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HOLOMORPHIC CURVES IN THE COMPLEX QUADRIC

GARY R. JENSEN, MARCO RIGOLI AND KICHOON YANG

A local theory of holomorphic curves in the complex hyperquadric

is worked out using the method of moving frames. As a consequence

a complete global characterization of totally isotropic curves is

obtained.

1. Introduction.

Holomorphic curves in a complex quadric arise naturally as the

complex conjugate of the Gauss map of a minimal surface in Euclidean

space. In addition, such holomorphic curves play a central role in

generating a special class of harmonic maps of surfaces into spheres,

complex projective space, and the complex Grassmannians. (See Eells-Wood

[6], Bryant [2], Chern-Wolfson [51, Ramanathan L141, and many references

cited in these papers.)
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In this paper we begin a systematic study of the metric differential

geometry of holomorphic curves in a quadric by using the method of moving

frames on the quadric as a homogeneous space of the orthogonal group. The

constructions of this method work for a generic point on a generic curve,

but in general a curve will possess certain singular points where the

frame construction becomes more complicated. There are three types of

singular points: branch points, isotropic points, and real points.

The first two types are either isolated or everything,

and they present no real problem in the frame construction. However, the

real points need not be isolated, and it is not yet clear how to make the

frame construction on a neighbourhood of one of these points even if it is

isolated. Geometrically the real points are characterised by the property

that the osculating space at them has dimension less than two.

We partially characterize the holomorphic curves all of whose points

are singular, for each of the three types of singular points. Of course

if all the points are branch points then the curve is constant. If all

the points are real then in Theorem 3.1 it is shown that the curve must

be contained in a one dimensional linear section of the quadric. If all

of the points are isotropic at every order the curve is called totally

isotropic. In Theorems 4.1 and 4.2 we prove by our method the known

characterisations of totally isotropic curves in the quadrics of even and

odd dimensions, respectively.

2. Holomorphic curves in the quadric.

We take as our definition of Q the non-singular hyperquadric in

(2.1) Qm = /[»] e SP
+1 : tzz = o\

The unitary group U(nH-2) acts transitively on SP , and if we choose

the point o = [l,^...,fl] as the origin, then the isotropy subgroup at

O is U(l) x U(nH-l) and

+1 = U(m+2)/U(l) x U(rrH-l) .

We let

(2.2) p: V(m+2)

e )-»• e • o = [e_]
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denote the projection, where e . is the
3

.th
column of e .

m

The orthogonal group 0(nH-2) is a subgroup of V(rrH-2) and it maps

into itself. If we choose the point

qQ = tLl, %, 0,...,0\ e Qm

as the origin of Q , then the isotropy subgroup of 0(nH-2) at q is

S0(2) x 0(m) and

(2.4)

We let

(2.5)

denote the projection.

Q = 0 (m+2)/SO (2) x 0(m) .

q: O(rrn-2) •* Q
m

• q = [e + ie

Let Q = Cn,) , 1 <, a,b,c <: m+2 , denote the U(ITH-2) valued

Maurer-Cartan form of U(m+2) . Then

b a

and we have the structure equations

(2.6) d - < " "I
The Fubini-Study metric g of $F , normalised to have holomorphic

sectional curvature equal to four, is characterised by the fact that

(2.7)
m+2

p*g = 1
Ci

Q

We denote the o(m+2) - valued Maurer-Cartan form of 0(m+2) by

0= (B^) . It satisfies
b

b a

and the structure equations (2.6). The pull-back of SI by the inclusion

mapping 0(m+2) c U(rrn-2) is 0 ; in other words 0 = Q\0(n+2) .

Consider the unitary matrix

(2.8) T = 1/J2
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where J denotes the m x m ident i ty matrix. Then T . o = q

and consequently

« = P ° R

where R : U(rrH-2) -*• U(rrH-2) i s right mul t ip l ica t ion by T . Using the

fact t ha t R*U = Ad(T~ ) *il , we get from (2.7)

m+2
(2.9) q*g = Z Q" Q

3

where we have set

Thus the pull-back to Q by any local section of (2.5) of the forms Q

defines a local unitary coframe in Q of the Kahler metric induced on it

by the Fubini-Study metric g . This induced metric is given by the pull-

back of the form (2.9) by the local section.

Let M be a connected Riemann surface and let

(2.10) f: M •* Qm

be a non-constant holomorphic map. We define a local orthogonal fvdfne

field along f to be a mapping

(2.11) e : U £ M ->• 0(m+2)

such that q o e = / ; that is , / =

If we think of / as a holomorphic curve in €F , then

e is a local orthogonal frame field along f if and only if R ° e

is a unitary frame field along / (that is p ° /?„ ° e = / , where T is

given by (2.8)). The situation is illustrated by the diagram

0(m+2) c U(m+2)

P

(2.12)

-71

Given (2.10) and (2.11), we will write

(2.13) e£ =
.
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We will use the index conventions

(2.14) 3 < ajB < m+2 ; 1 ̂  a,b < m+2 .

If <ji is any nowhere zero bidegree (1,0) form in U , then the

fact that f is holomorphic implies that

(2.15) e" + i a" = sa<j> ,

for some smooth complex valued functions 5 on U .

In fact, if we let

(2.16) r, : d"+2 \ {0} + SI?*1

denote the usual projection z ->• [3] , then q ° e = f means that

IT o (e + ie ) = f . From the structure-p^uations (2.6)

(2.17)

and thus

i 2 HBJ re + is\)^(^i

which verifies (2.15) .

We set 5 = (Sa) e if , and observe from (2.18) that S(x) = 0 for

some point x e U if and only if f^. , = 0 ; that is , x is a branch

point of / . If ^ is any other nowhere zero bidegree (1,0) form on

U , then

(2.19) $ = A <f>

for some non-vanishing smooth complex valued function A , and by (2.15)

(2.20) t\>a + iBa = A"1 Sa %

Thus, setting aside the branch points for the moment, we see that the

orthogonal frame e determines a point [5] e CP

Suppose that e : U •*• 0(m+2) is another local orthogonal frame

field along f , and that U n U / 0 . Then on U n U we have

e = e K

where K : V n U •* S0(2) x 0(m) is a smooth map given by
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(2.21) K =

cos t -sin t

sin t cos t

where A : U n U •*• 0(m) is smooth. If we write equations (2.15) for e

with the same le t ters being given a t i lde, then

5 = A~2S .

f

(2.22)

Consequently, the first step in reducing the bundle f * 0(m+2) •* M

to the first order frames is to determine the orbit structure of the

standard action of 0(m) on SV . This has been done in Hoffman-

Osserman [7D (Proposition 2.4, p. 28) .

PROPOSITION 2.1. A cross-section of the standard action of 0(m)

' is (for m > 2)on

(2.23)

1

ti

0

0 < t <. 1}•

0

That is each orbit of 0(m) meets the set (2.23) in exactly one point.

The orbits through the points where 0 < t < 1 are the principal orbits.

The isotropy subgroup of 0(m) at these points is Z x 0(m-2) . The

other two orbits are singular. The one through the point with t = 1 is

just Q _g and the isotropy subgroup at this point is S0(2) x 0(m-2) .

The orbit through the point with t = 0 is JRP and the isotropy

subgroup at this point is Z x 0(m-l) .

DEFINITIONS, i) Points [S] in the orbit of tll,i,0,...,01 are

called isotropic points of €^"~ . If 5 is given by (2.15) and [S(x)l

is isotropic for some x e Af , we will call x an isotropic point of f.
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The isotropic points are characterised by the condition

(2.24) tS(x) S(x) = 0

By (2.17), x is isotropic if and only if the line through fix) tangent

to f(M) lies in Q .
m

ii) Points [S] in the orbit of 11,0,. . . , 01 are called real points

of ff^"~ . If LS(x)l is real, we will call x ,e M a real point of f.

The real points are characterized by the condition

(2.25) S(x)* S(x) = 0 (e h^) .

iii) Points of M which are either isotropic, realor branch points will

be called singular points of f . All other points will be called

non-singular.

It is known from the theory of transformation groups (see Jensen

[S] that if x e M is non-singular then there is an open set U3 x on

which there is a smooth orthogonal frame field e : U -*• 0(nrt-2) along f

with the property that

(2.26) LSI ; U •*• {tUi it, 0', .., 01 : 0 < t < 1} £ C^"'
1 .

We will call such a frame field a first order frame field.

Similarly, if every point of M were isotropic (respectively real)

then for every point x e M there would exist an open set U ? x on

which there exists a smooth frame field e : U -*• O(rrH-2) along f

satisfying

(2.27) DS]= tU3i30,...J01

(respectively

(2.28) [5] = tU30,...,0V .

(See remark 2.35 following Corollary 2.4 below for an explanation of why

this is possible even if S(x) = 0) . We call / first order isotropic

(respectively, real) in this case and call e satisfying (2.27)

(respectively, (2.28) )a first order frame field.

However, if x e M is a singular point which is in the closure of

the non-singular points, it is not clear what a first order frame field

should be. We shall clarify the situation for branch and isotropic

points, but the real points remain a mystery when m > 2 .
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Remark. Let <j> be any nowhere zero bidegree (1,0) form on U c_ M.

Then there is a unique real l-form m on U satisfying

( 2 . 2 9 ) <2<f> = i o i A <f> .

In fact, u is the Levi-Civita connection form with respect to the unitary

coframe field <(> of the Riemannian metric <)><(> on U .

PROPOSITION 2.2. Let e be a local orthogonal frame field along f.

Use the notation of (2.11), (2.13), and (2.15). Then

(2.30) ids0- + i(m - e1)sa + e" 5B] A <(, = o
2 P

(2.31) id^SS) + 2iU - 9^ tSSl> A i> = 0 ,

where co is given by (2.29).

Proof. Take the exterior differential of (2.15) and use the

structure equations (2.6) and (2.29) to obtain (2.30)., Equation (2.31)

follows from multiplying (2.30) by 5 , summing on a , and using the

fact that e" = -66 . D
p ct

DEFINITION. Let U be a domain in M . A smooth vector-valued

function F:U+tir,n>0, is of analytic type if for each point x in

U , if s is a local complex coordinate centered at x , then

(2.32) F = zbF

where b is a positive integer and F is a smooth <F -valued function on

a neighbourhood of x such that F(x) ̂  0 .

It is known that functions of analytic type are precisely the

solutions of differential systems

(2.33) (dF + YFM <j, = 0 ,

where ¥ is a (T -valued I-form on U and § is a nowhere vanishing

bidegree (1,0) form on U . If F is a function of analytic type on

U , then either F is identically zero on U or its zeros are isolated

and of finite order (the integer b in (2.32) is the order at x ).

COROLLARY 2.3. Given the notation of Proposition 2.2. Then

S = (Sa) : U -*• tf and SS : U -*• $ are of analytic type. Thus the
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branch points of f are isolated (of course, as f is holomorphic and

assumed non-constant), and either every point of M is an isotropic point

or the isotropic points are isolated and of finite order.

COROLLARY 2.4. Given the notation of Proposition 2.2. Let x e U

be a branch point. Then the map LSI : U ->- Gr extends smoothly to xQ.

Proof. If z is a local complex coordinate centred at x , then

S = z S for some positive integer b and some smooth map S : V -> S

such that S(x ) / 0 , where x e V £ U . But then LS(x)l= [S(x)l e SP™'

for x ^ x and thus LSI : V -*• CP is the smooth extension to x of

[5] . •

(2.35)Remark. Suppose that S is not identically zero. By Corollary 2.4:

if SS = 0, then [5] : M -»• Q „ c $P™' is smooth, even at the zeros

771— a

— m ^ m 7

of S ; and i f S A S = 0 , then [5 ] : M -*• JR P £ < F P ~ i s smooth,

even a t t h e ze ros of S , where JRP^ i s t h e 0(m) - o r b i t of

0 = tLl,0,...0l .

3. Singular curves.

We consider now holomorphic curves (2.10) for which every point of

M is isotropic, respectively real. We begin with the latter condition,

which turns out to be very restrictive.

THEOREM 3.1. Let f be a holomorphic curve (2.10) for which every

point of M is real in the sense of (2.25). Then icp to 0(m+2) -
congruence, f(M) is contained in Q = {[2] e Q : z = ...= z = 0} .

Proof. For any point x e M there exists a neighbourhood U of x

on which there exists a first order frame field e : U ->• 0(m+2) . By

definition (2.28), with respect to such a frame field S = (S )

= (P,0,...,0) , where P : U -»• € is smooth. By (2.15) this means that

https://doi.org/10.1017/S0004972700013095 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013095
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i)

(3.1)
i i ) 9l[ + ie^ = 0 , 4 < y < TTH-2

Taking the derivative of (3.1) ii) and using (2.6), (3.1) and the fact

that P has isolated zeros, we find that

e^A,j, = 0 , y > 4 .

v
As B' is real it follows that

(3.2) 91 = ° ' 1 - 4 '
Consider the left-invariant, completely integrable distribution on O(rrH-2)

(3.3) {e? = 0 : 1 < k < 3 , 4 < y <, m+2} .

It defines the Lie subalgebra h = o(3) x o(m-l) of o(nH-2) , and its

maximal integral submanifolds are the left cosets of the subgroup

H = 0(3) x O(m-l) .

Now equations (3.1) and (3.2) say that any first order frame field

e is an integral submanifold of (3.3). Thus e(U) £ A • H for some

constant A e. 0(m+2) . As M is connected, this is true for every first

order frame field e (that is, A does not depend on e ). As A • e

is a first order frame field along A •/ , we replace f by the congruent

curve A 'f and assume that e(U) £ # for any first order e : U->-0(nH-2).

Hence

f (U) = q o e(U) ̂ _q(H) = Qx ,

where q is the projection (2.5) and Q. £ Q is defined above in the

Theorem. Hence f(M) £ Q, . •

We turn now to the holomorphic curves for which every point is

isotropic. In general a characterisation of these curves awaits an

understanding of the non-singular curves. However, for a special class,

called the totally isotropic curves, we have a complete characterisation.

Let f be a holomorphic curve (2.10) for which every point is

isotropic. We say that / is first order isotropic We know from section

2 that for any point of M there exists a neighbourhood U containing
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it on which is defined a first order frame field

(3.4) e : U •* Odrn-2) .

This means that [S] = ll,i,0,...,01 , where S = (Sa) is defined by

(2.15). Explicitly

(3.5)

i) + i

4 . •*
ii) 8 U 6 = t

iii) 9Y + i 6y = 0 * 5 3

where ty is a nowhere zero bidegree (1,0) form in U , and s is a

smooth complex valued function on U with isolated zeros, each of finite

order.

It is convenient to rewrite (3.5) in such a way that a choice of <|>

is not made. It is easily seen that (3.5) is equivalent to

i) 8 + i 9 is of bidegree (1,0), with isolated zeros

(3.6) ii)

iii)

each of finite order.

* = i(9j + i

+ i = 0 y > 5 .

We give now an inductive definition of f being isotropic of order

n and of an n order frame field along such an f , for n = 1 ,

2,. . ., L~pl • Given n > i suppose that f of (2.10) is isotropic of

order n and that e : U -»• 0(m+2) is a frame field of order n along f.

Then e is characterised by the conditions

(3.7)

i)
21t+ 7

J.k+2
Q2k-1

«2k-l

* 6
21<+ 7
2k

is of bidegree (1,0) with isolated

zeros, each of finite order,

2k+2 _ . . 2k+l
Q2k " * (Q2k-l 6

2k+l
2k

2k+3
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for k = 1,2,...,n .

Taking the exterior differential of (3.7) iii) and using the

structure equations (2.6) and (3.7) we get that

(3.8) ^2n+l + ̂  QW%+2 = ̂ ^ ' 2n+S ^ v ~ m+Z ' wnere * is anv

zero bidegree (1,0) form on U , and the 5 are complex valued smooth

functions on U . We set

(3.9) Sn+1 = (S
v) : U+«T-2n

PROPOSITION 3.3. Suppose f is isotropic of order n and let
S 1 be given by (3.9). Then:

i) Sn+1 and tSn+1
s
n+1 are of analytic type.

Up to 0(nH-2) - congruence:

ii) f(M) £ «„ = {[s] e Q : sy = 0 , p > 2n+3} if and only if
ciYL Til

S - is identically zero;

iii) f(M) £ Q2n+1 = U 2 ] £ «ffl : 2
V = 0 , « > 2n+4} , but not in Q2n ,

if and only if S - ̂  0 but S . A 5 is identically zero.

Proof. The proof of i) is the same as the proof of Proposition 2.2.

The proofs of ii) and iii) follow the same lines as that of Theorem 3.1. •

DEFINITION 3.10. / is isotropic of order n+1 if it is isotropic of

order n, S - is not identically zero, and S - S . is identically

zero.

Remark 3.11. 5 of (3.9) depends on the choice of nth order frame

field e . If e : V -*• 0(nn-2) is any other n order frame field along

/ (assumed isotropic of order n ) , and if U n U ̂  0 , then

(3.12) e = eK

on U n U , where K : U n U •+• SO(2) x 0(m-2n) is a smooth map. If we

write
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K =

where

R(tk) =

cos t, -sin t.

sin £, cos tj.

, k = 1 , ..., n+1 ,

and .4 : £/ n U -*• 0(m-2n) is smooth, then

<3-i3> e « i 5 * * « ; r
for fe = 2 , . . . , n and

2fe+2 - n 2 ^
2k—1 2k

. - • Z ,

where quantities with a tilde refer to e .

It follows from (3.14) that 5 j ( respectively S 7 5

vanishes at a point if and only if 5 _ (respectively

5 7 5 7 ), vanishes at that point. Thus, as was tacitly assumed there,

if the conditions on S 7 used in Proposition 3.3 hold for some frame

field of order n , then they hold for any frame field of order n .

Furthermore the conditions of definition (3.10) hold for every frame field

of order n if they hold for one.

DEFINITION 3.15. Suppose that f is isotropic of order n+1 . A

frame field e : U •*• 0(m+2) of order n + 1 along / is a frame field of

order n for which [5 .] = [l,i,0,...,01 at every point of U .

Remark. It was observed in section 2 that because

: U -*• C is of analytic type, if it is not identically zero then
"n+1

the map : U -»• QP is smoothly defined even at the zeros of

S 7 . That f is isotropic of order n+1 is the assumption that
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C t p m " V 1 ' As the action of 0(m-2n) on

defined by (3.14) is the standard action, hence transitive, it follows

that for each point of M there exists a neighbourhood on which is defined

a smooth frame field of order n+1 .

DEFINITION 3.16. The holomorphic curve / of (2.10) is totally

isotropic if it is isotropic of order [—] .

c

We may interpret Proposition 3.3 as saying in part ii) that f is a

totally isotropic curve in Q. , while in part iii) that f is a totally

isotropic curve in §„ - .

DEFINITION.3.17. Let f of (2.10) be totally isotropic. A Frenet

frame field along f is any frame field of order Dp-] . Frenet frame

fields are determined up to changes

(3.18) e = eK ,

where K takes values in

(3.19) i) S0(2)n+ if m = 2n is even ,

ii) S0(2)n+1 x 0(1) if m = 2n+l is odd.

As 0(1) = ± 1 j we see that in the case m = 2n+l is odd, if we

write e = (e.,..., em,o^
 a n d ^ = ^ I J • • ••»em+9'

) •• a n d i f (3-18) holds,

then e „ = ± e ,„ . Thus the Frenet frames induce a globally defined

smooth map

(3.20) F : M ->

defined locally by F = Cs „] . We have the diagram

0(mh2)

where e : £/ £ A/ ->• 0(m+2) is any Frenet frame field and r is the

projection r(W = e • [0.,. .. .,0,2].
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4. The case m = 2n .

THEOREM 4.1. Let f : M -*• Q~ be a holomorphia curve (2.10) which

is totally isotropic. Then up to 0(2n+2)-congruence f = h ° F , where

(4.1) F : M •+ (PPn

is a linearly full holomorphia curve in €~e , and h is the totally
geodesic inclusion of the maximal linear subspace

(4.2) h :

[s, z A •*• [a, iz~ z , iz ,] .
ij...j n+1 1, 1,..., n+1, n+1

Conversely, h ° F is totally isotropic for any linearly full holomorphic

curve F of (4.1).

Proof. The idea of the proof is to show that any Frenet field e

along f is an integral submanifold of the left-invariant distribution

defined on 0(2n+2) by the Lie algebra of the subgroup U(n+1) £ 0(2n+2).

It will follow then that e takes values in a left coset of U(n+1) ,

and as M is connected, we can thus multiply f by an orthogonal

transformation and then conclude that any Frenet frame along it takes

values in U(n+1) . Consequently f(M) £ q(U(n+l) which will be seen to

be equal to

For the details we begin with the monomorphism

(4.3) H : U(n+1) ->• 0(2n+2) ,

which we define as follows: if E e U(n+1) has entries E1?, 1 Sa,b <n+l,

and we write £T = A, + i B, where A, and B. are real , then
O D D b b

2(2-^ _ fO. ufv,,2a-l _ -rfl
2b-l - Ab > H(E)2b ~ Bb

(4 .4 )

H is the complex conjugate of the standard inclusion l)(n+l) ĉ  0(2n+2)

obtained from the isomorphism

https://doi.org/10.1017/S0004972700013095 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013095


140 Curves in the complex quadric

R : (P+1

t, 1 n+1, ,11 n+1 n+1,
(z ,...3z ) + (x ,y ,,,,,! ,y )

where z% = x% + iy1 . That is, for E e U(n+1) , z e

R(Ez) = H(E)R(z) , where we have set

(4.5) W(E) = H(E) .

We choose H as we do so that the following diagram commutes:

U(n+1) —%-* 0(2n+2)

P I | q

where p and q are the projections (2.2) and (2.5), respectively.

The differential of E gives a Lie algebra monomorphism

(4.6) H^ : u(n+l) •* o(2n+2)

which sends the skew-hermitian matrix E = (E7) , 1 S a , b S n+1 ,

into the skew-symmetric matrix H^E whose components are defined by (4.4),

where again £7 = A, + i B, .
bo b

The image H^ u(n+l) is thus the Lie subalgebra of o(2n+2) defined

by the left-invariant distribution on 0(2n+2)

where 0 is the Maurer-Cartan form of 0(2n+2) .

Let e : U •*• 0(2n+2) be any Frenet frame field along / . Equations

(3.7) show that e is an intergral submanifold of the distribution (4.7).

Thus there is a matrix C e 0(2n+2) such that e(U) £ C • H(U(n+D). If

we replace f by the 0(2n+2)-congruent curve C -f> then C -e is a

Frenet frame field along C~ • f , and now C~ -e(U) ̂ H(U(n+D) . Thus we

assume that e(U) c_H(U(n+l)) , which means that

(4.8) f(U) = qoe(U) cqoH(U(n+D) = h ° p(U(n+l)) = h(i^l+1) .

As A? is connected, we have f(M) £ h(CF ) , and as h is an imbedding

there exists a holomorphic curve (4.1) such that h° F = f . The curve F
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must be linearly full because / cannot lie in a Q, c Q , k < 2n ,

by Proposition 3.3.

The mapping (4.2) is totally geodesic because its image is a

connected component of the fixed point set of the isometry of Q- defined

by V e 0(2n+2) ,

J 0

(4.9)

where J =
0 -1

V =
0 J

, (see Kobayashi [7] , p. 59). In fact, the fixed
1 0

point set of V is

qoH(U(n+D) u q°H(U(n+D) a

where H was defined in (4.5). These two sets, the first of which is

h(£P ) , are connected and disjoint.

To prove the converse of the Theorem, let the linearly full

holomorphic curve P of (4.1) be given. To show that the holomorphic

curve f = h ° F is totally isotropic it suffices to show that M is

covered by open sets U on each of which there is a smooth frame field

e : U •* 0(2n+2) along / , which satisfies the equations (3.7) for k=n.

To do this we let E : U -*• U(n+1) be a Frenet frame field along F .

(see Jensen-Rigoli [3] for details.) This means that

k+1

(4.10)

i)

ii)

is of bidegree (1,0) with isolated zeros, each

of finite order.

= 0 u, > k+2 1 < k < n ,

1 < a j b < n+1 , andwhere u>, = E* SI.

Cartan form of U(n+1) .

We have the commuting diagram

fi = ) is the Maurer-
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which shows that e = H ° E is an orthogonal frame field along / = h ° F .

Furthermore, as

(4.12) H* Q = H^ o a 3

we have

(4.13) e = e*e = E*(Ht ° n) = RA° U ,

where to = E* Q . From (4.13, (4.10) and (4.4) it follows that the entries

of 6 satisfy

(4.14)

6
k+1 . n2k+l k+1

2k-l 2k

Jk+2 . J.k+2 . k+1

iii) = 0 3 p, > 2k+3 , 1 < k < n .

By (4.10) i) and (4.14) e*Q satisfies equations (3.7), and thus / is

to ta l ly isotropic and e is a Frenet frame field along i t . This completes

the proof of Theorem 4.1. •

COROLLARY 4.2. Let M ds2 be a Riemannian surfaae. If F:M-K&?1+1

•is harmonic, then h ° F : M •*• Q~ is harmonic.

Proof. The composition h ° F of a harmonic map F with a t o t a l l y

geodesic map h i s always harmonic. •

Our Theorem 4.1 should be compared to the theorem of Lawson ( [ ? ] ,

pp. 165-166). If

X : M+I?2n+2

is a minimal immersion, and f : M •*• Qo is its Gauss map (defined so

that it is holomorphic, not anti-holomorphic) , then we have a diagram

e

where E(2n+2) = 0(2n+2) • irn is the group of rigid motions, and

(e,X) : U -+E(2n+2) denotes a Darboux frame field along X. This means
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precisely that e : U •* 0(2n+2) is an orthogonal frame field along / .

There exists an orthogonal complex structure on J? with respect

to which X is holomorphic if and only if about any point of M there

exists a frame field (e,X) which takes values in a fixed left coset of

the subgroup H(U(n+l)) • J? . This turns out to be precisely the

condition that e satisfy equations (3.7), that is that f is totally

isotropic.

5. The case m = 2n+l .

THEOREM 5.1. Let f : M ->• Q2n+1 be a holomorphic curve (2.10)

which is totally isotropic. Then the map

(5.1) F : M +]RP2n+2

defined in (3.20) is linearly full and pseudoholomorphic (possibly

branched) and the directrix curve of F is f . Conversely, if (S.I) is

any linearly full, branched pseudoholomorphic curve, then the complex

conjugate of its directrix curve is a totally isotropic curve in Q . .

We will define pseudoholomorphic and directrix curve, and give

references, in the course of the proof.

Proof. In Jensen-Rigoli [9] isometric minimal immersions

F : M -*• S were studied which had the additional property of being

"isotropic of order n". Following Calabi [3] , we now use the term

pseudoholomorphic for these maps. If the metric on M is changed

conformally, then F is no longer isometric minimal, but is harmonic.

Referring to (24) in Jensen-Rigoli [9], we define F to be a linearly full

branched pseudoholomorphic map if for each point of the Riemann surface M

there exists a neighbourhood U on which there is a frame field

(5.2) E : U -*• 0(2n+3)

along F (meaning that F = [£.1) such that
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i )

i i )

4 + i **

5 . 4
2 + ̂  <f>2(5.3)

are all of bidegree (1,0) with isolated zeros, each of finite order; and

(5.4)

i)

ii)

iii)

= 0 , k > 4

= 0 = ̂  , fe > 6

. 2 = 0 = **.3 ,

where j = 3,..., M + I 3 and ("<()? J = E*(<£) is the pull back of the

Maurer-Cartan form of 0(2n+3) . Such a frame field is called a Frenet

frame field along F .

The significance of the notion of pseudoholomorphic map is that if

M is the Riemann sphere and F is a conformal harmonic mapping, then F

is necessarily pseudoholomorphic.

Let / ; M -*• Q2 . of (2.10) be totally isotropic, and let

e : U -*• 0(2n+3) be a Frenet frame field along f . Let e- , e0J ... ,

£„ _ denote the standard basis of
ciYl-ro

2n+3
and let

G (z2n+3 ' e2n+l ' e2n+2 ' E2n ' Z2n-1 >''

(That is, if G-, denotes the k— column of G , then

e2'

Gl = z2n+3 * G2 = > G3=z2n+2 >

Then G e 0(2n+3) and by (3.20)

(5.5) E = eG : U > 0(2n+3)

is an orthogonal frame field along F . Making the calculation

<j> = E*Q = G~ e* 0 G

and using (3.7) we obtain equations (5.4), and
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(5.6)

i ) <t>

ii) *

i i i ) <j>

i tj =

* • ; -

« • ; -

32n+1

JZn-1

2n+2

2n+l

2n-l
2n+2

J+S J. • J3+4
2j+2 + ^ *2j+2 = a2(n-j)

v)v )

3 = l,2,...,n-l ,

and

(5.7)

6 < k < 2n + 3

2j + 6 <k<2n + 3, j = l , . . . }n-

Equations (5.6) and (5.7) combined with (3.7) show that E satisfies

equations (5.3) and (5.4). Hence F is a linearly full branched

pseudoholomorphic map and E is a Frenet frame field along it.

The directrix curve of a pseudoholomorphic curve in HP (or

S ) was introduced in Calabi [3] and Chern [4], and was studied

further by Barbosa [/]. In Jensen-Rigoli [101 the directrix curve is

described locally in terms of any Frenet frame field E : U •*• 0(2n+3)

) , then its directrix is the mapalong F . Writing E = (E-,..., E
1

(5.8) / : M -»• e2n+l

defined on U by / = [£„ _ + i E'2 _] . This map is globally defined

because any other Frenet frame field E : U -*• 0(2n+3) satisfies on

U n U (assumed non-empty)

(5.9) E = EK

where K : U n U ->• 0(1) * S0(2)

In Jensen-Rigoli ['0] it was observed that each of the maps

IE . + i E2-+11 ,3=1,..., n+1 ' is globally defined (by (5.9))from M
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into Q~ .j a n d is harmonic. The directrix curve (j = n+1) is anti-

holomorphic.

Given a totally isotropic map f : M •*• Q. . with a local Frenet
ciYVvJ.

frame e : U •+ 0(2n+3) , then E of (5.5) is a Frenet frame along the

pseudoholomorphic map F of (5.1). Its directrix is defined locally by

LE2n+2 + l E2n+32 = Le2 * i e P >
by (5.5), and this latter map is [e. - i e_] = / by (2.11) .

Conversely, given a linearly full branched pseudoholomorphic map

(5.1), let E of (5.2) be a Frenet frame field along it. As mentioned

above, its directrix / = t^o^.o + i Epn+^ i-s antiholomorphic. If

e = E G , where G is given in (5.5), then a straight forward

computation shows that e is an orthogonal frame field along the

holomorphic curve f = f : M •*• Q- ,-, and satisfies equations (3.7) as a

result of E satisfying (5.3) and (5.4). Hence f is totally isotropic.*

These constructions and correspondences are summarised in the

following commuting diagram

R(G)

0(2n+3) ^ 0(2n+3)

> Q

me1)

2n+l

Gwhere R(G) ( respect ively R(G ) is r ight mul t ip l ica t ion by G

(respectively G ) of (5 .5) , and p is the project ion map (2.2)

r e s t r i c t e d to 0(2n+3) .
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