A FUNDAMENTAL SOLUTION FOR A NONELLIPTIC PARTIAL DIFFERENTIAL OPERATOR

PETER C. GREINER

Let

$$
\begin{equation*}
Z=\frac{\partial}{\partial z}+2 i z \bar{z}^{2} \frac{\partial}{\partial t} \tag{1}
\end{equation*}
$$

and set

$$
\begin{align*}
\mathscr{L}=\mathscr{L}_{z, t}=-\frac{1}{2}(Z \bar{Z}+\bar{Z} Z)=-\frac{\partial^{2}}{\partial z \partial \bar{z}}+2 i|z|^{2} \frac{\partial}{\partial t}\left(Z \frac{\partial}{\partial z}-\right. & \left.\bar{z} \frac{\partial}{\partial \bar{z}}\right) \tag{2}\\
& -4|z|^{6} \frac{\partial^{2}}{\partial t^{2}}
\end{align*}
$$

Here $z=x+i y, \partial / \partial z=\frac{1}{2}(\partial / \partial x-i \partial / \partial y) . Z$ is the "unique" (modulo multiplication by nonzero functions) holomorphic vector-field which is tangent to the boundary of the "degenerate generalized upper half-plane"

$$
\begin{equation*}
D=\left\{\left(z_{1}, z\right) \in \mathbf{C}^{2} ; \rho=\operatorname{Im} z_{1}-|z|^{4}>0\right\} \tag{3}
\end{equation*}
$$

In our terminology $t=\operatorname{Re} z_{1}$. We note that \mathscr{L} is nowhere elliptic. To put it into context, \mathscr{L} is of the type \square_{b}, i.e. operators like \mathscr{L} occur in the study of the boundary Cauchy-Riemann complex. For more information concerning this connection the reader should consult [1] and [2].

In this paper we give a fundamental solution, $F(z, t ; w, s)=F_{(w, s)}(z, t)$ for \mathscr{L}, i.e.

$$
\begin{equation*}
\left\langle F_{(w, s)}, \mathscr{L}(\phi)\right\rangle=\phi(w, s), \phi \in C_{0}{ }^{\infty}\left(\mathbf{R}^{3}\right) \tag{4}
\end{equation*}
$$

Here $z=x+i y, w=u+i v$ and with a mild abuse of notation (z, t) and (w, s) stand for $(x, y, t) \in \mathbf{R}^{3}$ and $(u, v, s) \in \mathbf{R}^{3}$, respectively. \langle,$\rangle denotes the$ action of distributions, as linear functionals, on $C_{0}{ }^{\infty}\left(\mathbf{R}^{3}\right)$. We set

$$
\begin{equation*}
A=\frac{1}{2}\left(|z|^{4}+|w|^{4}+i(t-s)\right) \tag{5}
\end{equation*}
$$

and

$$
p= \begin{cases}\bar{z} w / A^{1 / 2} & \text { if } w \neq 0 \tag{6}\\ 0 & \text { if } w=0 .\end{cases}
$$

[^0]$A^{1 / 2}$ denotes the principal value of the square root, i.e. $A^{1 / 2}>0$ if $A>0$. We note that p is a C^{∞}-function of (z, t) whenever (w, s) is fixed.
(7) Theorem. If $(z, t) \neq(w, s)$ set
(8) $\quad F=\frac{i}{4 \pi^{2}|A|} \cdot \frac{|1+p|+i|1-p|}{1+|p|^{2}}$
$$
\times \frac{1}{|1-p|} \int_{0}^{1}\left(\frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}} \xi-1\right)^{-1} d \xi
$$

Then F is a fundamental solution of \mathscr{L}.
Remark. In particular
(9) $\quad F_{(0, s)}(z, t)=4 \pi^{-1}\left(|z|^{8}+(t-s)^{2}\right)^{-1 / 2}$.

The proof of Theorem 7 will be given in a series of steps. We note that
(10) $|p|=\left|\bar{z} w / A^{1 / 2}\right| \leqq 1$,
and

$$
\left\{\begin{array}{l}
|p|=1 \Leftrightarrow|z|=|w|, t=s \tag{11}\\
p= \pm 1 \Leftrightarrow(z, t)=(\pm w, s) .
\end{array}\right.
$$

An easy calculation yields

$$
\begin{equation*}
\left|1-\frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}}\right|=1 \tag{12}
\end{equation*}
$$

Therefore, if $0 \leqq \xi \leqq 1$,

$$
\begin{aligned}
& 1-\frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}} \xi \neq 0 \\
& \text { if } p \neq 1 \Leftrightarrow(z, t) \neq(w, s) .
\end{aligned}
$$

This justifies formula (8) if $(z, t) \neq(w, s)$. Next we derive two different representations for F. Set
(13) $\sigma^{2}=\left|z^{2}-w^{2}\right|^{4}+\left(t+2 \operatorname{Im} z^{2} \bar{w}^{2}\right)^{2}$,
and

$$
\begin{equation*}
h(p, \bar{p})=\frac{\left|1-p^{2}\right|-i(p+\bar{p})}{1+|p|^{2}} . \tag{14}
\end{equation*}
$$

(15) Proposition. Assume $(z, t) \neq(\pm w, s)$. Then
(16) $\quad F_{(w, s)}(z, t)=\frac{1}{4 \pi \sigma}+\frac{i}{2 \pi^{2} \sigma} \log h$.

Proof. First we note that the right hand side of (16) is well defined as long
as $(z, t) \neq(\pm w, s)$. Next

$$
\frac{p+\bar{p}}{1+|p|^{2}}=\frac{|1+p|^{2}}{1+|p|^{2}}-1
$$

Hence
(17) $\frac{1}{4 \pi \sigma}+\frac{i}{2 \pi^{2} \sigma} \log \left(\frac{\left|1-p^{2}\right|-i(p+\bar{p})}{1+|p|^{2}}\right)$

$$
\begin{aligned}
=\frac{1}{2 \pi^{2} \sigma}\left\{\frac{\pi}{2}+i \log (i[1-\right. & \left.\left.\left.\frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}}\right]\right)\right\} \\
& =\frac{i}{2 \pi^{2} \sigma} \log \left(1-\frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}}\right) .
\end{aligned}
$$

\log denotes its principal value, i.e., $\log z>0$ if $z>1$. Since $(z, t) \neq(w, s)$

$$
\log \left(1-\frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}}\right)
$$

is well defined. Furthermore

$$
\begin{equation*}
\sigma=2|A||1-p||1+p| . \tag{18}
\end{equation*}
$$

Now

$$
(17)=\frac{i}{2 \pi^{2} \sigma} \cdot \frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}} \times \int_{0}^{1} \frac{d \xi}{\frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}} \xi-1}
$$

and simplifying the right hand side by $|1+p|$, see (18), we obtain $F_{(w, s)}(z, t)$. This proves Proposition (15).
(19) Lemma. Assume $w \neq 0$. Then p is near ± 1 if and only if (z, t) is near ($\pm w, s$), respectively.
Proof. Since $|p| \leqq 1$,

$$
|1-p| \geqq \frac{1}{2}\left|1-p^{2}\right| \geqq \frac{1}{2}\left(1-|p|^{2}\right)=\frac{1}{2}\left(1-\frac{2|z|^{2}|w|^{2}}{|z|^{4}+|w|^{4}} \cdot \frac{1}{\sqrt{1+\gamma^{2}}}\right)
$$

where

$$
\gamma=\frac{t-s}{|z|^{4}+|w|^{4}}
$$

We note that

$$
\frac{2|z|^{2}|w|^{2}}{|z|^{4}+|w|^{4}} \leqq 1 \quad \text { and } \quad \frac{1}{\sqrt{1+\gamma^{2}}} \leqq 1 .
$$

It is easy to see that the first inequality in this proof implies

$$
\begin{aligned}
& 1-\frac{2(|z| /|w|)^{2}}{1+(|z| /|w|)^{4}} \leqq 2|1-p| \\
& 1-\left(1+\gamma^{2}\right)^{-1 / 2} \leqq 2|1-p|
\end{aligned}
$$

If $2|1-p|<\delta<1$, then

$$
\begin{aligned}
& \left||z|^{2}-|w|^{2}\right|<3|w|^{2} \cdot \sqrt{\delta}(1-\delta)^{-1} \\
& |t-s|<35|w|^{2} \cdot \sqrt{\delta}(1-\delta)^{-2}
\end{aligned}
$$

i.e., $(|z|, t)$ must be arbitrarily near $(|w|, s)$ by choosing $|p|$ sufficiently near 1. The converse is clear, i.e., $(|z|, t)$ is near $(|w|, s) \Rightarrow|p|$ is near 1 .

Finally set $z=|z| e^{i \theta}, w=|w| e^{i_{\omega}}$. Then

$$
1-p=1-\frac{|z||w|}{|A|^{1 / 2}} e^{i(\omega-\theta)}
$$

Therefore p is near 1 if and only if $|z||w| /|A|^{1 / 2}$ is near 1 and ω is near θ, i.e. p is near 1 if and only if (z, t) is near (w, s).

A similar argument shows that p is near -1 if and only if (z, t) is near $(-w, s)$. This proves Lemma 19.
(20) Lemma. Assume $w \neq 0$. Then when (z, t) is near $(-w, s) F$ can be written in the following form

$$
\begin{equation*}
F=\frac{1}{4 \pi^{2}|A|(p+\bar{p})} \int_{0}^{1} \frac{d \xi}{1+\frac{\left|1-p^{2}\right|^{2}}{(p+\bar{p})^{2}} \xi^{2}} . \tag{21}
\end{equation*}
$$

Proof. (17) yields

$$
F=\frac{i}{2 \pi^{2} \sigma} \log \left(\frac{-p-\bar{p}+i\left|1-p^{2}\right|}{1+|p|^{2}}\right) .
$$

If p is near -1 this gives

$$
F=\frac{-1}{2 \pi^{2} \sigma} \arctan \frac{\left|1-p^{2}\right|}{-p-\bar{p}}=\frac{1}{2 \pi^{2} \sigma} \cdot \frac{\left|1-p^{2}\right|}{p+\bar{p}} \int_{0}^{1} \frac{d \xi}{1+\frac{\left|1-p^{2}\right|^{2}}{(p+\bar{p})^{2} \xi^{2}}}
$$

and now (18) implies (21).
(22) Theorem. $F_{(w, s)}(z, t)$ is a C^{∞} function of $(z, t)=(x, y, t)$ as long as $(z, t) \neq(w, s)$.

Proof. If $w=0$ the result follows from (9). If $w \neq 0$, then $A^{-1 / 2}, \bar{A}^{-1 / 2}, p$ and \bar{p} are C^{∞} functions of (z, t). Thus, if $w \neq 0$ and $(z, t) \neq(\pm w, s)$, then (16) is a C^{∞} function of (z, t) and the result follows. Finally, if $w \neq 0$ and (z, t) is in a sufficiently small neighbourhood of $(-w, s)$, then (21) is a C^{∞} function of p and \bar{p}, because $\left|1-p^{2}\right|^{2}=\left(1-p^{2}\right)\left(1-\bar{p}^{2}\right)$ is a C^{∞} function of p, \bar{p}, hence the result follows in this case too. This proves Theorem 22.

Let
(23) $d v(z, t)=d x d y d t$ and $d v(z)=d x d y$
denote Lebesgue measure on \mathbf{R}^{3} and \mathbf{R}^{2}, respectively. We introduce a "regularization", F_{ϵ}, of F as follows. We set
(24) $\quad A_{\epsilon}=\frac{1}{2}\left(|z|^{4}+|w|^{4}+\epsilon^{4}+i(t-s)\right)$,

$$
\begin{equation*}
p_{\epsilon}=\bar{z} w / A_{\epsilon}^{1 / 2} . \tag{25}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\sigma_{\epsilon}{ }^{2}=\left(\left|z^{2}-w^{2}\right|^{2}+\epsilon^{4}\right)^{2}+\left(t-s+2 \operatorname{Im} z^{2} \bar{w}^{2}\right)^{2} \tag{26}
\end{equation*}
$$

and
(27) $F_{\epsilon}=F_{(w, s), \epsilon}(z, t)=\frac{1}{4 \pi \sigma_{\epsilon}}+\frac{i \log h_{\epsilon}}{2 \pi^{2} \sigma_{\epsilon}}$,
where, again

$$
\begin{equation*}
h_{\epsilon}(p, \bar{p})=h\left(p_{\epsilon}, \bar{p}_{\epsilon}\right), \tag{28}
\end{equation*}
$$

and h is given by (14). F_{ϵ} is C^{∞} in all the variables if $\epsilon>0$.
(29) Proposition. $F_{(w, s)}=\lim _{\epsilon \rightarrow 0} F_{(w, s), \epsilon}$ as a distribution in \mathbf{R}^{3}.

Proof. Formulas (8) and (9) show that $F_{(w, s), \epsilon}(z, t) \rightarrow F_{(w, s)}(z, t)$, pointwise, as $\epsilon \rightarrow 0$, as long as $(z, t) \neq(w, s)$. Since $\left|h_{\epsilon}\right|=1$,
(30) $\left|F_{\epsilon}\right| \leqslant C / \sigma$,
with some $C>0$, independent of $\epsilon>0$. We shall show that $1 / \sigma$ is locally integrable. Then the Lebesgue dominated convergence theorem implies that

$$
F_{(w, s), \epsilon} \rightarrow F_{(w, s)} \text { in } D^{\prime}\left(\mathbf{R}^{3}\right), \text { as } \epsilon \rightarrow 0 .
$$

The question of integrability occurs only at $(z, t)=(\pm w, s)$. We may as well set $s=0$. To include the two points in question, or, possibly, one point, if $w=0$, we shall estimate the integral of σ^{-1} on the domain $-1 \leqq t \leqq 1$, $|z| \leqq R$, where $R=1+2|w|$. Then

$$
\begin{align*}
& \int_{-1}^{1} \frac{d t}{\sigma}= \int_{-1+2 \operatorname{Im} z^{2} \bar{w}^{2}}^{1+2 \operatorname{Im} z^{2} \bar{w}^{2}} \frac{d s}{\left(\left|z^{2}-w^{2}\right|^{4}+s^{2}\right)^{1 / 2}}<2 \int_{0}^{1+2 R^{4}} \frac{d s}{\left(\left|z^{2}-w^{2}\right|^{4}+s^{2}\right)^{1 / \overline{2}}} \tag{31}\\
&=2 \log \left(\left[\left(1+2 R^{4}\right)^{2}+\left|z^{2}-w^{2}\right|^{4}\right]^{1 / 2}+1+2 R^{4}\right) \\
& \quad-4 \log \left|z^{2}-w^{2}\right| .
\end{align*}
$$

The first log term is clearly integrable on every compact domain in the z-plane. As for the second term

$$
\int_{|z|<R}|\log | z-w|+\log | z+w| | d v(z) \leqq 2 \int_{|z|<2 R}|\log | z| | d v(z)<\infty
$$

This finishes the proof of Proposition 29.

Since the bounds in the proof of Proposition 29 can be chosen independently of (w, s) if (w, s) belongs to a compact set in \mathbf{R}^{3}, Fubini's Theorem implies
(32) Corollary. $F_{(w, s)}(z, t)$ is locally integrable in $\mathbf{R}^{3} \times \mathbf{R}^{3}$.

A short heuristic explanation of the proof of Theorem 7 is in order. We shall show that $\mathscr{L} F_{(w, s)}(z, t)=0$ if $(z, t) \neq(w, s)$, i.e.

$$
\operatorname{supp} \mathscr{L}\left(F_{(w, s)}\right) \subset\{(w, s)\}
$$

According to Proposition 29

$$
\mathscr{L}\left(F_{(w, s), \epsilon}\right) \rightarrow \mathscr{L}\left(F_{(w, \cdots)}\right)
$$

in $D^{\prime}\left(\mathbf{R}^{3}\right)$. Next we show that

$$
\mathscr{L} F_{(w, w), \epsilon}(z, t) \in L^{1}\left(\mathbf{R}^{3}\right)
$$

and

$$
\left\|\mathscr{L}\left(F_{(w, s), \epsilon}\right)\right\|_{L^{1}\left(\mathbf{R}^{3}\right)}<M,
$$

M independent of $\epsilon>0$. This yields

$$
\mathscr{L}\left(F_{(w, s)}\right)=\lim _{\epsilon \rightarrow 0} \mathscr{L}\left(F_{(w, s), \epsilon}\right)=c \delta_{(w, s)},
$$

where

$$
c=\lim _{\epsilon \rightarrow 0} \int_{\mathbf{R}^{3}} \mathscr{L} F_{(w, s), \epsilon}(z, t) d v(z, t)=1
$$

which proves Theorem 7.
To carry out this procedure we need more precise information about $\mathscr{L} F_{(w, s), \epsilon}(z, t)=\mathscr{L}\left(F_{(w, s), \epsilon}\right)$. We set

$$
\begin{equation*}
\sigma_{\epsilon}=\lambda_{\epsilon}{ }^{1 / 2} \bar{\lambda}_{\epsilon}^{1 / 2} \tag{33}
\end{equation*}
$$

where
(34) $\lambda_{\epsilon}=\left|z^{2}-w^{2}\right|^{2}+\epsilon^{4}+i\left(t-s+2 \operatorname{Im} z^{2} \bar{w}^{2}\right)=2\left(A-\bar{z}^{2} w w^{2}\right)+\epsilon^{4}=\lambda+\epsilon^{4}$. Then

$$
\begin{align*}
Z\left(\lambda_{\epsilon}\right) & =\partial \lambda_{\epsilon} / \partial z+2 i z \bar{z}^{2} \partial \lambda_{\epsilon} / \partial t=0, \tag{35}\\
\bar{Z}\left(\lambda_{\epsilon}\right) & =4 \bar{z}\left(z^{2}-w w^{2}\right), \\
Z\left(\bar{\lambda}_{\epsilon}\right) & =\bar{Z}\left(\lambda_{\epsilon}\right) \\
\bar{Z}\left(\overline{\lambda_{\epsilon}}\right) & =\overline{Z\left(\lambda_{\epsilon}\right)}=0 .
\end{align*}
$$

Next

$$
\begin{aligned}
& Z \bar{Z}\left(\sigma_{\epsilon}^{-1}\right)=Z \bar{Z}\left(\lambda_{\epsilon}^{-1 / 2} \bar{\lambda}_{\epsilon}^{-1 / 2}\right)=Z\left(-\frac{1}{2} \lambda_{\epsilon}-3 / 2\left[4 \bar{z}\left(z^{2}-w^{2}\right)\right] \bar{\lambda}_{\epsilon}^{-1 / 2}\right) \\
& =-\frac{1}{2} \lambda_{\epsilon}{ }^{-3 / 2}\left\{\left[4 \bar{z}\left(z^{2}-w^{2}\right)\right] Z\left(\bar{\lambda}_{\epsilon}^{-1 / 2}\right)\right. \\
& \left.\quad+8|z|^{2} \bar{\lambda}_{\epsilon}^{-1 / 2}\right\} \\
& \quad=-4|z|^{2}\left|\lambda_{\epsilon}\right|^{-3}\left(\bar{\lambda}_{\epsilon}-\left|z^{2}-w^{2}\right|^{2}\right) .
\end{aligned}
$$

Thus we have
(39) $-\frac{1}{2}(Z \bar{Z}+\bar{Z} Z)\left(\frac{1}{4 \pi \sigma_{\epsilon}}\right)=\frac{1}{\pi} \frac{\epsilon^{4}|z|^{2}}{\sigma_{\epsilon}^{3}}$.

In particular
(40) $\mathscr{L}\left(\sigma^{-1}\right)=0 \quad$ if $\quad(z, t) \neq(\pm w, s)$.
(41) Proposition. For all $\epsilon>0$
(42) $\int_{\mathbf{R}^{3}} \frac{1}{\pi} \frac{\epsilon^{4}|z|^{2}}{\sigma_{\epsilon}^{3}} d v(z, t)=1$.

Proof. First we evaluate the $d t$ integral

$$
\begin{aligned}
\epsilon^{4}|z|^{2} \pi^{-1} \int_{-\infty}^{\infty}\left[\left(\left|z^{2}-w^{2}\right|^{2}+\epsilon^{4}\right)^{2}+(t-s\right. & \left.\left.+2 \operatorname{Im} z^{2} \bar{w}^{2}\right)^{2}\right]^{3 / 2} d t \\
=\epsilon^{4}|z|^{2} \pi^{-1} \int_{-\infty}^{\infty}\left(\left(\left|z^{2}-w^{2}\right|^{2}+\epsilon^{4}\right)^{2}\right. & \left.+t^{2}\right)^{-3 / 2} d t \\
& =2 \pi^{-1} \epsilon^{4}|z|^{2}\left(\left|z^{2}-w^{2}\right|^{2}+\epsilon^{4}\right)^{-2}
\end{aligned}
$$

Next we compute

$$
I=2 \pi^{-1} \int_{\mathbf{R}^{2}} \epsilon^{4}|z|^{2}\left(\left|z^{2}-w^{2}\right|^{2}+\epsilon^{4}\right)^{-2} d v(z)
$$

Let $r=|z|$ and set

$$
\begin{aligned}
& r_{1}^{2}=|z-w|^{2}=r^{2}+|w|^{2}-2 r|w| \cos \theta, \\
& r_{2}^{2}=|z+w|^{2}=r^{2}+|w|^{2}+2 r|w| \cos \theta .
\end{aligned}
$$

Then, using $\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$, we have

$$
\begin{aligned}
&\left|z^{2}-w^{2}\right|^{2}=r_{1}^{2} r_{2}^{2}=\left(r^{2}+|w|^{2}\right)^{2}-4 r^{2}|w|^{2} \cos ^{2} \theta \\
&=r^{4}+|w|^{4}-2 r^{2}|w|^{2} \cos 2 \theta .
\end{aligned}
$$

Therefore

$$
I=2 \pi^{-1} \epsilon^{4} \int_{0}^{\infty} r^{3} d r \int_{0}^{2 \pi}\left(r^{4}+|w|^{4}+\epsilon^{4}-2 r^{2}|w|^{2} \cos 2 \theta\right)^{-2} d \theta
$$

We use the formula
(43) $\int_{0}^{2 \pi}(a-b \cos \theta)^{-2} d \theta=2 \pi a\left(a^{2}-b^{2}\right)^{-3 \mid 2} \quad a>b \geqq 0$,
which yields

$$
\begin{aligned}
I= & 4 \epsilon^{4} \int_{0}^{\infty}\left(r^{4}+|w|^{4}+\epsilon^{4}\right) r^{3}\left(\left(r^{4}+|w|^{4}+\epsilon^{4}\right)^{2}-4 r^{4}|w|^{4}\right)^{-3 / 2} d r \\
= & \epsilon^{4} \int_{0}^{\infty}\left(t+|w|^{4}+\epsilon^{4}\right)\left(\left(t+|w|^{4}+\epsilon^{4}\right)^{2}-4 t|w|^{4}\right)^{-3 / 2} d t \\
= & \epsilon^{4} \int_{0}^{\infty}\left(t+|w|^{4}+\epsilon^{4}\right)\left(\left(t+\epsilon^{4}-|w|^{4}\right)^{2}+4|w|^{4} \epsilon^{4}\right)^{-3 / 2} d t \\
& =\epsilon^{4} \int_{\epsilon^{4}-|w|^{4}}^{\infty}\left(t+2|w|^{4}\right)\left(t^{2}+4 \epsilon^{4}|w|^{4}\right)^{-3 / 2} d t=1
\end{aligned}
$$

which is the required result.
We would like to express our thanks to P. G. Rooney for computing I.
(44) Remark. Via contour integration

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \theta}{a-b \cos \theta}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}, \quad a>b \geqq 0 . \tag{45}
\end{equation*}
$$

Differentiating (45) with respect to a one obtains (43).
Next we set
(46) $g_{\epsilon}=i \log h_{\epsilon}$,
and compute $\mathscr{L}\left(g_{\epsilon} / \sigma_{\epsilon}\right)$. We note that g_{ϵ} is real. Then

$$
\bar{Z} Z\left(g_{\epsilon} / \sigma_{\epsilon}\right)=\bar{Z} Z\left(\sigma_{\epsilon}^{-1}\right) g_{\epsilon}+Z\left(\sigma_{\epsilon}^{-1}\right) \bar{Z}\left(g_{\epsilon}\right)+\bar{Z}\left(\sigma_{\epsilon}^{-1}\right) Z\left(g_{\epsilon}\right)+\sigma_{\epsilon}^{-1} \bar{Z} Z\left(g_{\epsilon}\right) .
$$

Therefore

$$
\begin{align*}
& (\bar{Z} Z+Z \bar{Z})\left(g_{\epsilon} / \sigma_{\epsilon}\right)=(\bar{Z} Z+Z \bar{Z})\left(\sigma_{\epsilon}^{-1}\right) g_{\epsilon}+2 Z\left(\sigma_{\epsilon}^{-1}\right) \bar{Z}\left(g_{\epsilon}\right) \tag{47}\\
& +2 \bar{Z}\left(\sigma_{\epsilon}{ }^{-1}\right) Z\left(g_{\epsilon}\right)+\sigma_{\epsilon}{ }^{-1}(\bar{Z} Z+Z \bar{Z})\left(g_{\epsilon}\right) .
\end{align*}
$$

Using (33)-(38) we obtain
(48) $\left.Z\left(\sigma_{\epsilon}{ }^{-1}\right)=-2 z\left(\bar{z}^{2}-w \bar{w}^{2}\right) \lambda_{\epsilon} / \sigma_{\epsilon}{ }^{3}=\overline{\bar{Z}\left(\sigma_{\epsilon}-1\right.}\right)$.

Similarly
(49) $Z\left(A_{\epsilon}\right)=\partial A_{\epsilon} / \partial z+2 i z \bar{z}^{2} \partial A_{\epsilon} / \partial t=0=\bar{Z}\left(\overline{A_{\epsilon}}\right)$,
(50) $Z\left(\bar{A}_{\epsilon}\right)=2 z \bar{z}^{2}=\bar{Z}\left(A_{\epsilon}\right)$,
(51) $Z\left(p_{\epsilon}\right)=0=\bar{Z}\left(\overline{p_{\epsilon}}\right)$,
(52) $Z\left(\bar{p}_{\epsilon}\right)=\frac{\bar{w}}{\bar{A}_{\epsilon}^{11 / \overline{2}}}\left(1-\frac{|z|^{4}}{\bar{A}_{\epsilon}}\right)=\overline{\bar{Z}\left(p_{\epsilon}\right)}$.

We recall that $g_{\epsilon}=g\left(p_{\epsilon}, \bar{p}_{\epsilon}\right)$. Hence

$$
\begin{equation*}
Z\left(g_{\epsilon}\right)=\frac{\bar{w}}{\bar{A}_{\epsilon}^{1 / 2}}\left(1-\frac{|z|^{4}}{\bar{A}_{\epsilon}^{-}}\right) \frac{\partial g_{\epsilon}}{\partial \bar{p}_{\epsilon}}=\overline{\bar{Z}\left(g_{\epsilon}\right)} . \tag{53}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
(Z \bar{Z}+\bar{Z} Z)\left(g_{\epsilon}\right)=-2|z|^{2}\left(\frac{\bar{p}_{\epsilon}}{\bar{A}_{\epsilon}} \frac{\partial g_{\epsilon}}{\partial p_{\epsilon}}+\frac{p_{\epsilon}}{A_{\epsilon}} \frac{\partial g_{\epsilon}}{\partial p_{\epsilon}}\right) \tag{54}
\end{equation*}
$$

$$
+2 \frac{|w|^{2}}{\left|A_{\epsilon}\right|}\left|1-\frac{|z|^{4}}{A_{\epsilon}}\right|^{2} \frac{\partial^{2} g_{\epsilon}}{\partial p_{\epsilon} \partial \bar{p}_{\epsilon}} .
$$

From (26) we also have

$$
\begin{equation*}
\sigma_{\epsilon}{ }^{2}=4\left|A_{\epsilon}-\bar{z}^{2} w^{2}\right|^{2}=4\left|A_{\epsilon}\right|^{2}\left|1-p_{\epsilon}{ }^{2}\right|^{2} . \tag{55}
\end{equation*}
$$

Therefore (47), (48), (53)—(55) and (39) yield

$$
\begin{aligned}
(Z \bar{Z}+\bar{Z} Z) & \left(g_{\epsilon} / \sigma_{\epsilon}\right)=-8|z|^{2} \epsilon^{4} g_{\epsilon} / \sigma_{\epsilon}{ }^{3} \\
+8 \operatorname{Re} & \left\{2 z\left(w^{2}-\bar{z}^{2}\right)\left(A_{\epsilon}-\bar{z}^{2} w^{2}\right) \bar{Z}\left(g_{\epsilon}\right)\right\} / \sigma_{\epsilon}^{3}+4\left|A_{\epsilon}-\bar{z}^{2} w^{2}\right|^{2} \\
& \times\left\{-4|z|^{2} \operatorname{Re}\left(\frac{p_{\epsilon}}{A_{\epsilon}} \frac{\partial g_{\epsilon}}{\partial p_{\epsilon}}\right)+\frac{2|w|^{2}}{\left|A_{\epsilon}\right|}\left|1-\frac{|z|^{4}}{A_{\epsilon}}\right|^{2}-\frac{\partial^{2} g_{\epsilon}}{\partial p_{\epsilon} \partial \bar{p}_{\epsilon}}\right\} / \sigma_{\epsilon}^{3} .
\end{aligned}
$$

We calculate the necessary derivatives.

$$
\begin{aligned}
& \frac{\partial g_{\epsilon}}{\partial p_{\epsilon}}=\frac{1-\bar{p}_{\epsilon}{ }^{2}}{\left|1-p_{\epsilon}{ }^{2}\right|} \frac{1}{1+\left|p_{\epsilon}\right|^{2}}, \\
& \frac{\partial^{2} g_{\epsilon}}{\partial p_{\epsilon} \partial \bar{p}_{\epsilon}}=\frac{-2 \operatorname{Re} p_{\epsilon}}{\left|1-p_{\epsilon}^{2}\right|\left(1+\left|p_{\epsilon}\right|^{2}\right)^{2}} .
\end{aligned}
$$

We recall

$$
g_{\epsilon}=i \log h_{\epsilon},
$$

and

$$
h_{\epsilon}=\frac{\left|1-p_{\epsilon}{ }^{2}\right|+2 i \operatorname{Re} p_{\epsilon}}{1+\left|p_{\epsilon}\right|^{2}} .
$$

Substituting for these derivatives we obtain

$$
\begin{aligned}
& (Z \bar{Z}+\bar{Z} Z)\left(g_{\epsilon} / \sigma_{\epsilon}\right)=-8|z|^{2} \epsilon^{4} g_{\epsilon} / \sigma_{\epsilon}{ }^{3}+\frac{16\left|1-p_{\epsilon}{ }^{2}\right|}{\sigma_{\epsilon}^{3}\left(1+\left|p_{\epsilon}\right|^{2}\right)} \\
& \times \operatorname{Re}\left\{\frac{z w}{A_{\epsilon}^{1 / 2}}\left(\bar{w}^{2}-\bar{z}^{2}\right)\left(A_{\epsilon}-|z|^{4}\right)-|z|^{2}-\bar{z} w\right. \\
& A_{\epsilon}^{1 / 2} \\
& \left.1 / A_{\epsilon}-z^{2} \bar{w}^{2}\right) \\
& \\
& \left.-|\bar{w}|^{2}\left|A_{\epsilon}-|z|^{4}\right|^{2} \frac{\bar{z} w}{A_{\epsilon}^{1 / 2}} \frac{1}{\left|A_{\epsilon}\right|+|z w|^{2}}\right\} .
\end{aligned}
$$

We multiply through by $\left|A_{\epsilon}\right|+|z w|^{2}$ and in $\{\cdots\}$ collect the terms as coefficient of $A_{\epsilon^{-1 / 2}}$, e.g.,

$$
\frac{1}{A_{\epsilon}^{1 / 2}}|A|=\frac{1}{\bar{A}_{\epsilon}^{1 / 2}} \bar{A}_{\epsilon} .
$$

This yields

$$
(Z \bar{Z}+\bar{Z} Z)\left(g_{\epsilon} / \sigma_{\epsilon}\right)=\frac{-8|z|^{2} \epsilon^{4}}{\sigma_{\epsilon}^{3}} g_{\epsilon}+\frac{16\left|1-p_{\epsilon}{ }^{2}\right|}{\left(1+\left|p_{\epsilon}\right|^{2}\right)^{2}\left|A_{\epsilon}\right| \sigma_{\epsilon}^{3}} \operatorname{Re}\left\{\frac{K_{1}(\epsilon)}{A_{\epsilon}{ }^{1 / 2}}\right\},
$$

where

$$
\begin{align*}
K_{1}(\epsilon) & =\left.z w\right|_{z w}{ }^{2}\left(\bar{w}^{2}-\bar{z}^{2}\right)\left(A_{\epsilon}-|z|^{4}\right)+\bar{z} \bar{w}\left(w^{2}-z^{2}\right) A_{\epsilon}\left(\bar{A}_{\epsilon}-|z|^{4}\right) \tag{56}\\
& -|z|^{2} z \bar{w} A_{\epsilon}\left(A_{\epsilon}-\bar{z}^{2} w w^{2}\right)-|z|^{2}|z w|^{2} \bar{z} w\left(\bar{A}_{\epsilon}-z^{2} \bar{w}^{2}\right)-\left.|w|^{2} \bar{z} w\right|_{\epsilon}-\left.|z|^{4}\right|^{2} .
\end{align*}
$$

(57) Lemma. $K_{1}(0)=0$. In particular

$$
\mathscr{L}\left(\frac{i \log h}{\sigma}\right)=0
$$

if $(z, t) \neq(\pm w, s)$ and $w \neq 0$.
Proof. $K_{1}(0)=a(t-s)^{2}+b(t-s)+c$ and a simple but tedious calculation yields $a=b=c=0$. The rest follows if we note that the above calculation yields

$$
(Z \bar{Z}+\bar{Z} Z)\left(\frac{i \log h}{\sigma}\right)=\frac{16\left|1-p^{2}\right|}{\left(1+|p|^{2}\right)^{2} \sigma^{3}|A|} \operatorname{Re}\left(\frac{K_{1}(0)}{A^{1 / 2}}\right)=0 .
$$

Finally, Lemma 57 yields

$$
\begin{align*}
&(Z \bar{Z}+\bar{Z} Z)\left(\frac{i \log h_{\epsilon}}{\sigma_{\epsilon}}\right)=-\frac{8|z|^{2} \epsilon^{4}}{\sigma_{\epsilon}^{3}} i \log h_{\epsilon}+\frac{8 \mid 1}{}-\frac{p_{\epsilon}{ }^{2} \mid \epsilon^{4}}{\left|A_{\epsilon}\right|(1}+\left|\left|p_{\epsilon}\right|^{2}\right)^{2} \sigma_{\epsilon}{ }^{3} \tag{58}\\
& \times \operatorname{Re}\left(A_{\epsilon}{ }^{-1 / 2} K(\epsilon)\right),
\end{align*}
$$

where

$$
\begin{align*}
& K(\epsilon)=\left.\left.z w\right|^{z w}\right|^{2}\left(\bar{w}^{2}-\bar{z}^{2}\right)+\bar{z} \bar{w}\left(w^{2}-z^{2}\right)\left(A_{\epsilon}+\bar{A}-|z|^{4}\right) \tag{59}\\
& \quad-|z|^{2} z w\left(A_{\epsilon}+A-\bar{z}^{2} w w^{2}\right)-|z|^{2}|z w|^{2} \bar{z} w-|w|^{2} \bar{z} w\left(A_{\epsilon}+\bar{A}-2|z|^{4}\right) .
\end{align*}
$$

(60) Proposition. $\mathscr{L}(F)=0$ as long as $(z, t) \neq(w, s)$.

Proof. (i) $w=0$. Then, according to Proposition 15, $F_{(w, s)}(z, t)=1 / 4 \pi \sigma$, hence (40) is the required result.
(ii) $w \neq 0$. In this case Proposition 15, (40) and Lemma 57 imply that

$$
\mathscr{L} F_{w, s}(z, t)=0
$$

as long as $(z, t) \neq(\pm w, s)$. On the other hand, according to Theorem 22, $F_{(w, s)}(z, t)$ is C^{∞} in a neighbourhood of $(-w, s)$. Therefore $\mathscr{L} F_{(w, s)}(z, t)=0$ in a neighbourhood of $(-w, s)$, which yields Proposition 60.
(61) Lemma. $\mathscr{L} F_{(w, s), \epsilon}(z, t) \rightarrow 0$ uniformly on compact subsets of \mathbf{R}^{3} which do not contain the point (w, s) as $\epsilon \rightarrow 0$.

Proof. (i) $w=0$. From (39)

$$
\mathscr{L}_{z, t}\left(\left(\left.4 \pi| | z\right|^{4}+\epsilon^{4}+i(t-s) \mid\right)^{-1}\right)=\left.\epsilon^{4}|z|^{2} \pi^{-1}| | z\right|^{4}+\epsilon^{4}+\left.i(t-s)\right|^{-3} \rightarrow 0,
$$

uniformly on compact sets which exclude the point $(0, s)$ as $\epsilon \rightarrow 0$.
(ii) $w \neq 0$ and let N be a compact subset of \mathbf{R}^{3} which excludes the points ($\pm w, s$). Since $A_{\epsilon} \rightarrow A$, uniformly on N and since $\left|A_{\epsilon}\right|$ is bounded away from zero, independently of $\epsilon>0, p_{\epsilon} \rightarrow p$, uniformly on N. Furthermore, since N misses a neighbourhood of ($\pm w, s$), p misses a neighbourhood of ± 1 (see Lemma 19). Therefore, for sufficiently small $\epsilon>0$, there exists $\delta>0$, such that $\left|1+p_{\epsilon}\right|>\delta$ and $\left|1-p_{\epsilon}\right|>\delta$ on N. Recall that

$$
\sigma_{\epsilon}{ }^{2}=\left.4\left|A_{\epsilon}\right|^{2}\left|1-p_{\epsilon}\right|^{2}\right|^{2}
$$

Therefore, Proposition 15, (39) and (58) imply that

$$
\mathscr{L}_{z, t}\left(F_{(w, s), \epsilon}(z, t)\right) \rightarrow 0,
$$

uniformly on N as $\epsilon \rightarrow 0$.
(iii) Finally assume $w \neq 0$ and (z, t) is in a sufficiently small neighbourhood, U, of $(-w, s)$. By Lemma 20

$$
F_{(w, s), \epsilon}(z, t)=\frac{1}{4 \pi^{2}\left|A_{\epsilon}\right|\left(p_{\epsilon}+p_{\epsilon}\right)} \int_{0}^{1} \frac{d \xi}{1+\frac{\left|1-p_{\epsilon}\right|^{2}}{\left(p_{\epsilon}+\overline{p_{\epsilon}}\right)^{2}} \xi^{2}},
$$

where p_{ϵ} is in a sufficiently small neighbourhood of -1 . Clearly, all derivatives $D_{z, t}^{\alpha} F_{(w, s), \epsilon}(z, t)$ converge, uniformly in U to $D_{z, t}^{\alpha} F_{(w, s)}(z, t)$. In particular,

$$
\mathscr{L} F_{(w, s), \epsilon}(z, t) \rightarrow \mathscr{L} F_{(w, s)}(z, t)=0
$$

as $\epsilon \rightarrow 0$, uniformly for $(z, t) \in U$ (see Proposition 60). This proves Lemma 61.
(62) Lemma. For every fixed (w, s)
(63) $\int_{\mathbf{R}^{3}}\left|\mathscr{L} F_{(w, s), \epsilon}(z, t)\right| d v(z, t)<C$, for some $C>0, C$ independent of $\epsilon>0$.

Proof. First of all we have

$$
\begin{equation*}
\left|\mathscr{L} F_{(w, s), \epsilon}(z, t)\right| \leqslant C \frac{1+|z|^{2}}{\sigma_{\epsilon}{ }^{3}-\epsilon^{4}} \tag{64}
\end{equation*}
$$

which follows immediately from (40), (58) and (59). We note that

$$
-\pi<i \log h_{\epsilon}<\pi
$$

since $\left|h_{\epsilon}\right|=1$ and $\left|p_{\epsilon}\right|<1$ if $\epsilon>0$. Thus to show that (64) implies (63) all we have to show is that

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left(\epsilon^{4} / \sigma_{\epsilon}^{3}\right) d v(z, t)<\infty \tag{65}
\end{equation*}
$$

uniformly in $\epsilon>0$, if $w \neq 0$. The case $w=0$ follows from (16) and (42).

Now

$$
\begin{aligned}
& \int_{\mathbf{R}^{3}} \epsilon^{4} \sigma_{\epsilon}{ }^{-3} d v(z, t)<C_{1} \int_{|z|<|w| / 2} d v(z) \int_{-\infty}^{\infty} \sigma^{-3} d t \\
&+\int_{|z| \geqq|w| / 2} d v(z) \int_{-\infty}^{\infty} \epsilon^{4} \sigma_{\epsilon} \epsilon^{-3} d t=I_{1}+I_{2}
\end{aligned}
$$

First

$$
\begin{array}{rl}
I_{1}=C_{1} \int_{|z|<|w| / 2} & d v(z) \int_{-\infty}^{\infty}\left(\left|z^{2}-w^{2}\right|^{4}+t^{2}\right)^{-3 / 2} d t \\
& =C_{1} \int_{|z|<|w| / 2}^{\infty}\left|z^{2}-w^{2}\right|^{-4} d v(z) \int_{-\infty}^{\infty}\left(1+t^{2}\right)^{-3 / 2} d t<\infty
\end{array}
$$

since $|z|<|w| / 2 \Rightarrow|z-w|>|w| / 2$ and $|z+w|>|w| / 2 . C_{1}$ may be chosen to be one if $0<\epsilon<1$.

Next we note that

$$
|z| \geqq|w| / 2 \Rightarrow 1<C_{2}|z|^{2}
$$

Therefore

$$
\begin{aligned}
I_{2}<C_{2} & \int_{|z| \geqq|w| / 2} d v(z) \int_{-\infty}^{\infty} \epsilon^{4}|z|^{2} \sigma_{\epsilon}^{-3} d v(z, t)<C_{2} \int_{\mathbf{R}^{3}} \epsilon^{4}|z|^{2} \sigma_{\epsilon}{ }^{-3} d v(z, t) \\
& =\pi C_{2}
\end{aligned}
$$

where C_{2} is independent of $\epsilon>0$. This proves Lemma 62.
(66) Lemma. For all $\epsilon>0$

$$
\int_{\mathbf{R}^{3}} \mathscr{L}_{z, t}\left(\frac{i \log h_{\epsilon}}{\sigma_{\epsilon}}\right) d v(z, t)=0 .
$$

Proof. This follows immediately from
(i) $\mathscr{L}_{2, t}\left(\frac{i \log h_{\epsilon}}{\sigma_{\epsilon}}\right) \in L^{1}\left(\mathbf{R}^{3}\right)$, according to Lemma 62, and
(ii) from (58) one sees that

$$
\left(\mathscr{L}\left(\frac{i \log h_{\epsilon}}{\sigma_{\epsilon}}\right)\right)(z, t)=-\left(\mathscr{L}\left(\frac{i \log h_{\epsilon}}{\sigma_{\epsilon}}\right)\right)(-z, t)
$$

Proof of Theorem 7. Let $\phi \in C_{0}{ }^{\infty}\left(\mathbf{R}^{3}\right)$. Recall that we want to show that $\phi(w, s)=\left\langle F_{(w, s)}, \mathscr{L}(\phi)\right\rangle$. According to Proposition 29

$$
\left\langle F_{(w, s)}, \mathscr{L}(\phi)\right\rangle=\lim _{\epsilon \rightarrow 0}\left\langle F_{(w, s), \epsilon}, \mathscr{L}(\phi)\right\rangle=\lim _{\epsilon \rightarrow 0}\left\langle\mathscr{L}\left(F_{(w, s), \epsilon}\right), \phi\right\rangle .
$$

Furthermore, by Proposition 41 and Lemmas 62 and 66 we can write

$$
\begin{array}{rl}
\left\langle\mathscr{L}\left(F_{(w, s), \epsilon}\right), \phi\right\rangle=\int_{\mathbf{R}^{3}} & \mathscr{L} F_{(w, s), \epsilon}(z, t) \phi(z, t) d v(z, t)=\phi(w, s) \\
& +\int_{\mathbf{R}^{3}} \mathscr{L} F_{(w, s), \epsilon}(z, t)(\phi(z, t)-\phi(w, s)) d v(z, t) .
\end{array}
$$

Next let U be a neighbourhood of (w, s). Then

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbf{R}^{3}-U} \mathscr{L} F_{(w, s), \epsilon}(z, t)(\phi(z, t)-\phi(w, s)) d v(z, t)=0
$$

because $\mathscr{L} F_{(w, s), \epsilon}(z, t) \rightarrow 0$ as $\epsilon \rightarrow 0$, uniformly on $\{\operatorname{supp} \phi\} \cap\left\{\mathbf{R}^{3}-U\right\}$ (see Lemma 61). Furthermore, according to Lemma 62

$$
\begin{aligned}
&\left|\int_{U} \mathscr{L} F_{(w, s), \epsilon}(z, t)(\phi(z, t)-\phi(w, s)) d v(z, t)\right| \\
& \leqq C \sup _{(z, t) \in U}|\phi(z, t)-\phi(w, s)|
\end{aligned}
$$

Since U is arbitrary, we see that

$$
\phi(w, s)=\lim _{\epsilon \rightarrow 0}\left\langle\mathscr{L}\left(F_{(w, s), \epsilon}\right), \phi\right\rangle=\left\langle F_{(w, s)}, \mathscr{L}(\phi)\right\rangle,
$$

which proves Theorem 7.
(67) Corollary. Let $\phi \in C_{0}{ }^{\infty}\left(\mathbf{R}^{3}\right)$. Then the distribution

$$
u(z, t)=\int_{\mathbf{R}^{3}} F_{(w, s)}(z, t) \phi(w, s) d v(w, s)
$$

solves

$$
\mathscr{L}(u)=\phi
$$

Furthermore, $u \in C^{\infty}\left(\mathbf{R}^{3}\right)$.
Proof. Corollary 32 shows that u is a locally integrable distribution. Let $\psi \in C_{0}{ }^{\infty}\left(\mathbf{R}^{3}\right)$. Then

$$
\begin{aligned}
\langle\psi, \mathscr{L} & \left.\int_{\mathbf{R}^{3}} F_{(w, s)}(z, t) \phi(w, s) d v(w, s)\right\rangle \\
& =\left\langle\mathscr{L}(\psi), \int_{\mathbf{R}^{3}} F_{(w, s)}(z, t) \phi(w, s) d v(w, s)\right\rangle \\
& =\left\langle\int_{\mathbf{R}^{3}} F_{(w, s)}(z, t) \mathscr{L}(\psi)(z, t) d v(z, t), \phi\right\rangle \\
& =\int_{\mathbf{R}^{3}} \psi(w, s) \phi(w, s) d v(w, s)
\end{aligned}
$$

by Theorem 7. This implies $\mathscr{L}(u)=\phi$. Finally $u \in C^{\infty}\left(\mathbf{R}^{3}\right)$ because $\mathscr{L}=$ $-(\operatorname{Re} Z)^{2}-(\operatorname{Im} Z)^{2}$ is hypoelliptic (see [3], [4] and [5]).
(68) Remark. It is interesting to compute the singularity of $F_{(w, s)}(z, t)$ when (z, t) is near (w, s). First assume $w \neq 0$. Then $p=1$ at $(z, t)=(w, s)$ and

$$
z=\frac{|1+p|^{2}+i\left|1-p^{2}\right|}{1+|p|^{2}}=2 \quad \text { at } p=1
$$

We note that $\operatorname{Im} z>0$ if $p \neq \pm 1$. Next,

$$
\left.\int_{0}^{1} \frac{d t}{z t-1}\right|_{z=2}=\left.\frac{1}{z} \log (1-z)\right|_{z=2}=\frac{-i \pi}{2} .
$$

Therefore, according to (8), F has the following singularity when (z, t) is near (w, s):

$$
\frac{1}{8 \pi|A|^{1 / 2}\left|A^{1 / 2}-\bar{z} w\right|} .
$$

This holds even when $w=0$.

References

1. P. C. Greiner and E. M. Stein, Estimates for the $\bar{\gamma}$-Neumann problem, Mathematical Notes Series, 19 (Princeton Univ. Press, Princeton, N.J., 1977).
2. - On the solvability of some differential operators of type \square_{b}, Seminar on Several Complex Variables, Cortona, Italy, 1976.
3. L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 11.9 (1967), 147-171.
4. J. J. Kohn, Harmonic integrals for differential complexes, Global Analysis, Princeton Math. Series, 29 (Princeton Univ. Press, Princeton, N.J., 1969), 295-308.
5. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320.

University of Toronto,
Toronto, Ontario

[^0]: Received June 19, 1978. This research was partially supported by the National Research Council of Canada under grant A-3017.

