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The excitation conditions of the magnetorotational instability (MRI) are studied for axially
unbounded Taylor–Couette (TC) flows of various gap widths between the cylinders. The
cylinders are considered as made from both perfect-conducting or insulating material
and the conducting fluid with a finite but small magnetic Prandtl number rotates with
a quasi-Keplerian velocity profile. The solutions are optimized with respect to the
wavenumber and the Reynolds number of the rotation of the inner cylinder. For the
axisymmetric modes, we find the critical Lundquist number of the applied axial magnetic
field: the lower, the wider the gap between the cylinders. A similar result is obtained for
the induced cell structure: the wider the gap, the more spherical the cells are. The marginal
rotation rate of the inner cylinder – for a fixed size of the outer cylinder – always possesses
a minimum for not too wide and not too narrow gap widths. For perfect-conducting
walls the minimum lies at rin � 0.4, where rin is the ratio of the radii of the two rotating
cylinders. The lowest magnetic field amplitudes to excite the instability are required for
TC flows between perfect-conducting cylinders with gaps corresponding to rin � 0.2. For
even wider and also for very thin gaps the needed magnetic fields and rotation frequencies
are shown to become rather huge. Also the non-axisymmetric modes with |m| = 1 have
been considered. Their excitation generally requires stronger magnetic fields and higher
magnetic Reynolds numbers in comparison with those for the axisymmetric modes. If TC
experiments with too slow rotation for the applied magnetic fields yield unstable modes
of any azimuthal symmetry, such as the currently reported Princeton experiment (Wang
et al., Phys. Rev. Lett., vol. 129, 115001), then also other players, including axial boundary
effects, than the MRI-typical linear combination of current-free fields and differential
rotation should be in the game.
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2 G. Rüdiger and M. Schultz

1. Introduction and motivation

Taylor–Couette (TC) flows with conducting fluids between two rotating cylinders are
favorable for an experimental realization of the various versions of the magnetorotational
instability (MRI) for which the applied magnetic field is always current-free (Velikhov
1959; Ji, Goodman & Kageyama 2001; Rüdiger & Zhang 2001; Schartman, Ji & Burin
2009; Schartman et al. 2012). If the field is spiral rather than axial, the necessary Reynolds
numbers and Hartmann numbers are surprisingly small (Hollerbach & Rüdiger 2005;
Rüdiger et al. 2006) which made it possible to investigate the corresponding helical version
of MRI (HMRI) with the Promise experiment (Stefani et al. 2006). The resulting instability
modes are axisymmetric and they are migrating along the rotation axis. The closely related
azimuthal MRI (AMRI) appears when working with current-free toroidal fields for which
the unstable modes are non-axisymmetric (Ogilvie & Pringle 1996; Hollerbach, Teeluck
& Rüdiger 2010; Seilmayer et al. 2014).

The mentioned experiments have used one and the same container construction where
the inner radius was 50 % of the outer radius, i.e. rin = Rin/Rout = 0.5. For this geometry
the rotation law Ω ∝ R−q leads to a shear μ = Ωout/Ωin for quasi-Keplerian rotation with
q = 1.5 of μ = 0.35. In a recent paper the Princeton group presented experimental results
related to the standard version of MRI (SMRI), with a purely axial field being applied,
using a container with rin = 0.35 and the aspect ratio Γ = H/(Rout − Rin) = 2.1. The flow
between the cylinders is described by μ = 0.19, while the quasi-Keplerian flow in such a
container is defined by μ = 0.21 (Wang et al. 2022b).

After our previous numerical results for rin = 0.5, for very small magnetic Prandtl
number and for perfectly conducting walls, the absolute minimum of the magnetic
Reynolds number for the excitation of marginal instability was 21.3 for a shear flow
with μ = 0.33, which is somewhat steeper than the Keplerian rotation law with μ = 0.35
(Rüdiger et al. 2018a). Both of these slightly super-Keplerian rotation laws follow μ = rq

in
with q = 1.59.

The model of a homogeneous fluid contained between two vertically unbounded rotating
cylinders is used with a uniform magnetic field parallel to the rotation axis. For viscous
flows the general form of the rotation law Ω(R) of the fluid is

Ω(R) = a + b
R2

, (1.1)

where a and b are the two constants related to the angular velocities Ωin and Ωout, with
which the inner and the outer cylinders are rotating, and R is the distance from the rotation
axis. If Rin and Rout (Rout > Rin) are the radii of the two cylinders, then

a = μ − rin
2

1 − rin
2
Ωin and b = R2

in
1 − μ

1 − rin
2
Ωin, (1.2a,b)

with the above defined geometry parameters μ and rin. Following the Rayleigh stability
criterion,

d(R2Ω)2

dR
> 0, (1.3)

rotation laws are hydrodynamically stable for a > 0, i.e. μ > r2
in. They should in particular

be stable for a resting inner cylinder, i.e. μ → ∞ (superrotation).
The present paper has two motivations. The first one concerns the question of the

dependence of the eigenvalues on the gap width of the container. The ratio rin of the
two-cylinder radii is the only free parameter describing the geometry of the axially
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SMRI for Couette flows of various gaps 3

unbounded container. It is so far unknown how the gap width determines the critical
rotation rate for a given magnetic field, and also the wavenumber of the excited instability
pattern. The latter result will have consequences for necessary vertical extension of a
possible experimental set-up.

We work with the magnetic Prandtl number

Pm = ν

η
, (1.4)

with ν being the kinematic viscosity and η the magnetic diffusivity. The equations are
solved for the very small magnetic Prandtl number Pm = 10−5 close to the value for liquid
sodium. For small magnetic Prandtl numbers the excitation conditions for the standard
magnetorotational instability only depend on the microscopic magnetic diffusivity rather
than the molecular viscosity, so that even Pm does not play a role (Rüdiger & Shalybkov
2002). The ratio of the container wall radii is varied from rin = 0.1 to rin = 0.9. We shall
see that between these values the critical magnetic Reynolds number of rotation possesses
a minimum while the critical Lundquist number of the applied magnetic field linearly
grows with rin.

Our second question is the difference of the excitation conditions for axisymmetric
and non-axisymmetric modes. Though it is widely known that the mode with the easiest
excitation is the axisymmetric one, it is still important to know how much more difficult
the excitation of a non-axisymmetric mode is.

2. Basic equations

The magnetohydrodynamics equations which have to be solved are

∂u
∂t

+ (u∇)u = − 1
ρ

∇p + νΔu + 1
ρ

J × B (2.1)

and
∂B
∂t

= ∇ × (u × B) + ηΔB, (2.2)

with the electric current

J = 1
μ0

∇ × B (2.3)

and with ∇u = ∇B = 0. They must be considered in a cylindrical geometry with R,
φ and z as the coordinates. A viscous electric-conducting incompressible fluid between
two rotating infinite cylinders in the presence of a uniform magnetic field parallel
to the rotation axis leads to the basic solution UR = Uz = BR = Bφ = 0, Bz = B0 =
const. and Uφ = aR + b/R, with U as the flow and B as the magnetic field. We are
interested in the stability of this solution. The perturbed state of the flow may be described
by u′

R, u′
φ, u′

z, p′, B′
R, B′

φ, B′
z with p′ as the pressure perturbation.

In the following only the linear stability problem will be considered. By expansion of
the disturbances into normal modes the solutions of the linearized equations are of the
form

u′ = u(R) exp(i(mφ + kz + ωt)), B′ = B(R) exp(i(mφ + kz + ωt)). (2.4a,b)

From here on all dashes are being omitted from the symbols of fluctuating quantities.
The marginal stability line is defined where the imaginary part Im(ω) vanishes. We shall
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4 G. Rüdiger and M. Schultz

always use the geometrical average

R0 =
√

(Rout − Rin)Rin (2.5)

as the unit of length, η/R0 as the unit of velocity and B0 as the unit of the magnetic field.
We note the rather weak dependence of R0 on the value of rin as long as 0.2 ≤ rin ≤ 0.8.
The R0 only becomes small for rin → 0 or for rin → 1, i.e. for very wide or for very narrow
gaps between the cylinders. Its maximum R0 = 0.5Rout is reached for rin = 0.5. In order
to denormalize quantities, R−1

0 is used as the unit of wavenumbers and ν/R2
0 as the unit of

frequencies.
Using the same symbols for normalized quantities, the equations can be written as a

system of 10 equations of first order, i.e.

duR

dR
= −uR

R
− i

m
R

uφ − ikuz, (2.6)

duφ

dR
= X2 − uφ

R
,

duz

dR
= X3, (2.7a,b)

dX1

dR
=

(
m2

R2
+ k2

)
uR + i(ω + mRe Ω)uR

+ 2i
m
R2

uφ − 2Re Ωuφ − ikHa2BR, (2.8)

dX2

dR
=

(
m2

R2
+ k2

)
uφ + i(ω + mRe Ω)uφ

− 2i
m
R2

uR + 2aRe uR − ikHa2Bφ

+ m2

R2
uφ + k

m
R

uz − i
m
R

X1, (2.9)

dX3

dR
=

(
m2

R2
+ k2

)
uz + i(ω + mRe Ω)uz

− X3

R
− ikHa2Bz + k

m
R

uφ + k2uz − ikX1, (2.10)

dBR

dR
= −BR

R
− i

m
R

Bφ − ikBz,
dBφ

dR
= X4 − Bφ

R
, (2.11a,b)

dBz

dR
= i

(
m2

kR2
+ k

)
BR − Pm

k
(ω + mRe Ω)BR + uR − m

kR
X4, (2.12)

dX4

dR
=

(
m2

R2
+ k2

)
Bφ + iPm(ω + mRe Ω)Bφ

− 2i
m
R2

BR − ikuφ + 2Pm Re
b
R2

BR, (2.13)
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where X1 is given by

X1 = duR

dR
+ uR

R
− P − Ha2Bz (2.14)

with P as the pressure fluctuation.
Here the dimensionless Reynolds number Re and the Hartmann number Ha are defined

as

Re = R2
0Ωin

ν
, Ha = R0B0√

μ0ρνη
. (2.15a,b)

For given Hartmann number and magnetic Prandtl number we shall compute with a linear
theory the critical Reynolds number of the rotation of the inner cylinder, also for various
azimuthal mode numbers m. We shall see that the excitation conditions for SMRI can
easily be expressed by the magnetic Reynolds number Rm and the Lundquist number S,
with the definitions

Rm = R2
0Ωin

η
, S = R0B0√

μ0ρη
(2.16a,b)

without influence of the molecular viscosity. The ratio of both quantities forms the
magnetic Mach number of rotation,

Mm = Rm
S

, (2.17)

which describes the strength of the rotation normalized with the applied magnetic field.
The majority of cosmic objects are characterized by magnetic Mach numbers larger than
unity (except the magnetars). We shall discuss the relationship of the magnetic Mach
number on the normalized gap width between the cylinders only for the characteristic
constellation where the Reynolds number is minimal for the excitation of the instability.

The actual calculations were specifically carried out for the small magnetic Prandtl
number Pm = 10−5, but the obtained results for Rm and S are also correct for even smaller
Pm (Rüdiger & Shalybkov 2002). The reason is that for small Pm the critical Reynolds
number varies with 1/Pm so that the magnetic Reynolds number Rm � const. It is clear,
therefore, that for Pm = 0 the magnetorotational instability does not exist.

3. Boundary conditions

For the solution of the differential equations of 10th order a set of 10 boundary
conditions is needed. No-slip conditions for the velocity on the walls are always used,
i.e. uR = uφ = duR/dR = 0. The magnetic boundary conditions depend on the electrical
properties of the walls. For perfectly conducting walls the tangential currents and the
radial component of the magnetic field vanish, hence dBφ/dR + Bφ/R = BR = 0. These
boundary conditions hold for both R = Rin and R = Rout.

For insulating walls the magnetic boundary conditions are different at Rin and Rout, i.e.
for Rin

BR + i
Bz

Im(kR)

( m
kR

Im(kR) + Im+1(kR)
)

= 0, (3.1)

and for R = Rout

BR + i
Bz

Km(kR)

( m
kR

Km(kR) − Km+1(kR)
)

= 0, (3.2)
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6 G. Rüdiger and M. Schultz

(a) (b)

FIGURE 1. (a) Stability map for m = 0 (solid lines): rin = 0.1, rin = 0.3 (green); rin = 0.5
(red); rin = 0.7. For m = 1 (dashed lines): rin = 0.3 (green); rin = 0.4 rin = 0.5 (red); rin = 0.6.
(b) The corresponding axial wavenumbers. Quasi-Keplerian differential rotation, Pm = 10−5,
perfect-conducting cylinder material.

where Im and Km are the modified Bessel functions. The condition for the toroidal field
is kRBφ = mBz (Rüdiger, Schultz & Shalybkov 2003). Neutral stability of the solutions is
reached for vanishing Im(ω).

The homogeneous set of (2.6)–(2.13) with the boundary conditions included determine
the eigenvalue problem of the form L(k, m, Re, ω) = 0 for given Pm and Ha. Here L is
a complex quantity, both its real part and its imaginary part must vanish for the critical
Reynolds number. For non-axisymmetric modes the real part, Re(ω), of ω describes
a drift of the pattern along the azimuth. It is the second quantity that is fixed by the
complex eigenequation. For a fixed Hartmann number, a fixed Prandtl number and a given
vertical wavenumber, we also find the critical Re of the system. It is minimal for a certain
wavenumber defining a marginally unstable mode. The corresponding value Remin is the
minimal Reynolds number if Ha is varied and Hamin is the Hartmann number for which
the Remin occurs. For oscillatory axisymmetric and drifting non-axisymmetric modes the
real part of the frequency ω is the second eigenvalue fixed by the eigenequation.

4. General results

For perfect-conducting boundary conditions the resulting curves of marginal stability
are given in figure 1 and for vacuum boundary conditions in figure 2. Figures 1(a) and
2(a) present the magnetic Reynolds numbers (minimized with the wavenumber) and
figures 1(b) and 2(b) give the resulting wavenumbers, in both cases as functions of the
Lundquist number. The dashed lines belong to the azimuthally drifting non-axisymmetric
modes with |m| = 1. Generally, the latter require higher values Rmmin than the
axisymmetric modes. The curves for m = 0 exhibit their typical shape: they are rather
steep for S < Smin but they are much flatter for S > Smin, where Smin is taken at the
minimum of the function Rm = Rm(S). For S = O(1) the influence of the microscopic
diffusion stops the existence of SMRI, while for much larger S it is damped by too strong
external magnetic fields.

The curves of marginal stability for the axisymmetric modes only possess a lower limit
of the critical Reynolds number above which the flow becomes unstable. In opposition the
curves for the non-axisymmetric modes always possess a lower and an upper limit of the
critical Reynolds numbers. Non-axisymmetric magnetic modes are generally stabilized by
too fast shearing flow (Rädler 1986; Rüdiger et al. 2018a).
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(a) (b)

FIGURE 2. The lines of neutral stability for containers with insulating cylinders. (a) Stability
map for m = 0 (solid lines) with rin = 0.1, rin = 0.3 (green); rin = 0.5 (red); rin = 0.7, rin = 0.9
(blue); and for m = 1 (dashed lines) with rin = 0.3 (green); rin = 0.5 (red); rin = 0.7. (b) The
corresponding axial wavenumbers. Quasi-Keplerian differential rotation, Pm = 10−5.

rin μ Rmmin Smin k ζ Mm rin μ Rmmin Smin k ζ Mm

0.1 0.031 20.0 1.58 0.7 1.4 12.7 0.1 0.031 30.3 2.78 1.4 0.7 10.9
0.2 0.089 17.8 2.05 1.0 1.6 8.81 0.2 0.089 20.8 3.04 1.1 1.4 6.84
0.3 0.16 18.5 2.76 1.2 1.7 6.93 0.3 0.16 16.9 3.62 1.1 1.9 4.67
0.4 0.25 20.8 3.38 1.4 1.8 6.15 0.4 0.25 16.0 4.82 1.1 2.3 3.32
0.5 0.35 24.7 4.11 1.7 1.8 6.00 0.5 0.35 16.5 5.21 1.2 2.6 3.17
0.6 0.46 31.1 5.00 2.1 1.8 6.22 0.6 0.46 18.3 6.47 1.2 3.2 2.83
0.7 0.59 42.0 6.32 2.6 1.8 6.64 0.7 0.59 22.3 8.54 1.2 4.0 2.61
0.8 0.72 64.1 8.22 3.4 1.8 7.79 0.8 0.72 30.7 12.0 1.2 5.2 2.55
0.9 0.85 131 12.6 5.1 1.8 10.4 0.9 0.85 56.6 22.1 1.0 9.4 2.56
0.95 0.93 265 17.6 7.3 1.9 15.0 0.95 0.93 109 39.8 0.92 14.9 2.74

TABLE 1. The coordinates of the minima of the profiles in figures 1(a) and 2(a) for several radii
the inner cylinder for different boundary conditions (left, perfect conduction; right, vacuum);
m = 0, Pm = 10−5. All models for quasi-Keplerian rotation laws.

4.1. Medium gaps
The minimum Rmmin in figure 1 for medium gap widths approximately behave according to
(1 − rin)Rmmin � 13 (see table 1). This relation implies that the minimal rotation rates of
the inner cylinder for the considered gaps behave like Ωin ∝ 1/(1 − rin), i.e. in containers
with wider gaps the instability is easier to excite. For very wide gaps, however, both
the magnetic Reynolds number as well as the needed rotation rate of the inner cylinder
grow to very large values. Minimal rotation rates are only possible for experiments with
medium rin.

In table 1 the resulting numbers Rmmin and Smin have been collected for the minima
of the curves in figures 1 and 2 which we shall call the critical values. Obviously,
the influences of the boundary conditions are only small for the containers with large
gaps. One finds the Rmmin with vacuum boundary condition as always smaller than for
perfect-conductor conditions (except for very thin gaps) but the Smin are always larger.
Consequently, the corresponding magnetic Mach numbers are much larger for cylinders

https://doi.org/10.1017/S0022377823001356 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001356


8 G. Rüdiger and M. Schultz

made from perfect conductors. For such containers the axial wavenumbers are always
larger than for insulating walls.

With our normalizations the vertical extent δz of one cell of the instability pattern,
normalized by the gap width D = Rout − Rin between the cylinders, is given by

ζ = δz
D

= π

k

√
rin

1 − rin
. (4.1)

Flat cells are described by ζ < 1 while axially elongated cells possess ζ > 1. For rin = 0.5
it is simply ζ = π/k so that for k � π the shape of the cell in the (R–z) plane is almost
circular. The examples given in table 1, however, show that the wavenumbers do not reach
the value of π for medium rin hence the cells are always elongated in the axial direction.
This is true for models with both sorts of boundary conditions. For perfect-conducting
cylinder walls ζ > 1 hardly varies with rin – the cells are always oblong. Evidently, such
cells are not suitable to provide the angular momentum transport in accretion disks or
galaxies.

For perfect-conducting cylinders it follows that ζ � 1.8 for almost all rin, while it
can become significantly larger for insulating material. The minimum axial extent of a
container-probing MRI pattern is thus H � 1.8D. The aspect ratio H/D of the Princeton
experiment is 2.1. It happens that the numerical ζ -values differ by almost a factor of two
for models with the same geometry but with different boundary conditions.

4.2. Extremal gaps, thin-shell approximation
We note that for very wide gaps with rin � 0.1 the characteristic Lundquist numbers Smin –
for which the associated Reynolds number is minimal – are reduced to values of order unity
while for very narrow gaps with rin � 0.95 the Lundquist numbers are maximal. In both
limits the Reynolds numbers Rmmin possess enlarged values. As also the linear dimension
R0 becomes small for small and/or large rin the necessary inner rotation rates become
very large excluding the applicability of containers with very wide and/or very narrow
gaps between the cylinders for experiments. One finds that containers with 0.3 � rin � 0.6
require the least rotation rates for excitation of standard magnetorotational instability. On
the other hand, for both sorts of boundary conditions the models with rin � 0.2 require the
weakest magnetic fields.

Table 1 also gives the results for very thin gaps between the cylinders up to rin = 0.95
(Donnelly & Ozima 1960, 1962). The most striking difference due to the choice of the
boundary conditions is here the numerical value of the calculated magnetic Mach number
(last column). For rin → 1 the characteristic Reynolds number grows to larger and larger
values. We did not find a maximum of Rmmin for rin → 1. As the R2

0 runs with 1 − rin
for rin → 1 we find Ωin → ∞ in this limit. It should thus not be possible to work with
a thin-shell approximation (Edmonds 1958) for numerical or experimental realizations of
the standard MRI in TC flows.

5. The non-axisymmetric modes

The excitation of non-axisymmetric modes requires faster rotation and stronger
magnetic fields than the excitation of the axisymmetric modes (figures 1 and 2; dashed
lines). For medium rin of approximately 0.5 (red) the lines of marginal stability hardly
depend on the radius of the inner cylinder. As also the geometric radius R0 is almost
constant for different rin the rotation frequencies and magnetic field amplitudes needed to
excite non-axisymmetric modes are almost the same for such values of rin. However, for
wide gaps and for weak magnetic fields with S < Smin the Reynolds numbers for excitation
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(a) (b)

FIGURE 3. Drift rates ωdr = Re(ω)/Ωin of the non-axisymmetric modes m = 1 (dashed lines):
rin = 0.3 (green); rin = 0.4, rin = 0.5 (red); rin = 0.6. (a) Perfect-conducting cylinder material;
(b) insulating cylinder material. Quasi-Keplerian differential rotation, Pm = 10−5.

of the m = 1 modes are much higher than those for the excitation of the axisymmetric
modes with m = 0. We note that the curves for the weak-field branch with S < Smin become
very steep so that the excitation of non-axisymmetric modes requires very rapid rotation.

For wide gaps between the cylinders (rin = 0.3, green) one finds that the lowest
Reynolds number belongs to much higher Lundquist numbers than for rin � 0.5. In
addition, the curves for low Lundquist numbers are much steeper than the curve for
the corresponding axisymmetric mode. Hence, for wide gaps with rin � 0.4 it is almost
impossible to excite the axisymmetric and the non-axisymmetric mode simultaneously by
SMRI-experiments with Lundquist numbers not much higher than unity.

The non-axisymmetric modes are drifting in the azimuthal direction. The drift rates,
ωdr = Re(ω)/Ωin, are given in figure 3. According to the relation

∂φ/∂t
Ωin

= −ωdr

m
, (5.1)

the negative ωdr plotted in the figures indicate a migration of the patterns in the direction
of the global rotation – for both sorts of boundary conditions. In all cases the azimuthal
migration is faster than the rotation of the outer cylinder (ωdr > μ).

6. Marginal stability for weak fields

It is possible to apply weak magnetic fields with S < Smin. Then, however, the Reynolds
numbers necessary for excitation basically grow and the unstable wavenumbers become
smaller, i.e. the cells become longer. Figure 4 demonstrates these weak-field solutions with
S < Smin for rin = 0.3 (figure 4a) and rin = 0.4 (figure 4b). The vertical lines represent the
magnetic fields B = 2150 G (corresponding to S = 0.96) and B = 2750 G (corresponding
to S = 1.22) reported for gallium SMRI experiments by Wang et al. (2022b). We have
also to note the influence of the boundary conditions: for insulating cylinders the curves
for weak fields with S < Smin are so steep that the necessary critical Reynolds numbers at
the vertical lines exceed the Rmmin of the curves by more than one order of magnitude. This
extreme enhancement is slightly reduced for perfect-conducting cylinder material but still
the enhancement of the critical Reynolds number is by a factor of three relative to Rmmin.
This is even a minimum value as the real cylinders are, by far, not perfect-conducting. For
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10 G. Rüdiger and M. Schultz

(a) (b)

FIGURE 4. Stability lines of the axisymmetric modes for rin = 0.3 (a) and rin = 0.4 (b) of
containers with perfect-conducting cylinders (red) and with insulating cylinders (black). The
lines of experiments with imperfectly conducting cylinders are located between the curves
marked with ‘vac.’ and ‘cond.’. The vertical lines mark the Lundquist numbers after (2.15a,b)
for the Princeton MRI-experiments represented by the lowest and the highest solid circles in
their figure 2(a) (magnetic fields 2150 G and 2750 G) while the asterisks belong the used
magnetic Reynolds numbers. With the planned Dresdyn sodium experiment the same magnetic
field amplitudes will belong to Lundquist numbers exceeding 15.

galinstan as the fluid and stainless steel as the (outer) cylinder material the ratio

σ̂ = σcyl

σfl
(6.1)

of the electric conductivities of the cylinders and the fluid is 0.47, which neither well
approaches perfect-conduction nor vacuum boundary conditions. For sodium experiments
one finds σ̂ � 0.16, hence the vacuum boundary conditions might provide the appropriate
description. Rüdiger et al. (2018b) derived the form of the boundary conditions with finite
values of (6.1) and have shown that for σ̂ of order unity the resulting eigenvalues can
approximately be interpolated between the values for σ̂ = 0 (insulating boundaries) and
σ̂ = ∞ (perfect-conducting boundaries).

Detailed consequences of the application of weak magnetic fields for the excitation of
the axisymmetric mode are shown in figure 4. The Lundquist number (2.15a,b) is marked
by vertical lines for a container with Rout = 20.3 cm, rin = 0.35 filled with galinstan
(ρ = 6.4 g cm−3 and η = 2428 cm2 s−1) with its magnetic Prandtl number of 1.4 × 10−6.
The numbers correspond to the gallium experiment by Wang et al. (2022b). The maximally
possible uniform magnetic field in this experiment given as 4800 G corresponds to a
Lundquist number after (2.15a,b) of S = 2.1. One finds with figure 4 that for such
fields the minimum magnetic Reynolds number for marginal stability must exceed 20,
corresponding to a minimum value of 10.8 in the notation of Wang et al. (2022b). The
left vertical lines in figure 4 represent the reported MRI realization for Lehnert number
B0 = 0.21 and Reynolds number 3.4 (their notation, lower asterisk) provided by their
figure 2(a). The experiment with the fastest rotation (upper asterisk) belongs to a Lundquist
number of S = 1.22 (right vertical lines).

If the typical parameters of the experiment with almost Keplerian flow and with
maximal Reynolds number are transformed to our definitions (2.15a,b), one obtains

1not to be confused with the applied magnetic field B0 in the notations (2.15a,b) and (2.16a,b).
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maximal Reynolds numbers of Rm = 8.4 (right asterisks in the plots) which does not
reach the values required for marginal instability at any Lundquist number. This deficit is
particularly drastic for vacuum boundary conditions.

Because of the exceptional meaning of the Kepler rotation in astrophysics, all
calculations have been performed for the rotation law with q = 1.5. The question may arise
how relevant the results are for experiments with rotation laws somewhat steeper than the
Keplerian one. The coefficient q in the Princeton experiment is q = 1.59. As mentioned
above, the same pair of qs yields μ = 0.35 and μ = 0.33 for rin = 0.5. For this case table 1
provides a magnetic Reynolds number of 24.7 for perfect-conducting boundaries. This is
14 % higher than the value 21.3 given in the Introduction for μ = 0.33, representing the
difference of the Reynolds numbers for Keplerian rotation with q = 1.5 and for slightly
super-Keplerian rotation with q = 1.59. For the latter one has thus to shift the curves in
figure 4 downwards by (say) 14 %. The uncertainties due to the application of the too ideal
boundary conditions, however, will overcompensate this small shift so that the stability
line of the real experiment will certainly remain in the area between the limiting curves in
figure 4.

Our results comply with the finding of Goodman & Ji (2002) in their figures 1 and 2,
that containers with insulating walls of rin = 0.33 including a quasi-Keplerian flow do
not allow the excitation of SMRI with an applied field of less than 2750 G. Even with
perfect-conducting cylinders the curves are so steep for S < Smin that the needed rotation
rates of the cylinders are too high.

7. Flat cells

As demonstrated by table 1 the cell structure for the axisymmetric modes is nearly
circular in the (R − z)-plane for wide gaps and rather elongated in the axial direction for
narrow gaps. It is thus still unclear whether the standard MRI is also able to produce
flat cells with ζ 	 1 which are necessary to appear in experiments with a flat container
(H < D) and/or in flat cosmical objects such as accretion disks and galaxies. For the latter,
the magnetic Mach number of rotation does not exceed values of 10, as it is the case for
the solutions given in table 1.

We have therefore to probe whether eigensolutions exist for finite Rm and S when, for
example, ζ = 0.1 is required. From (4.1) one obtains for (say) rin = 0.1 that solutions with
k = 10.5 are matched for ζ = 0.1.

Figure 5 shows the results. Indeed, the envisaged flat cells exist in the axially unbounded
container and even for similar Lundquist numbers as for the solutions with the lowest
Reynolds numbers and the elongated cells. The actual magnetic Reynolds numbers for flat
cell structures, however, are much higher than before. Hence, the magnetic Mach numbers
for flat cells are also higher than for the elongated cells summarized in table 1. They are
larger than 10 and grow for growing flatness. This result complies with that of a global
model of a flat galaxy for magnetic Prandtl number Pm ≥ 1 (Kitchatinov & Rüdiger
2004). The flatter the cells, the stronger the dissipation and the harder the differential
rotation must work to excite the instability while the magnetic field needed for the rotation
minimum remains unchanged. We also learn from figure 5 that the influence of the actual
boundary condition is remarkably weak.

8. Discussion

The influence of the position rin of the inner cylinder of TC flows on the excitation of the
magnetorotational instability has been studied. To demonstrate the results we shall switch
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FIGURE 5. Lines of marginal stability for rin = 0.1 and a fixed axial wavenumber of k = 10.5
for ζ = 0.1 and k = 21 for ζ = 0.05: perfect-conductingcylinders (red); insulating cylinders
(black). The flatter the cell the higher the magnetic Mach number. The influence of the boundary
conditions is rather weak; m = 0, quasi-Keplerian rotation, Pm = 10−5.

to the more traditional representations

Rm∗ = R2
outΩin

η
, S∗ = RoutB0√

μ0ρη
, (8.1a,b)

(where simply the rin-dependent R0 in the parameters (2.15a,b) has been replaced by
the fixed Rout) which for given outer cylinder size Rout form minimal normalized inner
rotation rates and magnetic field amplitudes needed for excitation of the instability. These
quantities are plotted as function of rin in figure 6 for both sorts of boundary conditions.
The main result is that too narrow or too wide gaps would require very high rotation rates
or very strong magnetic fields. For 0.3 � rin � 0.6 the dependence of the numbers on rin
is rather weak. The minima for conducting cylinders are at rin � 0.4 for the rotation rate
and at rin � 0.2 for the magnetic field. We also note that the influence of the boundary
conditions is opposite for rotation and field. For vacuum conditions the needed rotation
rates are mostly lower than for perfect-conduction conditions but the needed magnetic
fields are higher for insulating cylinders.

One may ask whether for given outer radius not only the inner rotation frequency has a
minimum for a certain rin but also the momentum to maintain this critical Ωin. To this end
one has to multiply Rm∗ from figure 6(a) with r2

in. The result is a monotonously increasing
function for rin ≥ 0.1. In this range there is no minimum at any rin for the power to drive
the inner cylinder. Such a minimum could maximally exist very close to the axis which,
however, is not relevant for real constructions.

The experiment with the fastest rotation (Rm = 4.5) by Wang et al. (2022b) corresponds
to Rm∗ = 37 which is certainly below the curves in figure 6(a). A similar situation
holds with respect to the magnetic field: the given maximal possible field of 4800 G
provides a Lundquist number of S∗ = 4.4 which again does not reach the minimum
value in figure 6(b). Compared with our calculations the reported experiments are
clearly subcritical with respect to the magnetic field and the reported rotation rates.
There is no value of rin for which the applied rotation rates and/or magnetic fields are
supercritical by a large margin. If TC experiments which are subcritical in the described
sense provide unstable modes then extra influences (such as electric currents, non-zonal
flows or non-axial field components) besides homogeneous axial magnetic background
fields and differential rotation as the standard combination of SMRI should be active.
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(a) (b)

FIGURE 6. The magnetic Reynolds number (a) and the Lundquist number (b) after the
definitions (8.1a,b) representing the normalized inner rotation rate and the magnetic field
amplitude needed for excitation versus rin. Quasi-Keplerian differential rotation, Pm = 10−5,
perfect-conducting cylinder material (red), insulating cylinders (black). The numbers are taken
from table 1.

Nonlinear simulations of axially unbounded SMRI models with medium magnetic Prandtl
numbers never did provide instability patterns if for given Lundquist number the applied
Reynolds number is lower than the minimum Reynolds number taken from the linear
theory (Rüdiger et al. 2018a). For an interpretation of the observed axisymmetric and
even non-axisymmetric instabilities (see Wang et al. 2022a) the specific role of the
Ekman–Hartmann layers inside the copper lids indeed leading to subcritical instability
excitations should be discussed (Gilman & Benton 1968; Szklarski & Rüdiger 2007;
Gissinger, Goodman & Ji 2012) but this is not the task of this paper.
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