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OSCILLATION CRITERIA FOR SECOND ORDER 
NONLINEAR DELAY EQUATIONS 

BY 

LYNN ERBEC1) 

1. Introduction. It is the purpose of this paper to establish oscillation criteria 
for second order nonlinear differential equations with retarded argument. Specif
ically, we consider the equation 

(i . i ) y"+f(t,y(t),y(g(t))) = o 

where /e C[0, + oo) xR2, g e C[0, + oo), and 

(1.2) 0 < g(t) <,t, t>0, lim g(0 = + oo 
t~*CO 

We shall restrict attention to solutions of (1.1) which exist on some ray [T, + oo). 
A solution of (1.1) is called oscillatory if it has no largest zero. For a general 
discussion of existence and uniqueness properties of equations with retarded 
argument, the reader is referred to El'sgol'ts [1]. Equation (1.1) is considered by 
Gollwitzer [2] in the form 

(1.3) y"+P(t)yAty = o 

where yT(t)y={y(t—r(t))y 0 < y ^ l , and y is the quotient of odd integers. It is 
assumed also that p(t) is continuous and eventually nonnegative on [T, + oo), and 
that the delay r{t) satisfies 

(1.4) 0 < T ( 0 < M , t>T9 

where M is some positive constant. 
Oscillation criteria for (1.3) as well as (1.1) may be found in [2], [3], [4], [5], 

[6], [7], and [8]. As a typical result, Gollwitzer [2] has shown that all solutions of 
(1.3) with y > l are oscillatory if, and only if, 

(1.5) rtp(t)dt= +oo. 

If r ( 0 = 0 and one restricts attention to continuable solutions of the resulting 
equation 

(1.6) y"+p(t)yy = 0 
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then (1.5) is the well-known Atkinson criterion for oscillation of solutions of (1.6), 
(cf. [7]). The literature concerning the oscillatory behavior of (1.6) and its generaliza
tions is quite extensive, a survey of which may be found in [8]. In fact, the results 
in the references cited above for equation (1.1) have demonstrated that oscillation 
criteria for (1) when g(t)~t remain unchanged if one assumes condition (1.4) 
(i.e., t—M<g(t)<t for some constant M>0) . 

Our technique will depend on the fact that, under appropriate conditions o n / , 
solutions of (1.1) are solutions of related ordinary differential inequalities involving 
the retarded argument. We then may apply the theory of second order differential 
inequalities (see [12], for example) and thereby obtain oscillation criteria for the 
original equation (1.1). It will be clear that this technique extends to more general 
equations than (1.1) in which the function / involves several retardations. As 
corollaries, we obtain and extend several of the oscillation criteria in [2]-[6]. 

2. We begin this section with a preliminary lemma. 

LEMMA 2.1. Let g(t) satisfy (1.2) and assume y(t) e C{2)[T, +oo) satisfies 

(2.1) X 0 > 0 , / ( 0 > 0 , / ( 0 < 0 on [T, +oo). 

Then for each 0 < / : < l there is a Tk>T such that 

(2.2) y(g(t))^ky(t)^, t^Tk. 

Proof. It suffices to consider only those t for which g(t)<t. Then we have for 
t>g(t)>T, y(t)—y(g(t))<y'(g(t))(t—g(t)) by the mean value theorem and the 
monotone properties of / . Hence, 

(2.3) - ^ - £ 1 + Z ^ - ) C-g(O), t > g(t) > T. 
y(g(t)) y(g(t)) 

Also, y(g(t))>y(T)+/(g(t))(g(t)-T) so that for any 0<fc<l there is a Tk>T 
with 

(2.4) 4 ^ ^ fe2(0, ' ̂  T* 
y (g(0) 

Hence, using (2.4) in (2.3) we obtain 

(2.5) j(L^^M<J.> t>Tk 
y(g(t)) kg(t) - fc g (o 

which is (2.2). 
Using Lemma 2.1, it is possible to establish several oscillation criteria for (1.1). 

We begin with a general result for the case when (1.1) is linear of the form 

(2.6) y"+p(t)y(g(t)) = 0 
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where/?(/)eC[0, +00). 

THEOREM 2.2. Let jLt,(t)=g(t)lt, p(t)>0for t>0. Assume that the equation 

(2.7) y"+¥(t)p(t)y = 0 
is oscillatory on [0, + 00) for some 0<A<1. Then all solutions of (2.6) are oscillatory. 

Proof. If not, we may assume that u{i) is a nonoscillatory solution of (2.6) 
with u(t)>0 on [T, +00), (since — u(t) is a solution also). By (2.6) we may 
assume also that u(g(t))>0 for t>T so that u"(t)<0 on [T, +00). Hence, u'(t) 
decreases to a limit which must be nonnegative since u(t) is nonoscillatory. In 
fact, we must have u'(t)>0 on [T, + 00) for if u'(t0)=0 for some t0>T, then 
u'(t)=0 on [t0, + 00) so that from (2.6) we have/?(0=0 on |Y0, + 00) contradicting 
the assumption that (2.7) is oscillatory. Hence, applying Lemma 2.1 we see that 
for A < a < l there is a Ta>T with 

(2.8) u»(t)+w(t)p(t)u(t) <C 0, f > Ta. 

Letting r(t)=u'(t)/u(t) in Theorem 7.2 of [9, p. 362], we conclude by the Sturm 
comparison theorem that (2.7) is nonoscillatory. This contradiction proves the 
theorem. 

REMARK 2.3. It follows that any oscillation criterion for the second order 
linear equation y"+p(t)y=0, where p(t)>0 on [0, +00), may be immediately 
extended to an oscillation criterion for (2.6). The analogue of Theorem 2.1 for the 
case when several retardations are involved is clear. In the case when t—M< 
g(t)<t for some M > 0 and all large t, ju,(t)=g(t)/t is asymptotic to 1 so that all 
solutions of (2.6) are oscillatory if 

(2.9) y"+Wt)y = 0 

is oscillatory for some 0<A<1. In particular, we have 

COROLLARY 2.4. All solutions of (2.6) are oscillatory in case either of the following 
holds: 

(i) J00 f ' - ^ M O dt= + 00 for some 0 < a < l 
(ii) lim inf t J7° [x(t)p(t) dt>\ 

Proof. If (i) holds, then all solutions of (2.7) are oscillatory for all A>0 (see 
[10]; also [9, p. 368, Example 7.8]). If (ii) holds, then all solutions of (2.7) are 
oscillatory for 1— A>0 sufficiently small (see [11]). 

COROLLARY 2.5. All bounded solutions of (2.6) are oscillatory in case 

(2.10) f g(t)p(t)dt= +00 
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Proof. Condition (2.10) implies that all bounded solutions of (2.7) are oscilla
tory for any A>0 (see [11], for example). Now if u(t) is a bounded nonoscillatory 
solution of (2.6) with u(t)>0 and u(g(t))>0, t>T, then (2.8) holds for t>Ta>T9 

0<oc<l. Applying Theorem 7.4 of [12] (with 0L(t)=u(T)<u(t)=P(t)), we con
clude the existence of a solution y(t) of (2.7) (with oc=A) satisfying 0<w(r)<^ 
y{t)<u(t) on [Ta9 +oo). This is a contradiction and proves the theorem. 

REMARK 2.6. Corollary 2.4 (i) improves and extends a result of Bradley [3, 
Theorem 1]. 

3. In this section we shall consider equation (1.1) and obtain some improvements 
of results in [2]-[6]. Throughout this section we shall assume/(/, u, v) satisfies 

(3.1) /(*, u, v) = - / ( * , - i i , -I?) all t, u, v 

and 

(3.2) f(t, u,v)>0, u,v>0 and all t > 0 

and that for each fixed t and w>0,/(f, w, t>) is nondecreasing in v for i;>0 and that 
for each fixed t and v>Q,f(t, u, v) is nondecreasing in u for w>0. 

THEOREM 3.1. ^4// bounded solutions 0/(1.1) are oscillatory in case 

(3.3) rtf(t9a,w(t))dt 

for all a^O, where /u(t) is as in Theorem 2.2. 

= +oo 

Proof. If not, let u{t) be a bounded nonoscillatory solution of (1.1) which we 
may assume satisfies 

(3.4) ii(0 > 0, ii(g(0) > 0, ii'(0 > 0, iT(f) < 0, t^T 

Hence, by Lemma 2.1, for 0 < £ < 1 , we have 

(3.5) u"{t)+f{U u(t), kf,(t)u(t)) < 0, t > Tk 

by the monotonicity assumption o n / Applying Theorem 7.4 of [12] with a(f)= 
u(Tk)<u(t)=P(t) we obtain the existence of a solution y(t) of 

(3.6) y"+f(t, y9 k/i(t)y) = 0 

with u(Tk)<y(t)<u(t) on [rfc, oo). But then by Theorem 3 of [8] it follows that 

f tf(t, a, kjLt(t)oL) dt < +co 

for some constant a ^ 0 . This contradicts (3.3) by the monotonicity assumption 

of / 
The next theorem shows the converse of Theorem 3.1 is true under an additional 

assumption. 
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THEOREM 3.2. Assume that the following condition holds: 

(3.7) lim inf ̂ (0 ;> p > 0 for some p > 0. 
t->ao 

Then (1.1) te a bounded nonoscillatory solution if and only if 

(3.8) 

for some oc^O. 
f t/(i, a, a) at < +oo 

Proof. Theorem 3.1, (3.7), and the monotonicity assumptions show the necessity 
of (3.8). If (3.8) holds, assume to be specific that a>0 and let 0</?<a. Choose 
7>0 so that 

rsf(s,p,P)ds<m 

Then defining ^ 
y0(t) = /?, t^O 

JWi(0 = P~ f"(s-r)/(s,y„(s),J'„(g(s)))ds, t<T 
JT 

= £ - | V o / ( s , yn(s), yn(g(s))) ds, t^T 

it follows by induction that PI2<yn(t)<(5, t>T and all n>0. Furthermore the 
sequence {j4(0}£=o *s bounded uniformly on t>T. Therefore, the Ascoli-Arzela 
theorem along with a standard diagonalization argument yields a subsequence of 
{yn{t)}n=*o which converges, uniformly on compact subintervals of [T, + oo), to 
a solutiony(t) of (1.1) satisfying /?/2<j(0</?, t>T. This proves the theorem. 

We shall note later (see Remark 3.5 below) that the converse of Theorem 3.1 is 
not true. To extend Theorems 3.1 and 3.2 to unbounded solutions, let <f>(u) be a 
nondecreasing continuous function of u satisfying w</>(w)>0, w^O with 

f±0° du ^_i_ 
< +00. 

J±l c/)(u) 
We will say that/(f, u, v) satisfies condition (A) provided there exists a c^O and 
0 < a < l such that 
(3.9) lim irfM'^M ^ k m c, ^ m \ 

for some positive constant k and all t>T. 
We may now prove the following result: 

THEOREM 3.3. Assume f satisfies condition (A). Then all solutions of (1.1) are 
oscillatory in case (3.3) holds for all a^O. In addition, if (3.7) holds, then (3.3) is 
also necessary. 
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Proof. Assume (3.3) holds for all oc^O and let u(t) be a nonoscillatory solution 
of (1.1) with u(t)>0, u(g(t))>0 for t>T. As in Theorem 3.1, given 0<<x<l as in 
condition (A) there is a J ^ r s u c h that 

(3.10) u\t)+f(U u{t\ *p(t)u(t)) < 0, t > Ta, 

Hence, we obtain a solution y(t) of 

(3.11) yfV)+f(t,y(t%w(t)y(t)) = 0 

with 0<u(Ta)<y(t)<u(t)9 t>Ta, by Theorem 7.4 of [12]. But now an application 
of Theorem 4 of [8] yields the desired contradiction. 

Conversely, if (3.7) holds and (3.3) does not hold for some oc^O, then by the 
monotonicity assumption (3.8) must hold for some oc^O which gives a non-
oscillatory solution of (1.1) by Theorem 3.2. 

As corollaries of these results, we obtain and extend the results of Gollwitzer 
[2] for the equation 

(3.12) y'V)+P(t)(y(g(tW = o 

where p(t)>0 on [T9 +cc) and y > l is the quotient of odd integers. 

COROLLARY 3.4. All solutions of (3.12) are oscillatory provided 

(3.13) j 'VwO(g(0) y ^=+ oo 

The converse is true in case (3.7) holds. 

REMARK 3.5. Theorem 3.1 shows that (1.5) is a necessary condition for all 
solutions of (3.12) to oscillate, in the case y > l , with just the assumption (1.2) 
on g(t). However, (1.5) is no longer sufficient as the following example demon
strates : 

Let p(t)=ta/4, g(t)=t1/2, where a = — 3/2—y/4 with 1 < y < 2 , and y the quotient 
of odd integers. For this example, y(t)=t1/2 is a nonoscillatory solution but 
$mtp(t)dt= +co. 

We shall now prove an extension of a second theorem of Gollwitzer [2] for 
equation (3.12) in the case 0 < y < l , which is, in turn, a generalization of a result 
of Belohorec [13] which states that if g(t) = t, 0 < y < l , then all solutions of (3.12) 
are oscillatory if, and only if, J00 typ(t)dt— + a>. Gollwitzer shows this theorem 
remains true if t—M<g(t)<t for some constant M > 0 . 

THEOREM 3.6. Let 0 < y < l in equation (3.12). Then all solutions of (3.12) are 
oscillatory if, and only if 

(3.14) r ( g ( 0 ) r K O ^ = + o o 
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Proof. Let u(t) be a nonoscillatory solution of (3.12) with u(t)>0, u(g(t))>0 on 
[T, + oo). Then for any 0 < & < 1 , arguing as in Theorem 3.1, we obtain a solution 

j ( 0 o f 

(3.15) y"(t)+kp(t)(v(t)y(y(t))y = o, 

with u(Tk)<y(t)<u(t) on t>Tk>T. Then by Theorem 1 of [13] it follows that 
r(g(0)yp(t)dt< + œ. 

Conversely, if §*° p(t){g(t))y dt< + oo we may use an argument similar to that of 
[13] (see also [2]) to show the existence of a nonoscillatory solution y(t) with 
lim j ( / ) / / = a > 0 . We omit the details. 

REMARK 3.7. Ladas [6] has recently shown that an analogue of (3.14) for the 
more general equation (1.1) is necessary for all solutions to be oscillatory. More 
precisely, it is shown that if all solutions of (1.1) are oscillatory, then 

f f(t, kt, kg(t)) dt = + oo for all k > 0. 

Obviously, this condition is not sufficient as the Euler equation demonstrates (i.e., 
Equation (2.6) with g(t)=t, p(t)=t2/4). 

We now give a sufficient condition for oscillation of all solutions of (1.1) based 
on a comparison theorem for nonlinear differential equations (see [12]). 

THEOREM 3.8. Let the partial derivative functions fu,fv be continuous and non-
negative on [0, + co)xR2 and assume fu and fv are nondecreasing in u and v for 
u9 v>0. Then all solutions of (1.1) are oscillatory in case the linear equation 

(3.16) z"+[fu(t, a, k^(t))+kfi(t)fv(t, a, kocfi(t))]z = 0 

is oscillatory for all a^O and some 0<k<l. 

Proof. If u(t) is a nonoscillatory solution of (1.1) with w(/)>0, u(g(t))>0 on 
[T, +oo), then for any 0<k<l. Lemma 2.1 shows that 

u"(t)+f(t, u(t), kfx(t)u(t)) < 0, tï> Tk. 

Then applying Theorem 7.7 and Theorem 7.8 of [12] we conclude that the equation 

(3.17) y"(t)+f(t9y(t),kv(t)y(t))=:0 

has a solution yn(t) e C2[Tk, Tk+n] for each n>\ satisfying u(Tk)<yn(t)<u(t) on 
[Tk, Tk+/n\ and such that the variational equation of (3.17) with respect to yn(t), 

(3.18) z"+ [fu(t, yn(t), kv(t)yn(t))+kKt)L(t, yn{t\ kfA{t)yn(t))]z = 0. 

is disconjugate on (Tk, Tk+n). Hence, by the monotonicity assumptions and the 
Sturm comparison theorem, it follows that (3.16) with a=u(Tk) is disconjugate on 
(Tk, Tk+n) for all n>\. This contradiction proves the theorem. 
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As a simple example which extends Corollary 3.4 and is the analogue of a result 
of Jones [14], we have 

COROLLARY 3.9. Let yï>l, l</<^«, be the quotient of odd integers, let gt(t) 
satisfy (1.2) and assume p^i) are continuous and nonnegative for t>T, l<,i<n. 
Define /^i(t)=gi(t)/t9 1 <,i<n. Then all solutions of 

>-" + ipi(0(Xgi(0)v' = o 
are oscillatory provided 

iiJ
00^(oy^(o = +a) 

The converse is true in case ^(t) satisfies (3J) for \<i<n. 
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