# Logarithms and the Topology of the Complement of a Hypersurface 

E. S. Zeron

Abstract. This paper is devoted to analysing the relation between the logarithm of a non-constant holomorphic polynomial $Q(z)$ and the topology of the complement of the hypersurface defined by $Q(z)=0$.

## 1 Introduction

Let $Q(z)$ be a given non-constant holomorphic polynomial in $\mathbb{C}^{n}$, and $H_{Q}$ the hypersurface defined by $Q(z)=0$. The complement $\mathbb{C}^{n} \backslash H_{Q}$ is a Stein manifold of complex dimension $n$; hence, the singular homology group $H_{k}\left(\mathbb{C}^{n} \backslash H_{Q}, \mathbb{Z}\right)$ vanishes for all $k>n$, see [3, p. 26]. Moreover, the group $H_{n}\left(\mathbb{C}^{n} \backslash H_{Q}, \mathbb{Z}\right)$ is generally nontrivial and plays an important part in residue theory and other issues of complex analysis in several variables; see for example the works of Poincaré [10] and Griffiths [5, 6].

The main objective of this paper is to deduce simple geometrical conditions which imply that a given $n$-dimensional singular cycle $\Gamma_{s}$ is homologous to zero in the complement of $H_{Q}$. In particular, we are interested in conditions related to the existence of the logarithm $\ln Q(z)$ on $\Gamma_{s}$; see for example Propositions 1.4 and 3.2 which are the main results of this paper.

Properly speaking, any cycle $\Gamma_{s}$ in $\mathbb{C}^{n} \backslash H_{Q}$ is a formal finite sum $\sum_{k} m_{k} f_{k}$ of continuous functions $f_{k}$ defined from the standard compact $n$-real simplex $\Delta^{n}$ into $\mathbb{C}^{n} \backslash H_{Q}$, see for example [1, 12]. Hence, any cycle $\Gamma_{s}$ can be represented by a compact set $\Gamma$ defined by the finite union $\bigcup_{m_{k} \neq 0} f_{k}\left(\Delta^{n}\right)$. A very important case happens when $\Gamma$ is a compact manifold without boundary. We may ask, for example, whether a given non-trivial element of $H_{n}\left(\mathbb{C} \backslash H_{Q}, \mathbb{Z}\right)$ can be represented by a cycle $\Gamma_{s}$ whose associated set $\Gamma$ is a simply connected manifold. If such a manifold exists, we shall see later that Propositions 1.4 and 3.2 give us strong conditions over $\Gamma$.

Definition 1.1 We say that the logarithm $\ln Q(z)$ is well defined (or exists) on $\Gamma$ if there exists a continuous function $h(z)$ defined on $\Gamma$ such that $Q(z)=\exp (h(z))$. Recall that $\Gamma$ does not meet $H_{Q}$.

Notice that $h(z)$ can actually be defined on an open neighbourhood $W$ of $\Gamma$ in such a way that $h$ is holomorphic and $Q(z)=\exp (h(z))$ in $W$, for $Q(z)$ is a holomorphic

[^0]polynomial. On the other hand, working on the complex plane $\mathbb{C}^{1}$, we have that the zero locus $H_{Q}$ of $Q(z)$ is a finite set. And it is easy to see that the existence of the logarithm $\ln Q(z)$ on $\Gamma$ implies that $\Gamma_{s}$ is itself homologous to zero in the complement of $H_{Q}$; moreover, $\Gamma$ has an open neighbourhood in $\mathbb{C}^{1} \backslash H_{Q}$ diffeomorphic to $\mathbb{C}^{1}$.

We may ask here whether the existence of the logarithm $\ln Q(z)$ on $\Gamma$ could imply that $\Gamma_{s}$ is homologous to zero in $\mathbb{C}^{n} \backslash H_{Q}$ for any $n \geq 2$. We get a positive answer if $Q$ is a weighted homogeneous polynomial.

Lemma 1.2 Let P be a weighted homogeneous holomorphic polynomial P in $\mathbb{C}^{n}$, that is, the equation $P\left(t^{\beta_{1}} z_{1}, \ldots, t^{\beta_{n}} z_{n}\right)=t P\left(z_{1}, \ldots, z_{n}\right)$ holds for each $t \in \mathbb{C}$ and some fixed rational numbers $\beta_{k}$. Considering the zero locus $H_{P}$ of $P$, we have that any given $n$-dimensional cycle $\Gamma_{s}$ is homologous to zero in $\mathbb{C}^{n} \backslash H_{P}$, whenever the logarithm $\ln P(z)$ is well defined on the associated set $\Gamma$.

We shall prove this lemma in the second section of this paper. Unfortunately, we cannot generalise previous lemma in a straightforward way to consider any arbitrary holomorphic polynomial $Q$. The existence of the logarithm $\ln Q(z)$ on $\Gamma$ is not a sufficient condition which could imply that $\Gamma_{s}$ is homologous to zero. A very nice counterexample was given by Nemirovskiĭ in [9]. Working with the hypersurface $H_{F}$ associated to the Fermat polynomial $1+z_{1}^{q}+\cdots+z_{n}^{q}=0$, for $n \geq 3$ and $q \geq 3$, Nemirovskiĭ built a smooth sphere $\S^{n}$ which is not homologous to zero in $\mathbb{C}^{n} \backslash H_{F}$.

We need to use the following result in order to generalise Lemma 1.2, see for example Verdier [13], Broughton [2] or Hà Huy Vui [8].

Proposition 1.3 Let $Q$ be a non-constant holomorphic polynomial on $\mathbb{C}^{n}$. Then there exists a finite set $\Lambda_{Q} \subset \mathbb{C}$ such that the fibres of $Q$ induce a locally trivial fibre bundle of $\mathbb{C}^{n} \backslash Q^{-1}\left(\Lambda_{Q}\right)$ with base on $\mathbb{C} \backslash \Lambda_{Q}$.

Now we can state one of the main results of this work.

Proposition 1.4 Let $H_{Q}$ be the zero locus of a non-constant holomorphic polynomial $Q$ in $\mathbb{C}^{n}$. Given an n-dimensional singular cycle $\Gamma_{s}$ represented by a compact set $\Gamma$ in $\mathbb{C}^{n} \backslash H_{Q}$ and recalling the finite set $\Lambda_{Q}$ defined in Proposition 1.3, the following two statements hold.
(1) If the logarithm $\ln Q(z)$ exists on $\Gamma$ and $\Lambda_{Q}$ is contained in the unbounded connected component of $\mathbb{C} \backslash Q(\Gamma)$ union the connected component which contains the origin, then $\Gamma_{s}$ is homologous to zero in the complement of $H_{Q}$.
(2) If $\Gamma$ is a connected and locally arcwise connected space whose first singular cohomology group $H^{1}(\Gamma, \mathbb{Z})$ vanishes, and the sets $\Lambda_{Q}$ and $Q(\Gamma)$ are disjoint, then $\Gamma_{s}$ is homologous to zero in $\mathbb{C}^{n} \backslash H_{Q}$.

This proposition will be proved in the second section of this paper as well. Notice that the open set $\mathbb{C} \backslash Q(\Gamma)$ contains the origin and has only one unbounded connected component because $Q(\Gamma)$ is compact. Besides, we point out that the logarithm $\ln Q(z)$ exists on $\Gamma$, when $H^{1}(\Gamma, \mathbb{Z})$ vanishes and $\Gamma$ is a topological manifold. First, the singular and the Čech cohomology groups are isomorphic, $H^{1}(\Gamma, \mathbb{Z}) \cong \check{H}^{1}(\Gamma, \mathbb{Z})$,
see for example [12, pp. 334, 340] or [11, pp. 166-167]. Considering the short exact sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{C} \xrightarrow{\eta} \mathbb{C}^{*} \rightarrow 0
$$

where $\mathbb{Z}$ and $\mathbb{C}$ are groups under standard addition, $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is a group under multiplication, and $\eta(t)=\exp (2 \pi i t)$; we have the following induced long exact sequence, see for example [11, p. 145],

$$
\cdots \rightarrow \check{H}^{0}(\Gamma, \mathbb{Z}) \rightarrow \check{H}^{0}(\Gamma, \mathbb{C}) \xrightarrow{\eta} \check{H}^{0}\left(\Gamma, \mathbb{C}^{*}\right) \rightarrow \check{H}^{1}(\Gamma, \mathbb{Z}) \rightarrow \cdots
$$

Whence, recalling that $\check{H}^{0}(\Gamma, \mathcal{A})$ is the set of all possible continuous functions from $\Gamma$ into $\mathcal{A}$, we have that $Q(z)$ is an element of $\check{H}^{0}\left(\Gamma, C^{*}\right)$; so there exists a continuous function $h$ defined on $\Gamma$ and such that $\exp (2 \pi i h(z))=Q(z)$, whenever $H^{1}(\Gamma, \mathbb{Z}) \cong \grave{H}^{1}(\Gamma, \mathbb{Z})$ vanishes.

Coming back to the sphere $\mathfrak{S}^{n}$ constructed by Nemirovskiĭ in $\mathbb{C}^{n} \backslash H_{F}$. We have that the group $H^{1}\left(\mathcal{S}^{n}, \mathbb{Z}\right)$ vanishes whenever $n \geq 2$, so the logarithm of the Fermat polynomial $F(z)=1+z_{1}^{q}+\cdots+z_{n}^{q}$ indeed exists on $\mathcal{S}^{n}$, but this sphere is not homologous to zero in the complement of $H_{F}$. Moreover, it is easy to calculate that the set $\Lambda_{F}$ defined in Proposition 1.3 is composed only of the point $z=1$, so the critical fibre $\{F(z)=1\}$ must meet $\delta^{n}$ according to Proposition 1.4. On the other hand, suppose that a non-trivial element of $H_{n}\left(\mathbb{C} \backslash H_{Q}, \mathbb{Z}\right)$ can be represented by a cycle $\Gamma_{s}$ whose associated set $\Gamma$ is a simply connected manifold, then this manifold must satisfy the conditions of Propositions 1.4 or 3.2; we only need to observe that $H^{1}(\Gamma, \mathbb{Z})$ vanishes when $\Gamma$ is simply connected, see for example [1, 12].

Finally, the last section of this paper is devoted to proving several consequences of Proposition 1.4.

## 2 Proofs of Lemma 1.2 and Proposition 1.4

We point out that Lemma 1.2 can be deduced from Proposition 1.4 as a corollary. Nevertheless, we wanted to present Lemma 1.2 as an independent issue because it inspired the main results of this paper: Propositions 1.4 and 3.2.

Definition 2.1 Fixing $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$, we say that a given point $b \in \mathbb{C}^{*}$ can be joined by a smooth arc $\Upsilon_{k} \subset \mathbb{C}^{*}$ to the origin (respectively, the point at infinity) if there exists an injective smooth function $g_{k}$ defined from the real line into $\mathbb{C}^{*}$ such that $g_{k}(0)=b$ and the limit of $\left|g_{k}(t)\right|$ is equal to zero (resp., infinity) when $t \rightarrow+\infty$. The smooth arc $\Upsilon_{k}$ is then defined as the image of the infinite interval $[0,+\infty)$ under $g_{k}$.

Notice that $\Upsilon_{k}$ is a closed subset of $\mathbb{C}^{*}$ with only one end point $b$.
Proof of Proposition 1.4 (1) Since $\Lambda_{Q}$ is contained in the unbounded connected component of $\mathbb{C} \backslash Q(\Gamma)$ union the connected component which contains the origin, we may find an open set $D_{1} \subset \mathbb{C}^{*}$ diffeomorphic to the annulus $\mathbb{C}^{*}$ such that $Q(\Gamma) \subset$ $D_{1}$, the intersection $D_{1} \cap \Lambda_{Q}$ is empty, and the origin is contained in the bounded connected component of $\mathbb{C} \backslash D_{1}$. Notice that the complement of $D_{1}$ has only one bounded connected component because $D_{1}$ is diffeomorphic to an annulus.

We can build the open set $D_{1}$ as follows. Considering the given hypotheses, we have that every point of $\Lambda_{Q} \backslash\{0\}$ can be joined by a smooth arc $\Upsilon_{k}$ to either the origin or the point at infinity, in such a way that every arc $\Upsilon_{k}$ is contained inside $\mathbb{C}^{*} \backslash Q(\Gamma)$ and every two different arcs $\Upsilon_{j}$ and $\Upsilon_{k}$ are disjoint. Thus, the open set $D_{1}$ defined as the complement of the finite union $\bigcup_{k} \Upsilon_{k} \cup\{0\}$ indeed satisfies the desired properties. Besides, one can also verify that the open set $D_{2}$ composed of all the points $x \in \mathbb{C}$ with $\exp (x) \in D_{1}$ is diffeomorphic to the whole plane $\mathbb{C}$, for the origin is contained in the unique bounded connected component of $\mathbb{C} \backslash D_{1}$. Consider the space $M$ composed of all the points $(x, z) \in \mathbb{C} \times \mathbb{C}^{n}$ with $\exp (x)=Q(z)$; and the basic projections $\rho_{1}(x, z)=x$ and $\rho_{2}(x, z)=z$ defined from $M$ onto $\mathbb{C}$ and $\mathbb{C}^{n}$, respectively. We have the following commutative diagram,


Notice that the fibres of $Q$ induce a locally trivial fibre bundle of $Q^{-1}\left(D_{1}\right)$ with base on $D_{1}$, by Proposition 1.3 and because the intersection $D_{1} \cap \Lambda_{Q}$ is empty. Hence, the fibres of $\rho_{1}$ induce a locally trivial fibre bundle of $\rho_{1}^{-1}\left(D_{2}\right)$ with base on $D_{2}$ as well. Recalling that $D_{2}$ is diffeomorphic to the plane (C, we can then deduce that $\rho_{1}^{-1}\left(D_{2}\right)$ is diffeomorphic to the product $D_{2} \times Z_{0}$, where $Z_{0}$ is the fibre $\left\{Q(z)=\exp \left(x_{0}\right)\right\}$ for some point $x_{0} \in D_{2}$, see [3, p. 27]. The fibre $Z_{0}$ is a Stein manifold of complex dimension $n-1$, so both homology groups $H_{n}\left(Z_{0}, \mathbb{Z}\right)$ and $H_{n}\left(\rho_{1}^{-1}\left(D_{2}\right), \mathbb{Z}\right)$ vanish.

Finally, let $\Gamma_{s}=\sum_{k} m_{k} f_{k}$ be an $n$-dimensional singular cycle in the complement of $H_{Q}$, and suppose there exists a continuous function $h$ defined from the associated set $\Gamma$ into $\mathbb{C}$ such that $\exp (h(z))=Q(z)$. Notice that every point $(h(z), z)$ is contained in $M$, for $z \in \Gamma$, so the sum $T_{s}=\sum_{k} m_{k}\left(h\left(f_{k}\right), f_{k}\right)$ is indeed an $n$-dimensional cycle in $M$. Moreover, recall that $Q(z) \in D_{1}$ and $h(z) \in D_{2}$, for any $z \in \Gamma$, so $T_{s}$ is a cycle in $\rho_{1}^{-1}\left(D_{2}\right)$. Thus, there exists an $(n+1)$-dimensional singular chain $\Delta_{s}$ in $\rho_{1}^{-1}\left(D_{2}\right)$ whose boundary $\partial \Delta_{s}=T_{s}$. We have that $\Gamma_{s}$ is homologically trivial, because it is equal to the boundary $\partial \rho_{2}\left(\Delta_{s}\right)$.

Proof of Lemma 1.2 The main idea is to prove that the set $\Lambda_{P}$ defined in Proposition 1.3 is either empty or the singleton $\{0\}$, whenever $P(z)$ is a weighted homogeneous holomorphic polynomial.

Let $Z_{1}$ be the fibre $\{P(z)=1\}$. We can deduce by simple derivation that the formula $P(z)=\sum \beta_{k} z_{k} \frac{d P(z)}{d z_{k}}$ always holds, after recalling the definition of weighted homogeneous. Thus, the differential $d P\left(y_{0}\right)$ is different from zero for any point $y_{0}$ with $P\left(y_{0}\right)=1$, and so $Z_{1}$ is a Stein manifold of complex dimension $n-1$. Consider the holomorphic function $\eta$ from $\mathbb{C} \times Z_{1}$ into $\mathbb{C}^{n}$ defined by $\eta(x, z)=$ $\left(\mathrm{e}^{x \beta_{1}} z_{1}, \cdots, \mathrm{e}^{x \beta_{n}} z_{n}\right)$, it is easy to see that the equation $P \circ \eta(x, z)=\mathrm{e}^{x}$ always holds. Hence, we have that $\eta$ is a covering projection from $\mathbb{C} \times Z_{1}$ onto $\mathbb{C}^{n} \backslash P^{-1}(0)$, and that the fibres of $P$ induce a locally trivial fibre bundle of $\mathbb{C}^{n} \backslash P^{-1}(0)$ with base on
$\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. That is, the set $\Lambda_{p}$ is either empty or equal to the singleton $\{0\}$. The conclusion of Lemma 1.2 can be deduced following the proof of Proposition 1.4 (1).

Proof of Proposition 1.4 (2) Let $\mu$ be a smooth universal covering projection from C onto $D_{3}=\mathbb{C} \backslash\left(\Lambda_{Q} \cup\{0\}\right)$, and $M$ be the space composed of all the points $(x, z) \in \mathbb{C} \times \mathbb{C}^{n}$ such that $\mu(x)=Q(z)$. Considering the projection $\rho_{1}(x, z)=x$ defined from $M$ onto $\mathbb{C}$, recalling Proposition 1.3 and working as in the proof of Proposition 1.4 (1), we have that $M$ is diffeomorphic to the product $\mathbb{C} \times Z_{2}$, where $Z_{2}$ is the fibre $\left\{Q(z)=\mu\left(x_{2}\right)\right\}$ for some point $x_{2} \in \mathbb{C}$. Hence, the group $H_{n}(M, \mathbb{Z})$ vanishes.

Now let $\Gamma_{s}=\sum_{k} m_{k} f_{k}$ be an $n$-dimensional singular cycle in the complement of $H_{Q}$ whose associated set $\Gamma$ is compact, connected and locally arcwise connected; moreover, suppose that $H^{1}(\Gamma, \mathbb{Z})$ vanishes. Given any finitely generated free group $\mathcal{G}$, we are going to prove that every homomorphism from the fundamental group $\pi_{1}(\Gamma)$ into $\mathcal{G}$ is trivial. The following short exact sequence is a consequence of the universal coefficient theorem, see [1, p. 282] or [4, p. 133],

$$
\cdots \rightarrow H^{1}(\Gamma, \mathbb{Z}) \rightarrow \operatorname{Hom}\left(H_{1}(\Gamma, \mathbb{Z}), \mathbb{Z}\right) \rightarrow 0
$$

so every homomorphism from $H_{1}(\Gamma, \mathbb{Z})$ into $\mathbb{Z}$ is trivial.
Since $H_{1}(\Gamma, \mathbb{Z})$ is isomorphic to the quotient $\pi_{1}(\Gamma) / \mathcal{E}$, where $\mathcal{E}$ is the commutator subgroup of $\pi_{1}(\Gamma)$, then, every element of $H_{1}(\Gamma, \mathbb{Z})$ can be seen as an equivalence class $[a \mathcal{E}]$ for some $a$ in $\pi_{1}(\Gamma)$, see for example [1, pp. 173-174]. We assert that every homomorphism $f_{1}$ from $\pi_{1}(\Gamma)$ into $\mathbb{Z}$ is trivial. Recalling that $\mathcal{E}$ is generated by all the commutators $a b a^{-1} b^{-1}$ with $a$ and $b$ in $\pi_{1}(\Gamma)$, we obviously have that $f_{1}\left(a b a^{-1} b^{-1}\right)=0$ because $\mathbb{Z}$ is abelian; so $\mathcal{E}$ is contained in the kernel of $f_{1}$. We may then define a homomorphism $f_{2}$ from $H_{1}(\Gamma, \mathbb{Z})$ into $\mathbb{Z}$ by the formula $f_{2}([a \mathcal{E}])=f_{1}(a)$, for any element $[a \mathcal{E}]$ of $H_{1}(\Gamma, \mathbb{Z})$. The homomorphism $f_{2}$ is well defined because $f_{1}(a b)=f_{1}(a)$ for each $b$ in $\mathcal{E}$, and $f_{2}$ is trivial because $H^{1}(\Gamma, \mathbb{Z})$ vanishes. Moreover, supposing $f_{1}$ is non-trivial, there exists $a_{0}$ in $\pi_{1}(\Gamma)$ such that $f_{1}\left(a_{0}\right) \neq 0$, so $a_{0} \notin \mathcal{E}$ and $f_{2}\left(\left[a_{0} \mathcal{E}\right]\right) \neq 0$. We have a contradiction. Whence, we can conclude that every homomorphism from $\pi_{1}(\Gamma)$ into $\mathbb{Z}$ is trivial whenever the cohomology group $H^{1}(\Gamma, \mathbb{Z})$ vanishes.

Finally, suppose there exists a non-trivial homomorphism $f_{3}$ from $\pi_{1}(\Gamma)$ into the free group $\mathcal{G}$, then, the image $f_{3}\left(\pi_{1}(\Gamma)\right)$ is a non-trivial free subgroup of $\mathcal{G}$, see for example the Nielsen-Schreier theorem [7, p. 96]. Let $b_{1}$ be any generator of $f_{3}\left(\pi_{1}(\Gamma)\right)$, different from the identity in $\mathcal{G}$. We can build a homeomorphism $f_{4}$ from $\mathcal{G}$ into $\mathbb{Z}$ defined by the following condition: given any word $w$ in $\mathcal{G}$, the integer $f_{4}(w)$ is equal to the sum of all the exponents of $b_{1}$ in $w$. Obviously, if the word $w$ contains no letter $b_{1}$, then $f_{4}(w)=0$. Notice that $f_{4}$ is a homeomorphism, so $f_{4} \circ f_{3}$ is a non-trivial homeomorphism from $\pi_{1}(\Gamma)$ into $\mathbb{Z}$ as well, because $f_{4}\left(b_{1}\right)=1$ and $b_{1}$ is in $f_{3}\left(\pi_{1}(\Gamma)\right)$. We have a contradiction. Therefore, we may conclude that every homomorphism from $\pi_{1}(\Gamma)$ into $\mathcal{G}$ is trivial whenever the group $H^{1}(\Gamma, \mathbb{Z})$ vanishes.

Coming back to our original proof, we already have a pair of continuous functions $\mu: \mathbb{C} \rightarrow D_{3}$ and $\left.Q\right|_{\Gamma}: \Gamma \rightarrow D_{3}$, notice that $Q(\Gamma) \subset D_{3}$ because $Q(\Gamma)$ and $\Lambda_{Q} \cup\{0\}$ are disjoint. We obviously have that the induced homomorphism $\pi^{*} \mu: \pi_{1}(\mathbb{C}) \rightarrow \pi_{1}\left(D_{3}\right)$
is trivial; and moreover, $\left.\pi^{*} Q\right|_{\Gamma}$ defined from $\pi_{1}(\Gamma)$ into $\pi_{1}\left(D_{3}\right)$ is trivial as well by the analysis above and because $\pi_{1}\left(D_{3}\right)$ is a finitely generated free group. Hence, the composition $\pi^{*} \mu\left(\pi^{*} h\right)$ is identically equal to $\left.\pi^{*} Q\right|_{\Gamma}$ for every homomorphism $\pi^{*} h: \pi(\Gamma) \rightarrow \pi\left(D_{3}\right)$. The lifting theorem implies the existence of a continuous function $h$ from $\Gamma$ into $\mathbb{C}$ such that $\mu \circ h(z)=Q(z)$ for any $z \in \Gamma$, see [1, p. 143] or [12, p. 76]. Finally, proceeding as in the proof of Proposition 1.4 (1), we have that there exists an $(n+1)$-dimensional singular chain $\Delta_{s}$ in $M$ whose boundary $\partial \Delta_{s}$ is equal to $\sum_{k} m_{k}\left(h\left(f_{k}\right), f_{k}\right)$. Considering now the projection $\rho_{2}(x, z)=z$ defined from $M$ into $\mathbb{C}^{n}$, we automatically have that the boundary $\partial \rho_{2}\left(\Delta_{s}\right)$ is equal to $\Gamma_{s}$.

## 3 Final Results

Recalling the hypotheses of Proposition 1.4, it is very easy to see that the logarithm $\ln Q(z)$ is well defined on $\Gamma$ whenever the origin is contained in the unbounded connected component of $\mathbb{C} \backslash Q(\Gamma)$. Amazingly, this seems to be a very strong condition.

Proposition 3.1 Let $H_{Q}$ be the zero locus of a non-constant holomorphic polynomial $Q(z)$ in $\mathbb{C}^{n}$, for $n \geq 2$. Suppose that the origin is not contained in the finite set $\Lambda_{Q}$ defined in Proposition 1.3. Given an n-dimensional singular cycle $\Gamma_{s}$ represented by the set $\Gamma$ in $\mathbb{C}^{n} \backslash H_{Q}$, we have that $\Gamma_{s}$ is homologous to zero whenever the origin is in the unbounded connected component of $\mathbb{C} \backslash Q(\Gamma)$.

Proof The given hypotheses allow us to build a smooth injective function $g$ defined from the real line into $\mathbb{C} \backslash\left(Q(\Gamma) \cup \Lambda_{Q}\right)$ such that $g(1)=0$ and the limit of $|g(t)|$ is equal to infinity when $t \rightarrow+\infty$. Now fix the infinite interval $R_{0}=[1,+\infty)$ of the real line and define the arc $\Upsilon$ to be the image $g\left(R_{0}\right)$. Proposition 1.3 automatically implies that the fibres of $Q(z)$ induce a locally trivial fibre bundle of $Q^{-1}(\Upsilon)$ with base on $\Upsilon$. Therefore, since the arc $\Upsilon$ is obviously contractible and $H_{Q}=Q^{-1}(0)$, we may find a diffeomorphism $F$ defined from $R_{0} \times H_{Q}$ onto $Q^{-1}(\Upsilon)$ such that $Q \circ F(t, x)=g(t)$. We have the following commutative diagram, where $\rho(t, x)=t$,


Define $\mathbb{C}^{n} \cup\{\infty\}$ to be the one point compactification of $\mathbb{C}^{n}$; obviously, we have that $\mathbb{C}^{n} \cup\{\infty\}$ is diffeomorphic to the sphere $\mathcal{S}^{2 n}$. We assert that the one point compactification $Q^{-1}(\Upsilon) \cup\{\infty\}$ is contractible, analysing it as a closed subset of $\mathbb{C}^{n} \cup\{\infty\}$. Consider the inverse of $F$ as a pair of smooth functions $\left(f_{1}, f_{2}\right)$ defined from $Q^{-1}(\Upsilon)$ onto $R_{0} \times H_{Q}$. We have for example that $f_{1}(z)$ is equal to $g^{-1} \circ Q(z)$. We may construct the homotopy,

$$
G(z, s)= \begin{cases}\infty & \text { if } z=\infty \text { or } s=0 \\ F\left(f_{1}(z) / s, f_{2}(z)\right) & \text { otherwise }\end{cases}
$$

It is easy to see that $G(z, s)$ is a continuous function for all $0 \leq s \leq 1$ and $z$ in $Q^{-1}(\Upsilon) \cup\{\infty\}$. Moreover, $G(z, 1)=z$ is the identity and $G(z, 0)=\infty$ is a constant function. Hence, $Q^{-1}(\Upsilon) \cup\{\infty\}$ is contractible, and so the duality theorem of Alexander yields,

$$
H_{k}\left(\mathbb{C}^{n} \backslash Q^{-1}(\Upsilon)\right)=\check{H}^{2 n-k-1}\left(Q^{-1}(\Upsilon) \cup\{\infty\}\right)=0
$$

for $1 \leq k \leq 2 n-2$. Thus, $\Gamma_{s}$ is homologically trivial in $\mathbb{C}^{n} \backslash Q^{-1}(\Upsilon)$. The result then follows by recalling that $H_{Q}$ is contained in $Q^{-1}(\Upsilon)$.

Finally, given the right conditions, we may even push the points of $\Lambda_{Q}$ to the unbounded connected component of $\mathbb{C} \backslash Q(\Gamma)$. Recall Proposition 1.3 and Definition 2.1.

Proposition 3.2 Let $H_{Q}$ be the zero locus of a non-constant holomorphic polynomial $Q$ in $\mathbb{C}^{n}$, and $\Gamma_{s}$ be an $n$-dimensional singular cycle represented by a smooth manifold $\Gamma$ in $\mathbb{C}^{n} \backslash H_{Q}$. If the logarithm $\ln Q(z)$ is well defined on $\Gamma$ and every point of $\Lambda_{Q} \backslash\{0\}$ can be joined by a smooth arc $\Upsilon_{k} \subset \mathbb{C}^{*}$ to the point at infinity in such a way that every set $Q^{-1}\left(\Upsilon_{k}\right) \cap \Gamma$ is connected and every two different arcs $\Upsilon_{j}$ and $\Upsilon_{k}$ are disjoint. Then $\Gamma_{s}$ is homologous to zero in the complement of $H_{Q}$.

Proof Recall that $H_{n}\left(\mathbb{C}^{n}, \mathbb{Z}\right)$ vanishes, so there exists an $(n+1)$-dimensional singular chain $\Delta_{s}$ in $\mathbb{C}^{n}$ whose boundary $\partial \Delta_{s}$ is equal to $\Gamma_{s}$. We may even choose $\Delta_{s}$ in such a way that it is represented by a compact smooth manifold $\Delta$ whose boundary (as a manifold) is equal to $\Gamma$ as well. Notice that we shall have finished if $\Delta$ is contained in $\mathbb{C}^{n} \backslash H_{Q}$, so we are supposing from now on that $Q(z)$ has indeed a zero inside $\Delta$.

Notice that each arc $\Upsilon_{k}$ is a closed subset of the complex plane, and that $Q^{-1}\left(\Upsilon_{k}\right) \cap$ $\Gamma$ is connected, so we may define the set $E_{k}$ to be the compact connected component of $Q^{-1}\left(\Upsilon_{k}\right) \cap \Delta$ which contains $Q^{-1}\left(\Upsilon_{k}\right) \cap \Gamma$. We already know that there exists a continuous function $h_{1}$ from $\Gamma$ into $\mathbb{C}$ with $\exp \left(h_{1}(z)\right)=Q(z)$. Hence, we can extend $h_{1}$ to a continuous function $h_{2}$ defined from the finite union $\bigcup_{k} E_{k} \cup \Gamma$ into $\mathbb{C}$ such that $\exp \left(h_{2}(z)\right)=Q(z)$, because every intersection $E_{k} \cap \Gamma$ is connected, the origin is not contained in any $\Upsilon_{k}$, and every two different arcs $\Upsilon_{j}$ and $\Upsilon_{k}$ are disjoint. We may even go a step further. We can find an open neighbourhood $V$ of the union $\bigcup_{k} E_{k} \cup \Gamma$, and a continuous function $h_{3}$ defined from $V$ into $\left(\mathbb{C}\right.$ such that $V$ is disjoint from $H_{Q}$ and $\exp \left(h_{3}(z)\right)=Q(z)$ for every point $z \in V$.

On the other hand, since $\Delta$ is a smooth manifold with boundary, every compact $E_{k} \subset \Delta$ has a small enough open neighbourhood $W_{k}$ such that the closure $\overline{W_{k}}$ is contained in $V$, every two different sets $\overline{W_{j}}$ and $\overline{W_{k}}$ are disjoint, the set $E_{k}$ is equal to $Q^{-1}\left(\Upsilon_{k}\right) \cap \Delta \cap \overline{W_{k}}$, and the smooth boundary $\partial W_{k}$ meets $\Delta$ transversally. That is, the compact sets $\Delta \cap \overline{W_{k}}$ and $\Delta \backslash W_{k}$ are all smooth manifolds with piecewise smooth boundary. Define $T$ to be the boundary of the smooth manifold $\Delta \backslash\left(\bigcup_{k} W_{k}\right)$.

Each manifold $\Delta \cap \overline{W_{k}}$ is contained in $\mathbb{C}^{n} \backslash H_{Q}$ and $\Gamma$ is the boundary of $\Delta$, so we can find an $n$-dimensional singular cycle $T_{s}$ which is represented by $T$ and is homologous to $\Gamma_{s}$ in $\mathbb{C}^{n} \backslash H_{Q}$. Besides, every point of $T$ is contained in $\Gamma$ or in some boundary $\partial W_{k} \subset V$. Whence, we have that $T$ is completely contained in $V$,
and so the logarithm $\ln Q(z)$ is well defined on $T$. Finally, if there exists a point $x$ in $Q^{-1}\left(\Upsilon_{k}\right) \cap T$, then $x$ must be contained in $Q^{-1}\left(\Upsilon_{k}\right) \cap \Delta \cap \overline{W_{k}}$. That is, the point $x$ is contained in $E_{k} \subset W_{k}$. However, it is easy to see that $T$ and $W_{k}$ are disjoint. We have a contradiction. Hence, the set $T$ does not meet any inverse image $Q^{-1}\left(\Upsilon_{k}\right)$. We can rewrite the previous statement as follows: every point of $\Lambda_{Q} \backslash\{0\}$ is the end point of an arc $\Upsilon_{k}$ which does not meet $Q(T)$ and goes to infinity, so $\Lambda_{Q} \backslash\{0\}$ is contained in the unbounded connected component of $\mathbb{C} \backslash Q(T)$. We only need to apply Proposition 1.4 to deduce that $\Gamma_{s}$ and $T_{s}$ are both homologous to zero in the complement of $H_{Q}$.

Acknowledgement During the elaboration of this paper the author had the benefit of many insightful comments by Jesus Gonzalez and Elias Micha.

## References

[1] G. E. Bredon, Topology and Geometry. Graduate Texts in Mathematics 139, Springer-Verlag, New York, 1993.
[2] S. A. Broughton, On the topology of polynomial hypersurfaces. In: Singularities, Proc. Sympos. Pure Math. 40, Part I, American Mathematical Society, Providence, RI, 1983, pp. 167-178.
[3] A. Dimca, Singularities and Topology of Hypersurfaces. Springer-Verlag, New York, 1992.
[4] C. T. J. Dodson and P. E. Parker, A user's guide to algebraic topology. Mathematics and its Applications 387, Kluwer Academic Publishers, Dordrecht, 1997.
[5] P. A. Griffiths, On the periods of certain rational integrals. I. Ann. of Math. (2) 90(1969), pp. 460-495.
[6] $\xrightarrow{\text {, On the periods of certain rational integrals. II. Ann. of Math. (2) 90(1969), pp. 496-541. }}$
[7] M. Hall, Jr., The Theory of Groups. Chelsea Publishing, New York, 1976.
[8] Hà Huy Vui and Lê Dũng Tráng, Sur la topologie des polynômes complexes. Acta Math. Vietnam. 9(1984), pp. 21-32.
[9] S. Yu. Nemirovskiī, Topology of hypersurface complements in $\mathbb{C}^{n}$ and rationally convex hulls. Tr. Mat. Inst. Steklova 235(2001), pp. 169-180. English translation in Proc. Steklov Inst. Math. 235 (2001), pp. 162-172.
[10] H. Poincaré, Sur les résidues des intégrales doubles. Acta Math. 9(1887), pp. 321-380.
[11] E. G. Sklyarenko, Homology and cohomology theories of general spaces. General topology, II, Encyclopaedia Math. Sci. 50, Springer, Berlin, 1996, pp. 119-256.
[12] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
[13] J. L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36(1976), pp. 295-312.

## Departamento de Matemáticas

Cinvestav
Apartado Postal 14-740
México DF, 07000
México
e-mail: eszeron@math.cinvestav.mx


[^0]:    Received by the editors August 23, 2003; revised November 11, 2004.
    Research supported by Cinvestav and Conacyt, México.
    AMS subject classification: 32Q55, 14F45.
    Keywords: Logarithm, homology groups and periods.
    (c) Canadian Mathematical Society 2005.

