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Logarithms and the Topology of the
Complement of a Hypersurface

E. S. Zeron

Abstract. This paper is devoted to analysing the relation between the logarithm of a non-constant

holomorphic polynomial Q(z) and the topology of the complement of the hypersurface defined by

Q(z) = 0.

1 Introduction

Let Q(z) be a given non-constant holomorphic polynomial in C
n, and HQ the hy-

persurface defined by Q(z) = 0. The complement C
n \ HQ is a Stein manifold of

complex dimension n; hence, the singular homology group Hk(C
n \ HQ, Z) vanishes

for all k > n, see [3, p. 26]. Moreover, the group Hn(C
n \ HQ, Z) is generally non-

trivial and plays an important part in residue theory and other issues of complex

analysis in several variables; see for example the works of Poincaré [10] and Griffiths

[5, 6].

The main objective of this paper is to deduce simple geometrical conditions which

imply that a given n-dimensional singular cycle Γs is homologous to zero in the com-

plement of HQ. In particular, we are interested in conditions related to the existence

of the logarithm ln Q(z) on Γs; see for example Propositions 1.4 and 3.2 which are

the main results of this paper.

Properly speaking, any cycle Γs in C
n \ HQ is a formal finite sum

∑

k mk fk of

continuous functions fk defined from the standard compact n-real simplex ∆
n into

C
n \HQ, see for example [1, 12]. Hence, any cycle Γs can be represented by a compact

set Γ defined by the finite union
⋃

mk 6=0 fk(∆n). A very important case happens when

Γ is a compact manifold without boundary. We may ask, for example, whether a

given non-trivial element of Hn(C \ HQ, Z) can be represented by a cycle Γs whose

associated set Γ is a simply connected manifold. If such a manifold exists, we shall

see later that Propositions 1.4 and 3.2 give us strong conditions over Γ.

Definition 1.1 We say that the logarithm ln Q(z) is well defined (or exists) on Γ if

there exists a continuous function h(z) defined on Γ such that Q(z) = exp(h(z)).

Recall that Γ does not meet HQ.

Notice that h(z) can actually be defined on an open neighbourhood W of Γ in such

a way that h is holomorphic and Q(z) = exp(h(z)) in W , for Q(z) is a holomorphic
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polynomial. On the other hand, working on the complex plane C
1, we have that

the zero locus HQ of Q(z) is a finite set. And it is easy to see that the existence of the

logarithm ln Q(z) on Γ implies that Γs is itself homologous to zero in the complement

of HQ; moreover, Γ has an open neighbourhood in C
1 \ HQ diffeomorphic to C

1.

We may ask here whether the existence of the logarithm ln Q(z) on Γ could imply

that Γs is homologous to zero in C
n \HQ for any n ≥ 2. We get a positive answer if Q

is a weighted homogeneous polynomial.

Lemma 1.2 Let P be a weighted homogeneous holomorphic polynomial P in C
n, that

is, the equation P(tβ1 z1, . . . , tβn zn) = tP(z1, . . . , zn) holds for each t ∈ C and some

fixed rational numbers βk. Considering the zero locus HP of P, we have that any given

n-dimensional cycle Γs is homologous to zero in C
n \HP, whenever the logarithm ln P(z)

is well defined on the associated set Γ.

We shall prove this lemma in the second section of this paper. Unfortunately, we

cannot generalise previous lemma in a straightforward way to consider any arbitrary

holomorphic polynomial Q. The existence of the logarithm ln Q(z) on Γ is not a

sufficient condition which could imply that Γs is homologous to zero. A very nice

counterexample was given by Nemirovskiı̆ in [9]. Working with the hypersurface HF

associated to the Fermat polynomial 1 + z
q
1 + · · · + z

q
n = 0, for n ≥ 3 and q ≥ 3,

Nemirovskiı̆ built a smooth sphere Sn which is not homologous to zero in C
n \ HF .

We need to use the following result in order to generalise Lemma 1.2, see for ex-

ample Verdier [13], Broughton [2] or Hà Huy Vui [8].

Proposition 1.3 Let Q be a non-constant holomorphic polynomial on C
n. Then there

exists a finite set ΛQ ⊂ C such that the fibres of Q induce a locally trivial fibre bundle of

C
n \ Q−1(ΛQ) with base on C \ ΛQ.

Now we can state one of the main results of this work.

Proposition 1.4 Let HQ be the zero locus of a non-constant holomorphic polynomial

Q in C
n. Given an n-dimensional singular cycle Γs represented by a compact set Γ in

C
n \ HQ and recalling the finite set ΛQ defined in Proposition 1.3, the following two

statements hold.

(1) If the logarithm ln Q(z) exists on Γ and ΛQ is contained in the unbounded connected

component of C \ Q(Γ) union the connected component which contains the origin,

then Γs is homologous to zero in the complement of HQ.

(2) If Γ is a connected and locally arcwise connected space whose first singular coho-

mology group H1(Γ, Z) vanishes, and the sets ΛQ and Q(Γ) are disjoint, then Γs is

homologous to zero in C
n \ HQ.

This proposition will be proved in the second section of this paper as well. Notice

that the open set C \ Q(Γ) contains the origin and has only one unbounded con-

nected component because Q(Γ) is compact. Besides, we point out that the logarithm

ln Q(z) exists on Γ, when H1(Γ, Z) vanishes and Γ is a topological manifold. First,

the singular and the Čech cohomology groups are isomorphic, H1(Γ, Z) ∼= Ȟ1(Γ, Z),
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see for example [12, pp. 334, 340] or [11, pp. 166–167]. Considering the short exact

sequence

0 → Z → C
η
→ C

∗ → 0,

where Z and C are groups under standard addition, C
∗

= C \ {0} is a group un-

der multiplication, and η(t) = exp(2πit); we have the following induced long exact

sequence, see for example [11, p. 145],

· · · → Ȟ0(Γ, Z) → Ȟ0(Γ, C)
η
→ Ȟ0(Γ, C

∗) → Ȟ1(Γ, Z) → · · · .

Whence, recalling that Ȟ0(Γ, A) is the set of all possible continuous functions

from Γ into A, we have that Q(z) is an element of Ȟ0(Γ, C
∗); so there exists a con-

tinuous function h defined on Γ and such that exp(2πih(z)) = Q(z), whenever

H1(Γ, Z) ∼= Ȟ1(Γ, Z) vanishes.

Coming back to the sphere Sn constructed by Nemirovskiı̆ in C
n \ HF . We have

that the group H1(Sn, Z) vanishes whenever n ≥ 2, so the logarithm of the Fermat

polynomial F(z) = 1+z
q
1 + · · ·+z

q
n indeed exists on Sn, but this sphere is not homolo-

gous to zero in the complement of HF . Moreover, it is easy to calculate that the set ΛF

defined in Proposition 1.3 is composed only of the point z = 1, so the critical fibre

{F(z) = 1} must meet Sn according to Proposition 1.4. On the other hand, suppose

that a non-trivial element of Hn(C \ HQ, Z) can be represented by a cycle Γs whose

associated set Γ is a simply connected manifold, then this manifold must satisfy the

conditions of Propositions 1.4 or 3.2; we only need to observe that H1(Γ, Z) vanishes

when Γ is simply connected, see for example [1, 12].

Finally, the last section of this paper is devoted to proving several consequences of

Proposition 1.4.

2 Proofs of Lemma 1.2 and Proposition 1.4

We point out that Lemma 1.2 can be deduced from Proposition 1.4 as a corollary.

Nevertheless, we wanted to present Lemma 1.2 as an independent issue because it

inspired the main results of this paper: Propositions 1.4 and 3.2.

Definition 2.1 Fixing C
∗

= C \ {0}, we say that a given point b ∈ C
∗ can be joined

by a smooth arc Υk ⊂ C
∗ to the origin (respectively, the point at infinity) if there

exists an injective smooth function gk defined from the real line into C
∗ such that

gk(0) = b and the limit of |gk(t)| is equal to zero (resp., infinity) when t → +∞. The

smooth arc Υk is then defined as the image of the infinite interval [0, +∞) under gk.

Notice that Υk is a closed subset of C
∗ with only one end point b.

Proof of Proposition 1.4 (1) Since ΛQ is contained in the unbounded connected

component of C \ Q(Γ) union the connected component which contains the origin,

we may find an open set D1 ⊂ C
∗ diffeomorphic to the annulus C

∗ such that Q(Γ) ⊂
D1, the intersection D1 ∩ ΛQ is empty, and the origin is contained in the bounded

connected component of C \ D1. Notice that the complement of D1 has only one

bounded connected component because D1 is diffeomorphic to an annulus.
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We can build the open set D1 as follows. Considering the given hypotheses, we

have that every point of ΛQ \ {0} can be joined by a smooth arc Υk to either the

origin or the point at infinity, in such a way that every arc Υk is contained inside

C
∗ \ Q(Γ) and every two different arcs Υ j and Υk are disjoint. Thus, the open set

D1 defined as the complement of the finite union
⋃

k Υk ∪ {0} indeed satisfies the

desired properties. Besides, one can also verify that the open set D2 composed of all

the points x ∈ C with exp(x) ∈ D1 is diffeomorphic to the whole plane C, for the

origin is contained in the unique bounded connected component of C\D1. Consider

the space M composed of all the points (x, z) ∈ C × C
n with exp(x) = Q(z); and the

basic projections ρ1(x, z) = x and ρ2(x, z) = z defined from M onto C and C
n,

respectively. We have the following commutative diagram,

ρ−1
1 (D2)

ρ2

//

ρ1

��

Q−1(D1)

Q

��

D2

exp
// D1.

Notice that the fibres of Q induce a locally trivial fibre bundle of Q−1(D1) with

base on D1, by Proposition 1.3 and because the intersection D1∩ΛQ is empty. Hence,

the fibres of ρ1 induce a locally trivial fibre bundle of ρ−1
1 (D2) with base on D2 as well.

Recalling that D2 is diffeomorphic to the plane C, we can then deduce that ρ−1
1 (D2)

is diffeomorphic to the product D2 × Z0, where Z0 is the fibre {Q(z) = exp(x0)}
for some point x0 ∈ D2, see [3, p. 27]. The fibre Z0 is a Stein manifold of complex

dimension n − 1, so both homology groups Hn(Z0, Z) and Hn(ρ−1
1 (D2), Z) vanish.

Finally, let Γs =
∑

k mk fk be an n-dimensional singular cycle in the complement

of HQ, and suppose there exists a continuous function h defined from the associated

set Γ into C such that exp(h(z)) = Q(z). Notice that every point (h(z), z) is contained

in M, for z ∈ Γ, so the sum Ts =
∑

k mk(h( fk), fk) is indeed an n-dimensional cycle

in M. Moreover, recall that Q(z) ∈ D1 and h(z) ∈ D2, for any z ∈ Γ, so Ts is a cycle

in ρ−1
1 (D2). Thus, there exists an (n + 1)-dimensional singular chain ∆s in ρ−1

1 (D2)

whose boundary ∂∆s = Ts. We have that Γs is homologically trivial, because it is

equal to the boundary ∂ρ2(∆s).

Proof of Lemma 1.2 The main idea is to prove that the set ΛP defined in Proposi-

tion 1.3 is either empty or the singleton {0}, whenever P(z) is a weighted homoge-

neous holomorphic polynomial.

Let Z1 be the fibre {P(z) = 1}. We can deduce by simple derivation that the

formula P(z) =
∑

βkzk
dP(z)

dzk

always holds, after recalling the definition of weighted

homogeneous. Thus, the differential dP(y0) is different from zero for any point

y0 with P(y0) = 1, and so Z1 is a Stein manifold of complex dimension n − 1.

Consider the holomorphic function η from C × Z1 into C
n defined by η(x, z) =

(exβ1 z1, · · · , exβn zn), it is easy to see that the equation P ◦ η(x, z) = ex always holds.

Hence, we have that η is a covering projection from C × Z1 onto C
n \ P−1(0), and

that the fibres of P induce a locally trivial fibre bundle of C
n \ P−1(0) with base on
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C
∗

= C \ {0}. That is, the set Λp is either empty or equal to the singleton {0}. The

conclusion of Lemma 1.2 can be deduced following the proof of Proposition 1.4 (1).

Proof of Proposition 1.4 (2) Let µ be a smooth universal covering projection from

C onto D3 = C \ (ΛQ ∪ {0}), and M be the space composed of all the points

(x, z) ∈ C × C
n such that µ(x) = Q(z). Considering the projection ρ1(x, z) = x

defined from M onto C, recalling Proposition 1.3 and working as in the proof of

Proposition 1.4 (1), we have that M is diffeomorphic to the product C × Z2, where

Z2 is the fibre {Q(z) = µ(x2)} for some point x2 ∈ C. Hence, the group Hn(M, Z)

vanishes.

Now let Γs =
∑

k mk fk be an n-dimensional singular cycle in the complement

of HQ whose associated set Γ is compact, connected and locally arcwise connected;

moreover, suppose that H1(Γ, Z) vanishes. Given any finitely generated free group G,

we are going to prove that every homomorphism from the fundamental group π1(Γ)

into G is trivial. The following short exact sequence is a consequence of the universal

coefficient theorem, see [1, p. 282] or [4, p. 133],

· · · → H1(Γ, Z) → Hom(H1(Γ, Z), Z) → 0,

so every homomorphism from H1(Γ, Z) into Z is trivial.

Since H1(Γ, Z) is isomorphic to the quotient π1(Γ)/E, where E is the commu-

tator subgroup of π1(Γ), then, every element of H1(Γ, Z) can be seen as an equiv-

alence class [aE] for some a in π1(Γ), see for example [1, pp. 173–174]. We as-

sert that every homomorphism f1 from π1(Γ) into Z is trivial. Recalling that E is

generated by all the commutators aba−1b−1 with a and b in π1(Γ), we obviously

have that f1(aba−1b−1) = 0 because Z is abelian; so E is contained in the kernel of

f1. We may then define a homomorphism f2 from H1(Γ, Z) into Z by the formula

f2([aE]) = f1(a), for any element [aE] of H1(Γ, Z). The homomorphism f2 is well

defined because f1(ab) = f1(a) for each b in E, and f2 is trivial because H1(Γ, Z)

vanishes. Moreover, supposing f1 is non-trivial, there exists a0 in π1(Γ) such that

f1(a0) 6= 0, so a0 /∈ E and f2([a0E]) 6= 0. We have a contradiction. Whence, we

can conclude that every homomorphism from π1(Γ) into Z is trivial whenever the

cohomology group H1(Γ, Z) vanishes.

Finally, suppose there exists a non-trivial homomorphism f3 from π1(Γ) into the

free group G, then, the image f3(π1(Γ)) is a non-trivial free subgroup of G, see for ex-

ample the Nielsen–Schreier theorem [7, p. 96]. Let b1 be any generator of f3(π1(Γ)),

different from the identity in G. We can build a homeomorphism f4 from G into

Z defined by the following condition: given any word w in G, the integer f4(w) is

equal to the sum of all the exponents of b1 in w. Obviously, if the word w contains

no letter b1, then f4(w) = 0. Notice that f4 is a homeomorphism, so f4 ◦ f3 is a

non-trivial homeomorphism from π1(Γ) into Z as well, because f4(b1) = 1 and b1

is in f3(π1(Γ)). We have a contradiction. Therefore, we may conclude that every

homomorphism from π1(Γ) into G is trivial whenever the group H1(Γ, Z) vanishes.

Coming back to our original proof, we already have a pair of continuous functions

µ : C → D3 and Q|Γ : Γ → D3, notice that Q(Γ) ⊂ D3 because Q(Γ) and ΛQ∪{0} are

disjoint. We obviously have that the induced homomorphism π∗µ : π1(C) → π1(D3)
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is trivial; and moreover, π∗Q|Γ defined from π1(Γ) into π1(D3) is trivial as well by

the analysis above and because π1(D3) is a finitely generated free group. Hence,

the composition π∗µ(π∗h) is identically equal to π∗Q|Γ for every homomorphism

π∗h : π(Γ) → π(D3). The lifting theorem implies the existence of a continuous func-

tion h from Γ into C such that µ ◦ h(z) = Q(z) for any z ∈ Γ, see [1, p. 143] or [12,

p. 76]. Finally, proceeding as in the proof of Proposition 1.4 (1), we have that there

exists an (n + 1)-dimensional singular chain ∆s in M whose boundary ∂∆s is equal

to
∑

k mk(h( fk), fk). Considering now the projection ρ2(x, z) = z defined from M

into C
n, we automatically have that the boundary ∂ρ2(∆s) is equal to Γs.

3 Final Results

Recalling the hypotheses of Proposition 1.4, it is very easy to see that the logarithm

ln Q(z) is well defined on Γ whenever the origin is contained in the unbounded con-

nected component of C \ Q(Γ). Amazingly, this seems to be a very strong condition.

Proposition 3.1 Let HQ be the zero locus of a non-constant holomorphic polynomial

Q(z) in C
n, for n ≥ 2. Suppose that the origin is not contained in the finite set ΛQ

defined in Proposition 1.3. Given an n-dimensional singular cycle Γs represented by the

set Γ in C
n \ HQ, we have that Γs is homologous to zero whenever the origin is in the

unbounded connected component of C \ Q(Γ).

Proof The given hypotheses allow us to build a smooth injective function g defined

from the real line into C \ (Q(Γ) ∪ ΛQ) such that g(1) = 0 and the limit of |g(t)| is

equal to infinity when t → +∞. Now fix the infinite interval R0 = [1, +∞) of the real

line and define the arc Υ to be the image g(R0). Proposition 1.3 automatically implies

that the fibres of Q(z) induce a locally trivial fibre bundle of Q−1(Υ) with base on Υ.

Therefore, since the arc Υ is obviously contractible and HQ = Q−1(0), we may find a

diffeomorphism F defined from R0 × HQ onto Q−1(Υ) such that Q ◦ F(t, x) = g(t).

We have the following commutative diagram, where ρ(t, x) = t ,

R0 × HQ

F
//

ρ

��

Q−1(Υ)

Q

��

R0

g
// Υ.

Define C
n ∪ {∞} to be the one point compactification of C

n; obviously, we have

that C
n ∪ {∞} is diffeomorphic to the sphere S2n. We assert that the one point

compactification Q−1(Υ) ∪ {∞} is contractible, analysing it as a closed subset of

C
n ∪ {∞}. Consider the inverse of F as a pair of smooth functions ( f1, f2) defined

from Q−1(Υ) onto R0 × HQ. We have for example that f1(z) is equal to g−1 ◦ Q(z).

We may construct the homotopy,

G(z, s) =

{

∞ if z = ∞ or s = 0,

F( f1(z)/s, f2(z)) otherwise.
.
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It is easy to see that G(z, s) is a continuous function for all 0 ≤ s ≤ 1 and z

in Q−1(Υ) ∪ {∞}. Moreover, G(z, 1) = z is the identity and G(z, 0) = ∞ is a

constant function. Hence, Q−1(Υ)∪{∞} is contractible, and so the duality theorem

of Alexander yields,

Hk(C
n \ Q−1(Υ)) = Ȟ2n−k−1(Q−1(Υ) ∪ {∞}) = 0,

for 1 ≤ k ≤ 2n−2. Thus, Γs is homologically trivial in C
n \Q−1(Υ). The result then

follows by recalling that HQ is contained in Q−1(Υ).

Finally, given the right conditions, we may even push the points of ΛQ to the

unbounded connected component of C \ Q(Γ). Recall Proposition 1.3 and Defi-

nition 2.1.

Proposition 3.2 Let HQ be the zero locus of a non-constant holomorphic polynomial

Q in C
n, and Γs be an n-dimensional singular cycle represented by a smooth manifold Γ

in C
n \ HQ. If the logarithm ln Q(z) is well defined on Γ and every point of ΛQ \ {0}

can be joined by a smooth arc Υk ⊂ C
∗ to the point at infinity in such a way that every

set Q−1(Υk)∩Γ is connected and every two different arcs Υ j and Υk are disjoint. Then

Γs is homologous to zero in the complement of HQ.

Proof Recall that Hn(C
n, Z) vanishes, so there exists an (n+1)-dimensional singular

chain ∆s in C
n whose boundary ∂∆s is equal to Γs. We may even choose ∆s in such

a way that it is represented by a compact smooth manifold ∆ whose boundary (as a

manifold) is equal to Γ as well. Notice that we shall have finished if ∆ is contained in

C
n \ HQ, so we are supposing from now on that Q(z) has indeed a zero inside ∆.

Notice that each arc Υk is a closed subset of the complex plane, and that Q−1(Υk)∩
Γ is connected, so we may define the set Ek to be the compact connected component

of Q−1(Υk) ∩ ∆ which contains Q−1(Υk) ∩ Γ. We already know that there exists a

continuous function h1 from Γ into C with exp(h1(z)) = Q(z). Hence, we can extend

h1 to a continuous function h2 defined from the finite union
⋃

k Ek ∪ Γ into C such

that exp(h2(z)) = Q(z), because every intersection Ek ∩ Γ is connected, the origin is

not contained in any Υk, and every two different arcs Υ j and Υk are disjoint. We may

even go a step further. We can find an open neighbourhood V of the union
⋃

k Ek∪Γ,

and a continuous function h3 defined from V into C such that V is disjoint from HQ

and exp(h3(z)) = Q(z) for every point z ∈ V .

On the other hand, since ∆ is a smooth manifold with boundary, every compact

Ek ⊂ ∆ has a small enough open neighbourhood Wk such that the closure Wk is

contained in V , every two different sets W j and Wk are disjoint, the set Ek is equal to

Q−1(Υk) ∩ ∆ ∩ Wk, and the smooth boundary ∂Wk meets ∆ transversally. That is,

the compact sets ∆∩Wk and ∆\Wk are all smooth manifolds with piecewise smooth

boundary. Define T to be the boundary of the smooth manifold ∆ \ (
⋃

k Wk).

Each manifold ∆ ∩ Wk is contained in C
n \ HQ and Γ is the boundary of ∆,

so we can find an n-dimensional singular cycle Ts which is represented by T and is

homologous to Γs in C
n \ HQ. Besides, every point of T is contained in Γ or in

some boundary ∂Wk ⊂ V . Whence, we have that T is completely contained in V ,
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and so the logarithm ln Q(z) is well defined on T. Finally, if there exists a point x in

Q−1(Υk) ∩ T, then x must be contained in Q−1(Υk) ∩ ∆ ∩Wk. That is, the point x

is contained in Ek ⊂ Wk. However, it is easy to see that T and Wk are disjoint. We

have a contradiction. Hence, the set T does not meet any inverse image Q−1(Υk).

We can rewrite the previous statement as follows: every point of ΛQ \ {0} is the end

point of an arc Υk which does not meet Q(T) and goes to infinity, so ΛQ \ {0} is

contained in the unbounded connected component of C \ Q(T). We only need to

apply Proposition 1.4 to deduce that Γs and Ts are both homologous to zero in the

complement of HQ.
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[9] S. Yu. Nemirovskĭı, Topology of hypersurface complements in C

n and rationally convex hulls. Tr. Mat.
Inst. Steklova 235(2001), pp. 169–180. English translation in Proc. Steklov Inst. Math. 235 (2001),
pp. 162–172.
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