be a group, and let M be a left G-module. Given a nonnegative integer q ,
the group Cq(G, M) of homogeneous q-cochains is an abelian group generated by the
maps φ : Gq+1

→ M satisfying
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φ(σσ0, . . . , σσq)= σφ(σ0, . . . , σq)

for all σ, σ0, . . . , σq ∈ G, and the associated coboundary map δq : Cq(G, M)→

Cq+1(G, M) is defined by

(δqφ)(σ0, . . . , σq+1)=

q+1∑
i=0

(−1)iφ(σ0, . . . , σi−1, σi+1, . . . , σq+1) (2.1)

for all φ ∈ Cq(G, M) and (σ0, . . . , σq+1) ∈ Gn+2. Then δq ◦ δq−1 = 0 for each q ≥ 0
with δ−1 = 0, and the qth cohomology group of G with coefficients in M is given by

Hq(G, M)= Zq(G, M)/Bq(G, M), (2.2)

where Zq(G, M) and Bq(G, M) denote the kernel of δq and the image of δq−1,
respectively.

Given subgroups 0 and 0′ of G, we write 0 ∼ 0′ if they are commensurable, that
is, if 0 ∩ 0′ has finite index in both 0 and 0′. Then ∼ is an equivalence relation, and
the commensurator 0̃ of 0 is the subgroup of G containing 0 given by

0̃ = {α ∈ G | α−10α ∼ 0}.

If α ∈ 0̃, then the corresponding double coset 0α0 can be written as a disjoint union
of right cosets of 0 in G of the form

0α0 =

d∐
i=1

0αi (2.3)

for some α1, . . . , αd ∈ 0̃. If γ ∈ 0, then the same double coset can be written as

0α0 =

d∐
i=1

0αiγ,

which follows from the fact that 0α0γ = 0α0. Thus for 1 ≤ i ≤ d , we see that

αiγ = ξi (γ ) · αi(γ ) (2.4)

for some element ξi (γ ) ∈ 0, where {α1(γ ), . . . , αd(γ )} is a permutation of
{α1, . . . , αd}.

Given an element φ ∈ Cq(0, M)with q ≥ 0 and a double coset 0α0 with α ∈ 0̃ that
has a decomposition as in (2.3), we consider the associated map T(α)φ : 0q+1

→ M
given by

(T(α)φ)(γ0, . . . , γq)=

d∑
i=1

α−1
i φ(ξi (γ0), . . . , ξi (γq)), (2.5)
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where the maps ξi : 0 → 0 are determined by (2.4). Then it is known that T(α)φ is an
element of Cq(0, M) and is independent of the choice of representatives of the coset
decomposition of 0α0 modulo 0 (see [17]). Thus each double coset 0α0 with α ∈ 0̃

determines the C-linear map

T(α) : Cq(0, M)→ Cq(0, M) (2.6)

for each q ≥ 0. It can be shown that

T(α) ◦ δq−1 = δq ◦ T(α)

for q ≥ 1. Hence it follows that the map T(α) in (2.6) induces the homomorphism

T(α) : Hq(0, M)→ Hq(0, M),

which is the Hecke operator on Hq(0, M) corresponding to α introduced by Rhie and
Whaples [17].

The cohomology of the group 0 can also be defined by using nonhomogeneous
cochains. Indeed, the group Cq(0, M) of nonhomogeneous q-cochains consists
of the maps ψ : 0q

→ M , and the associated coboundary map ∂q : Cq(0, M)→

Cq+1(0, M) is given by

(∂qψ)(γ1, . . . , γq+1) = γ1ψ(γ2, . . . , γq+1)

+

q∑
i=1

(−1)iψ(γ1, . . . , γi−1, γiγi+1, . . . , γq+1)

+ (−1)q+1ψ(γ1, . . . , γq) (2.7)

for all ψ ∈ Cq(0, M) and (γ1, . . . , γq+1) ∈ 0q+1. Then it can be shown that the
cohomology for the cochain complex {Cq(0, M), ∂q}q≥0 is canonically isomorphic
to the cohomology of the cochain complex {Cq(0, M), δq}q≥0 defined by using
homogeneous cochains. Thus we may write the qth cohomology group in (2.2) in
the form

Hq(G, M)= Zq(G, M)/Bq(G, M),

where Zq(G, M) and Bq(G, M) are the kernel of ∂q and the image of ∂q−1,
respectively. In terms of the nonhomogeneous q-cochains, the Hecke operator in (2.5)
can now be written as

(T (α)ψ)(γ1, . . . , γq)

=

d∑
i=1

α−1
i ψ(ξi (γ1), ξi(γ1)(γ2), ξi(γ1γ2)(γ3), . . . , ξi(γ1···γq−1)(γq)) (2.8)

for all ψ ∈ Cq(0, M) and γ1, . . . , γq ∈ 0, which determines another version of the
Hecke operator

T (α) : Hq(0, M)→ Hq(0, M),

on Hq(0, M) corresponding to α.
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We now consider the case where G = GL(2,C). Let {e1, . . . , en+1} be the
standard basis for the complex vector space Cn+1, and for

(z1
z2

)
∈ C2 set(

z1

z2

)n

=
t (zn

1, zn−1
1 z2, . . . , z1zn−1

2 , zn
2)=

n∑
k=0

zn−k
1 zk

2 ek+1 ∈ Cn+1,

where t (·) denotes the transpose of the matrix (·). Let

ρn : GL(2,C)→ GL(n + 1,C)

be the nth symmetric tensor representation of GL(2,C), which is given by

ρn(γ )

(
z1

z2

)n

=

(
γ

(
z1

z2

))n

for all γ ∈ 0 and
(z1

z2

)
∈ C2. We also define the map vn :H→ Cn+1 by

vn(z)=

(
z

1

)n

=

n∑
k=0

zn−k ek+1 (2.9)

for all z ∈ C. Then for γ =
(

a b
c d

)
∈ SL(2,R) we see that

ρn(γ )vn(z) = ρn(γ )

(
z

1

)n

=

(
az + b

cz + d

)n

=

n∑
k=0

(az + b)n−k(cz + d)k ek+1

= (cz + d)−n
n∑

k=0

(γ z)n−k ek+1 = (cz + d)−nvn(γ z), (2.10)

where γ z = (az + b)(cz + d)−1. We denote by Sn(C2) the complex vector space
Cn+1 equipped with the structure of a GL(2,C)-module given by

(γ, v) 7→ (det γ )n/2ρn(γ )v

for γ ∈ GL(2,C) and v ∈ Cn+1.
Let 0 be a discrete subgroup of SL(2,R)⊂ GL(2,C). Then by (2.7) its first

cohomology group with coefficients in Sn(C2) can be described as follows. The set
Z1(0,Sn(C2)) of nonhomogeneous 1-cocycles consists of all maps u : 0 → Cn+1

satisfying
u(γ γ ′)= u(γ )+ ρn(γ )u(γ

′) (2.11)

for all γ, γ ′
∈ 0. Given an element v0 ∈ Cn+1, the set B1(0,Sn(C2)) of coboundaries

consists of the maps v : 0 → Cn+1 such that

v(γ )= (ρn(γ )− 1n+1)v0
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for all γ ∈ 0, where 1n+1 is the identity map on Cn+1. Then the first cohomology
group of 0 with coefficients in Sn(C2) is given by

H1(0,Sn(C2))=
Z1(0,Sn(C2))

B1(0,Sn(C2))
. (2.12)

To consider Hecke operators acting on this cohomology group, we choose an element
α ∈ 0̃ ⊂ GL(2,R) such that the corresponding double coset has a decomposition of
the form

0α0 =

s∐
i=1

0αi

with α1, . . . , αs ∈ 0̃. Then by (2.8) the Hecke operator Tn(α) on H1(0,Sn(C2)) can
be written as

(Tn(α)(φ))(γ )=

s∑
i=1

(det αi )
n/2ρn(αi )φ(ξi (γ )) (2.13)

for each 1-cocycle φ and γ ∈ 0, where ξi is as in (2.4).

3. Jacobi-like forms and pseudodifferential operators

In this section we review modular forms, Jacobi-like forms, and pseudodifferential
operators as well as relations among these objects studied by Cohen et al. in [4, 20].
We also describe Hecke operators acting on the spaces consisting of those objects
(see [3, 13, 14]).

Let R be the space of holomorphic functions on the Poincaré upper half-plane H,
and let R[[X ]] be the complex algebra of formal power series in X with coefficients
in R. Let 0 be a discrete subgroup of SL(2,R), which acts on H as usual by linear
fractional transformations, that is,

γ z =
az + b

cz + d

for all z ∈H and γ =
(

a b
c d

)
∈ SL(2,R).

DEFINITION 3.1. (i) A holomorphic function f :H→ C is a modular form of weight
k for 0 if it satisfies

f (γ z)= (cz + d)k f (z)

for all z ∈H and γ =
(

a b
c d

)
∈ 0.

(ii) A formal power series8(z, X) ∈ R[[X ]] is a Jacobi-like form for 0 if it satisfies

8(γ z, (cz + d)−2 X)= exp(cX/(cz + d))8(z, X) (3.1)

for all z ∈H and γ =
(

a b
c d

)
∈ 0.
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(iii) A pseudodifferential operator over R is a formal Laurent series 9(z) in the
formal inverse ∂−1 of ∂ = d/dz with coefficients in R, that is, a series of the form

9(z)=

n0∑
n=−∞

ξn(z)∂
n

for some n0 ∈ Z with ξn ∈ R for each n.

Note that we have slightly modified the usual definition of modular forms by
suppressing the cusp condition. We denote by Mk(0) the space of modular forms
of weight k for 0, by J (0) the space of all Jacobi-like forms for 0, and by 9DO the
space of all pseudodifferential operators over R.

The space9DO has the structure of an algebra over C whose multiplication is given
by the Leibniz rule. Thus( n0∑

n=−∞

ξn(z)∂
n
)( m0∑

m=−∞

ηm(z)∂
m
)

=

n0∑
n=−∞

m0∑
m=−∞

∞∑
r=0

(
n

r

)
ξn(z)η

(r)
m (z)∂n+m−r ,

where η(r)m denotes the derivative of ηm of order r with respect to z, and(
n

0

)
= 1,

(
n

r

)
=

n(n − 1) · · · (n − r + 1)
r !

for r > 0. Given an integer v, we denote by 9DOv the subspace of 9DO given by

9DOv =

{ ∞∑
n=0

ξn(z)∂
v−n

∣∣∣∣ ξn ∈ R

}
, (3.2)

and define the symbol map 4∂v :9DOv → R by

4∂v

( ∞∑
n=0

ξn(z)∂
v−n

)
= ξ0(z). (3.3)

Since4∂v is a C-linear map whose kernel is9DOv−1, we obtain a short exact sequence

0 →9DOv−1 →9DOv
4∂v
−→ R → 0 (3.4)

of complex vector spaces.
We now describe the action of SL(2,R) on pseudodifferential operators. If ∂̃

denotes the differentiation operator with respect to the transformed coordinate γ z of z
by an element γ ∈ SL(2,R),

∂̃ =

(
d(γ z)

dz

)−1

∂ = (cz + d)2∂. (3.5)
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We note that for each m ∈ Z,

((cz + d)2∂)m =

∞∑
`=0

`!

(
m

`

)(
m − 1
`

)
c`(cz + d)2m−`∂m−` (3.6)

for all z ∈H and γ =
(

a b
c d

)
∈ SL(2,R) (see [4, (1.7)]). Then it can be shown that the

map ∂ 7→ ∂ ◦ γ = ∂̃ induces a right action 9(z) 7→ (9 ◦ γ )(z) of SL(2,R) on 9DO.

DEFINITION 3.2. An element 9(z) ∈9DO is an automorphic pseudodifferential
operator for 0 if it satisfies

(9 ◦ γ )(z)=9(z)

for all γ ∈ 0. We denote by 9DO0 the space of automorphic pseudodifferential
operators for 0.

If v ∈ Z, we set

9DO0v =9DOv ∩9DO0.

Then, using (3.6), we see that the coefficient 4∂−w(9(z)) of ∂−w of an element
9(z) ∈9DO0−w with w ≥ 0 is a modular form belonging to M2w(0). Thus the
sequence (3.4) induces the short exact sequence

0 →9DO0
−w−1 →9DO0−w

4∂−w
−−→M2w(0)→ 0, (3.7)

which actually splits.
Given a positive integer w, let R[[X ]]w be the subspace of R[[X ]] consisting of

formal power series of the form
∑

∞

k=w φk(z)X k , and set

J (0)w = J (0) ∩ R[[X ]]w.

If (4X
w8)(z) denotes the coefficient of 8(z, X) ∈ R[[X ]]w, we obtain the short exact

sequence

0 → R[[X ]]w−1 → R[[X ]]w
4X
w

−−→ R → 0, (3.8)

which induces the sequence

0 → J (0)w−1 → J (0)w
4X
w

−−→ R → 0. (3.9)

We now introduce a map

Fw : R[[X ]]w →9DO−w (3.10)

defined by

Fw

( ∞∑
k=w

φk(z)X
k
)

=

∞∑
k=w

(−1)kk!(k − 1)!φk(z)∂
−k, (3.11)
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which is clearly a C-linear isomorphism satisfying

4∂−w ◦ Fw =4X
w,

where 4∂−w and 4X
w are as in (3.4) and (3.8), respectively.

PROPOSITION 3.3. (i) A formal power series 8(z, X) ∈ R[[X ]]w with w ≥ 1 is a
Jacobi-like form belonging to J (0)w if and only if Fw(8(z, X)) is an automorphic
pseudodifferential operator belonging to 9DO0−w.

(ii) Let8(z, X)=
∑

∞

k=w φk(z)X k
∈ R[[X ]]w withw ≥ 1. Then8(z, X) ∈ J (0)w

if and only if there is a sequence {h`}∞`=w of modular forms with h` ∈M2`(0) for each
`≥ w such that

φk =

k−w∑
r=0

1
r !(2k − r − 1)!

h(r)k−r (3.12)

for all k ≥ w.
(iii) The modular forms h` satisfying (3.12) can be written in the form

h` = (2`− 1)
`−w∑
s=0

(−1)s
(2`− 2 − s)!

s!
φ
(s)
`−s

for all `≥ w.

PROOF. Statements (i), (ii) and (iii) can be proved by slightly modifying the proof
of [4, Proposition 2]. 2

By Proposition 3.3 the map Fw in (3.10) induces the C-isomorphism

Fw : J (0)w →9DO0−w (3.13)

satisfying

4∂−w ◦ Fw =4X
w,

where 4∂−w and 4X
w are as in (3.7) and (3.9), respectively.

Let GL+(2,R) be the multiplicative group of 2 × 2 real matrices of positive
determinant, which acts onH by linear fractional transformations. Given α =

(
a b
c d

)
∈

GL+(2,R) and elements f ∈ R and 8(z, X) ∈ R[[X ]], we set

( f |kα)(z)= det(α)k/2(cz + d)−k f (αz),

(8 |
X α)(z, X)= e−cX/(cz+d)8(αz, (det α)(cz + d)−2 X) (3.14)

for all z ∈H and k ∈ Z. Then it can be shown that

( f |kα)|kα
′
= f |k (αα

′), (8 |
X α) |

X α′
=8 |

X (αα′)
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for all α, α′
∈ GL+(2,R), and by Definition 3.1

f ∈Mk(0), 8(z, X) ∈ J (0)
if and only if

f |kγ = f, (8 |
X γ )(z, X)=8(z, X)

for all γ ∈ 0. On the other hand, if 9(z) ∈9DOw with w ∈ Z is a pseudodifferential
operator of the form

9(z)=

∞∑
k=w

ψk(z)∂
−k, (3.15)

we define the pseudodifferential operator (9 |
∂ α)(z) ∈9DOw by

(9 |
∂ α)(z)=

∞∑
k=w

k−w∑
`=0

`!

(
k

`

)(
k − 1
`

)
(det α)k−`c`

(cz + d)2k−`
ψk−`(αz)∂−k (3.16)

for all z ∈H.

DEFINITION 3.4. Let α be an element of 0̃ such that the corresponding double coset
has a decomposition of the form

0α0 =

s∐
i=1

0αi (3.17)

with α1, . . . , αs ∈ GL+(2,R). The associated Hecke operators on Mk(0), J (0)
and 9DO are the linear endomorphisms

TMk (α) :Mk(0)→Mk(0), TJ (α) : J (0)→ J (0), T9(α) :9DO →9DO,

respectively, given by

TMk (α) f =

s∑
i=1

( f |kαi ), (3.18)

(TJ (α)8)(z, X)=

s∑
i=1

(8 |
X αi )(z, X), (3.19)

(T9(α)9)(z)=

s∑
i=1

(9 |
∂ αi )(z) (3.20)

for all f ∈Mk(0), 8(z, X) ∈ J (0), and 9(z) ∈9DO.

The power series TJ (α)8(z, X) given by (3.19) is indeed a Jacobi-like form
belonging to J (0) and is independent of the choice of the coset representatives
α1, . . . , αs (see [14, Proposition 3.2]). We also see that

TJ (α)(J (0)w)⊂ J (0)w, (4X
w ◦ TJ (α))8= TMk (α)(4X

w8)

for all 8(z, X) ∈ J (0)w, where 4w is as in (3.9).
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PROPOSITION 3.5. Given w ≥ 1, let Fw be the isomorphism in (3.13). Then

Fw ◦ TJ (α) ◦ F−1
w = T9(α)

for each α ∈ 0̃. In particular,

(T9(α)9)(z) ∈9DO0w

for all 9(z) ∈9DO0w.

PROOF. Let 9(z) ∈9DO0w be as in (3.15). Then by Proposition 3.3 the formal power
series

8(z, X)= (F−1
w 9)(z, X)=

∞∑
k=w

(−1)k

k!(k − 1)!
ψk(z)X

k

is a Jacobi-like form belonging to J (0)w. Given α ∈ 0̃, from (3.14) we obtain

(8 |
X αi )(z, X) = exp

(
−ci X

ci z + di

)
8(αi z, (det αi )(ci z + di )

−2 X)

=

( ∞∑
r=0

1
r !

(
−ci

ci z + di

)r

Xr
)

×

( ∞∑
k=w

(−1)kψk(αi z)

k!(k − 1)!
(det αi )

k(ci z + di )
−2k X k

)

=

∞∑
k=w

∞∑
r=0

(det αi )
k(−ci )

r

r !

(−1)kψk(αi z)

k!(k − 1)!(ci z + di )2k+r
X k+r

=

∞∑
k=w

k−w∑
`=0

(det αi )
k−`(−ci )

`

`!

(−1)k−`ψk−`(αi z)

(k − `)!(k − `− 1)!(ci z + di )2k−`
X k

for 1 ≤ i ≤ s with αi =

(
ai bi
ci di

)
∈ GL+(2,R). Thus by using this and (3.19) we see

that

(TJ (α)8)(z, X)=

s∑
i=1

(8 |
X αi )(z, X)=

∞∑
k=w

s∑
i=1

φi,k(z)X
k,

where

φi,k(z)=

k−w∑
`=0

(−1)k(det αi )
k−`c`i ψk−`(αi z)

`!(k − `)!(k − `− 1)!(ci z + di )2k−`
X k .
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On the other hand, from (3.16) and (3.20) we obtain

(T9(α)9)(z)=

s∑
i=1

∞∑
k=w

k−w∑
`=0

`!

(
k

`

)(
k − 1
`

)
(det αi )

k−`c`i
(ci z + di )2k−`

ψk−`(αi z)∂
−k

=

s∑
i=1

∞∑
k=w

(−1)kk!(k − 1)!
k−w∑
`=0

(−1)k(det αi )
k−`c`i ψk−`(αi z)

`!(k − `)!(k − `− 1)!(ci z + di )2k−`
∂−k

=

∞∑
k=w

(−1)kk!(k − 1)!
s∑

i=1

φi,k(z)∂
−k

= (Fw(T
J (α)8))(z);

hence the proposition follows from this and Proposition 3.3. 2

By Proposition 3.5 the Hecke operator on 9DO given by (3.20) induces a linear
endomorphism

T9(α) :9DO0 →9DO0

on the space 9DO0 of automorphic pseudodifferential operators for 0. Furthermore,
we see that the diagram

J (0)w
Fw

��

TJ (α) // J (0)w
Fw

��
9DO0−w

T9 (α) // 9DO0−w

(3.21)

commutes for each w ≥ 1.

4. Group cohomology

Let J (0)⊂ R[[X ]] be the space of Jacobi-like forms for a discrete subgroup 0
of SL(2,R) as in Section 3, and let H1(0,Sn(C2)) with n ≥ 1 be the cohomology
space of 0 in (2.12). In this section we construct a linear map from J (0)1 =

J (0) ∩ R[[X ]]1 to H1(0,S2m(C2)) for each positive integer m and show that it is
compatible with respect to the Hecke operator actions.

Let 8(z, X) be an element of J (0)1 of the form

8(z, X)=

∞∑
k=1

φk(z)X
k (4.1)

for z ∈H. Although the coefficients φk are not modular forms, they are in fact special
types of quasimodular forms (see, for example, [15]). We fix a base point z0 ∈H and,
by analogy with periods of modular forms, consider certain integrals over paths in H
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originating at z0 which may be regarded as periods of coefficients of the Jacobi-like
form 8(z, X). If m, r and ` are integers with m ≥ 1 and 0 ≤ r, `≤ m, we set

$m,r,`(γ )=

∫ γ z0

z0

φ
(r)
m+1−r (z)z

` dz (4.2)

for all γ ∈ 0. Note that the integral is independent of the choice of the path z0 → γ z0
because the coefficients φk(z) of 8(z, X) are holomorphic. Let {e1, . . . , e2m+1} be
the standard basis for C2m+1, and set

$̂m,r (γ )=

2m∑
`=0

$m,r,`(γ )e`+1 ∈ C2m+1. (4.3)

We now define the map Lm(8) : 0 → C2m+1 by

Lm(8)(γ )=

m∑
r=0

(−1)r
(2m − r)!

r !
$̂m,r (γ ) (4.4)

for all γ ∈ 0.

PROPOSITION 4.1. Given a Jacobi-like form 8(z, X) ∈ J (0)1, the associated map
Lm(8) : 0 → C2m+1 given by (4.4) is a cocycle belonging to Z1(0,S2m(C2)) for
each positive integer m, where the 0-module S2m(C2) is as in Section 2.

PROOF. Given 8(z, X) ∈ J (0)1 and a positive integer m, since a cocycle belonging
to Z1(0,S2m(C2)) must satisfy (2.11), we need to show that

Lm(8)(γ γ
′)= Lm(8)(γ )+ ρ2m(γ )Lm(8)(γ

′) (4.5)

for all γ, γ ′
∈ 0. Assuming that 8(z, X) is as in (4.1), by using (4.2), (4.3) and (4.4),

we see that

Lm(8)(γ ) =

m∑
r=0

2m∑
`=0

(−1)r
(2m − r)!

r !
$m,r,`(γ )e`+1

=

∫ γ z0

z0

m∑
r=0

2m∑
`=0

(−1)r
(2m − r)!

r !
φ
(r)
m+1−r (z)z

`e`+1 dz

=

∫ γ z0

z0

m∑
r=0

(−1)r
(2m − r)!

r !
φ
(r)
m+1−r (z)v2m(z) dz,

where v2m(z) is as in (2.9). If we set

fm =

m∑
r=0

(−1)r
(2m − r)!

r !
φ
(r)
m+1−r , (4.6)
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then by Proposition 3.3 the function fm is a modular form belonging to M2m+2(0),
and

Lm(8)(γ )=

∫ γ z0

z0

fm(z)v2m(z) dz. (4.7)

Thus for γ, γ ′
∈ 0 we see that

Lm(8)(γ γ
′) =

∫ γ γ ′z0

z0

fm(z)v2m(z) dz

=

∫ γ z0

z0

fm(z)v2m(z) dz +

∫ γ γ ′z0

γ z0

fm(z)v2m(z) dz

= Lm(8)(γ )+

∫ γ ′z0

z0

fm(γ z)v2m(γ z) d(γ z). (4.8)

However, using (2.10),

v2m(γ z)= (cz + d)−2mρ2m(γ )v2m(z).

From this, the relations

fm(γ z)= (cz + d)2m+2 f (z), d(γ z)= (cz + d)−2 dz,

and (4.7) we obtain∫ γ ′z0

z0

fm(γ z)v2m(γ z) d(γ z) = ρ2m(γ )

∫ γ ′z0

z0

fm(z)v2m(z) d(z)

= ρ2m(γ )Lm(8)(γ
′);

hence (4.5) follows from this and (4.8). 2

By Proposition 4.1 for each m ≥ 1 there is a linear map

Lm : J (0)1 → H1(0,S2m(C2)) (4.9)

sending a Jacobi-like form8(z, X) ∈ J (0)1 to the cohomology class ofLm(8(z, X))
in H1(0,S2m(C2)).

THEOREM 4.2. Given a positive integer m, the linear map Lm in (4.9) satisfies

Lm ◦ TJ (α)= T2m(α) ◦ Lm

for each α ∈ 0̃, where the Hecke operators

T2m(α) : H1(0,S2m(C2))→ H1(0,S2m(C2)), TJ (α) : J (0)1 → J (0)1

are as in (2.13) and (3.19), respectively.
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PROOF. Let α ∈ 0̃, and assume that the associated double coset of 0 has a
decomposition of the form

0α0 =

s∐
i=1

0αi

with α1, . . . , αs ∈ GL+(2,R) as in (3.17). Let 8(z, X) ∈ J (0) be as in (4.1), and
for each m ≥ 1 let fm be as in (4.6). We write TJ (α)8 in the form

TJ (α)8(z, X)=

∞∑
k=1

φ̃k(z)X
k,

and set

f̃m =

m∑
r=0

(−1)r
(2m − r)!

r !
φ̃
(r)
m+1−r

for m ≥ 1. Then, by Proposition 3.3, f̃m is a modular form belonging toM2m+2(0),
and it can be shown easily that

f̃m = TM2m+2(α) fm,

where TM2m+2(α) is as in (3.18). From this and (4.7) we obtain

Lm(T
J (α)8)(γ ) =

∫ γ z0

z0

(TM2m+2(α) fm)(z)v2m(z) dz

=

s∑
i=1

(det αi )
m+1(ci z + di )

−2m−2
∫ γ z0

z0

fm(αi z)v2m(z) dz

=

s∑
i=1

(det αi )
m+1ρ2m(αi )

−1
∫ γ z0

z0

fm(αi z)v2m(αi z) d(αi z)

=

s∑
i=1

(det αi )
m+1ρ2m(αi )

−1
∫ αiγ z0

αi z0

fm(z)v2m(z) dz

for all γ ∈ 0, where (ci , di ) is the second row of the matrix αi ∈ GL+(2,R) for
1 ≤ i ≤ s. Using (2.4), we may write∫ αiγ z0

αi z0

=

∫ ξi (γ )αi(γ )z0

z0

−

∫ αi z0

z0

=

(∫ ξi (γ )αi(γ )z0

z0

−ρ2m(ξi (γ ))

∫ αi(γ )z0

z0

)
+

(
ρ2m(ξi (γ ))

∫ αi(γ )z0

z0

−

∫ αi z0

z0

)
.
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However, we see that(∫ ξi (γ )αi(γ )z0

z0

−ρ2m(ξi (γ ))

∫ αi(γ )z0

z0

)
fm(z)v2m(z) dz

=

∫ ξi (γ )αi(γ )z0

z0

fm(z)v2m(z) dz −

∫ ξi (γ )αi(γ )z0

ξi (γ )z0

fm(z)v2m(z) dz

=

∫ ξi (γ )z0

z0

fm(z)v2m(z) dz

= Lm(8)(ξi (γ )),

where we have used (4.7), and(
ρ2m(ξi (γ ))

∫ αi(γ )z0

z0

−

∫ αi z0

z0

)
fm(z)v2m(z) dz

= ρ2m(αi )ρ2m(γ )ρ2m(αi(γ ))
−1

∫ αi(γ )z0

z0

fm(z)v2m(z) dz

−

∫ αi z0

z0

fm(z)v2m(z) dz.

Using the above relations, (2.13), and the fact that det αi(γ ) = det αi , we obtain

Lm(T
J (α)8)(γ )

=

s∑
i=1

(det αi )
m+1ρ2m(αi )

−1Lm(8)(ξi (γ ))

+ ρ2m(γ )

s∑
i=1

(det αi(γ ))
m+1ρ2m(αi(γ ))

−1
∫ αi(γ )z0

z0

fm(z)v2m(z) dz

+

s∑
i=1

(det αi )
m+1ρ2m(αi )

−1
∫ αi(γ )z0

z0

fm(z)v2m(z) dz

= (T2m(α)Lm(8))(γ )+ (ρ2m(γ )− 12m+1)u,

where 12m+1 is the identity map on C2m+1, and

u =

s∑
i=1

(det αi )
m+1ρ2m(αi )

−1
∫ αi z0

z0

fm(z)v2m(z) dz.

Hence the theorem follows. 2

COROLLARY 4.3. Let F−1
−1 :9DO−1 → J (0)1 be the inverse of the isomorphism in

(3.13) for w = 1, and set

L∂m = Lm ◦ F−1
−1 :9DO−1 → H1(0,S2m(C2)).
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Then

L∂m ◦ T9(α)= T2m(α) ◦ L∂m
for each m ≥ 1.

PROOF. This follows immediately from Theorem 4.2 and the commutativity of the
diagram (3.21). 2
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