Canad. Math. Bull. Vol. 48 (3), 2005 pp. 473-480

Logarithms and the Topology of the Complement of a Hypersurface

E. S. Zeron

Abstract. This paper is devoted to analysing the relation between the logarithm of a non-constant holomorphic polynomial Q(z) and the topology of the complement of the hypersurface defined by Q(z) = 0.

1 Introduction

Let Q(z) be a given non-constant holomorphic polynomial in \mathbb{C}^n , and H_Q the hypersurface defined by Q(z) = 0. The complement $\mathbb{C}^n \setminus H_Q$ is a Stein manifold of complex dimension *n*; hence, the singular homology group $H_k(\mathbb{C}^n \setminus H_Q, \mathbb{Z})$ vanishes for all k > n, see [3, p. 26]. Moreover, the group $H_n(\mathbb{C}^n \setminus H_Q, \mathbb{Z})$ is generally non-trivial and plays an important part in residue theory and other issues of complex analysis in several variables; see for example the works of Poincaré [10] and Griffiths [5, 6].

The main objective of this paper is to deduce simple geometrical conditions which imply that a given *n*-dimensional singular cycle Γ_s is homologous to zero in the complement of H_Q . In particular, we are interested in conditions related to the existence of the logarithm $\ln Q(z)$ on Γ_s ; see for example Propositions 1.4 and 3.2 which are the main results of this paper.

Properly speaking, any cycle Γ_s in $\mathbb{C}^n \setminus H_Q$ is a formal finite sum $\sum_k m_k f_k$ of continuous functions f_k defined from the standard compact *n*-real simplex Δ^n into $\mathbb{C}^n \setminus H_Q$, see for example [1, 12]. Hence, any cycle Γ_s can be represented by a compact set Γ defined by the finite union $\bigcup_{m_k \neq 0} f_k(\Delta^n)$. A very important case happens when Γ is a compact manifold without boundary. We may ask, for example, whether a given non-trivial element of $H_n(\mathbb{C} \setminus H_Q, \mathbb{Z})$ can be represented by a cycle Γ_s whose associated set Γ is a simply connected manifold. If such a manifold exists, we shall see later that Propositions 1.4 and 3.2 give us strong conditions over Γ .

Definition 1.1 We say that the logarithm $\ln Q(z)$ is well defined (or exists) on Γ if there exists a continuous function h(z) defined on Γ such that $Q(z) = \exp(h(z))$. Recall that Γ does not meet H_Q .

Notice that h(z) can actually be defined on an open neighbourhood W of Γ in such a way that h is holomorphic and $Q(z) = \exp(h(z))$ in W, for Q(z) is a holomorphic

Received by the editors August 23, 2003; revised November 11, 2004.

Research supported by Cinvestav and Conacyt, México.

AMS subject classification: 32Q55, 14F45.

Keywords: Logarithm, homology groups and periods.

[©]Canadian Mathematical Society 2005.

polynomial. On the other hand, working on the complex plane \mathbb{C}^1 , we have that the zero locus H_Q of Q(z) is a finite set. And it is easy to see that the existence of the logarithm $\ln Q(z)$ on Γ implies that Γ_s is itself homologous to zero in the complement of H_Q ; moreover, Γ has an open neighbourhood in $\mathbb{C}^1 \setminus H_Q$ diffeomorphic to \mathbb{C}^1 .

We may ask here whether the existence of the logarithm $\ln Q(z)$ on Γ could imply that Γ_s is homologous to zero in $\mathbb{C}^n \setminus H_Q$ for any $n \ge 2$. We get a positive answer if Q is a weighted homogeneous polynomial.

Lemma 1.2 Let P be a weighted homogeneous holomorphic polynomial P in \mathbb{C}^n , that is, the equation $P(t^{\beta_1}z_1, \ldots, t^{\beta_n}z_n) = tP(z_1, \ldots, z_n)$ holds for each $t \in \mathbb{C}$ and some fixed rational numbers β_k . Considering the zero locus H_P of P, we have that any given n-dimensional cycle Γ_s is homologous to zero in $\mathbb{C}^n \setminus H_P$, whenever the logarithm $\ln P(z)$ is well defined on the associated set Γ .

We shall prove this lemma in the second section of this paper. Unfortunately, we cannot generalise previous lemma in a straightforward way to consider any arbitrary holomorphic polynomial Q. The existence of the logarithm $\ln Q(z)$ on Γ is not a sufficient condition which could imply that Γ_s is homologous to zero. A very nice counterexample was given by Nemirovskii in [9]. Working with the hypersurface H_F associated to the Fermat polynomial $1 + z_1^q + \cdots + z_n^q = 0$, for $n \ge 3$ and $q \ge 3$, Nemirovskii built a smooth sphere \mathbb{S}^n which is not homologous to zero in $\mathbb{C}^n \setminus H_F$.

We need to use the following result in order to generalise Lemma 1.2, see for example Verdier [13], Broughton [2] or Hà Huy Vui [8].

Proposition 1.3 Let Q be a non-constant holomorphic polynomial on \mathbb{C}^n . Then there exists a finite set $\Lambda_Q \subset \mathbb{C}$ such that the fibres of Q induce a locally trivial fibre bundle of $\mathbb{C}^n \setminus Q^{-1}(\Lambda_Q)$ with base on $\mathbb{C} \setminus \Lambda_Q$.

Now we can state one of the main results of this work.

Proposition 1.4 Let H_Q be the zero locus of a non-constant holomorphic polynomial Q in \mathbb{C}^n . Given an n-dimensional singular cycle Γ_s represented by a compact set Γ in $\mathbb{C}^n \setminus H_Q$ and recalling the finite set Λ_Q defined in Proposition 1.3, the following two statements hold.

- If the logarithm ln Q(z) exists on Γ and Λ_Q is contained in the unbounded connected component of C \ Q(Γ) union the connected component which contains the origin, then Γ_s is homologous to zero in the complement of H_Q.
- (2) If Γ is a connected and locally arcwise connected space whose first singular cohomology group H¹(Γ, ℤ) vanishes, and the sets Λ_Q and Q(Γ) are disjoint, then Γ_s is homologous to zero in ℂⁿ \ H_Q.

This proposition will be proved in the second section of this paper as well. Notice that the open set $\mathbb{C} \setminus Q(\Gamma)$ contains the origin and has only one unbounded connected component because $Q(\Gamma)$ is compact. Besides, we point out that the logarithm $\ln Q(z)$ exists on Γ , when $H^1(\Gamma, \mathbb{Z})$ vanishes and Γ is a topological manifold. First, the singular and the Čech cohomology groups are isomorphic, $H^1(\Gamma, \mathbb{Z}) \cong \check{H}^1(\Gamma, \mathbb{Z})$,

474

see for example [12, pp. 334, 340] or [11, pp. 166–167]. Considering the short exact sequence

$$0 \to \mathbb{Z} \to \mathbb{C} \xrightarrow{\eta} \mathbb{C}^* \to 0,$$

where \mathbb{Z} and \mathbb{C} are groups under standard addition, $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is a group under multiplication, and $\eta(t) = \exp(2\pi i t)$; we have the following induced long exact sequence, see for example [11, p. 145],

$$\cdots \to \check{H}^0(\Gamma,\mathbb{Z}) \to \check{H}^0(\Gamma,\mathbb{C}) \xrightarrow{\eta} \check{H}^0(\Gamma,\mathbb{C}^*) \to \check{H}^1(\Gamma,\mathbb{Z}) \to \cdots$$

Whence, recalling that $\check{H}^0(\Gamma, \mathcal{A})$ is the set of all possible continuous functions from Γ into \mathcal{A} , we have that Q(z) is an element of $\check{H}^0(\Gamma, \mathbb{C}^*)$; so there exists a continuous function h defined on Γ and such that $\exp(2\pi i h(z)) = Q(z)$, whenever $H^1(\Gamma, \mathbb{Z}) \cong \check{H}^1(\Gamma, \mathbb{Z})$ vanishes.

Coming back to the sphere S^n constructed by Nemirovskii in $\mathbb{C}^n \setminus H_F$. We have that the group $H^1(S^n, \mathbb{Z})$ vanishes whenever $n \ge 2$, so the logarithm of the Fermat polynomial $F(z) = 1 + z_1^q + \cdots + z_n^q$ indeed exists on S^n , but this sphere is not homologous to zero in the complement of H_F . Moreover, it is easy to calculate that the set Λ_F defined in Proposition 1.3 is composed only of the point z = 1, so the critical fibre $\{F(z) = 1\}$ must meet S^n according to Proposition 1.4. On the other hand, suppose that a non-trivial element of $H_n(\mathbb{C} \setminus H_Q, \mathbb{Z})$ can be represented by a cycle Γ_s whose associated set Γ is a simply connected manifold, then this manifold must satisfy the conditions of Propositions 1.4 or 3.2; we only need to observe that $H^1(\Gamma, \mathbb{Z})$ vanishes when Γ is simply connected, see for example [1, 12].

Finally, the last section of this paper is devoted to proving several consequences of Proposition 1.4.

2 **Proofs of Lemma 1.2 and Proposition 1.4**

We point out that Lemma 1.2 can be deduced from Proposition 1.4 as a corollary. Nevertheless, we wanted to present Lemma 1.2 as an independent issue because it inspired the main results of this paper: Propositions 1.4 and 3.2.

Definition 2.1 Fixing $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, we say that a given point $b \in \mathbb{C}^*$ can be joined by a smooth arc $\Upsilon_k \subset \mathbb{C}^*$ to the origin (respectively, the point at infinity) if there exists an injective smooth function g_k defined from the real line into \mathbb{C}^* such that $g_k(0) = b$ and the limit of $|g_k(t)|$ is equal to zero (resp., infinity) when $t \to +\infty$. The smooth arc Υ_k is then defined as the image of the infinite interval $[0, +\infty)$ under g_k .

Notice that Υ_k is a closed subset of \mathbb{C}^* with only one end point *b*.

Proof of Proposition 1.4 (1) Since Λ_Q is contained in the unbounded connected component of $\mathbb{C} \setminus Q(\Gamma)$ union the connected component which contains the origin, we may find an open set $D_1 \subset \mathbb{C}^*$ diffeomorphic to the annulus \mathbb{C}^* such that $Q(\Gamma) \subset D_1$, the intersection $D_1 \cap \Lambda_Q$ is empty, and the origin is contained in the bounded connected component of $\mathbb{C} \setminus D_1$. Notice that the complement of D_1 has only one bounded connected component because D_1 is diffeomorphic to an annulus.

We can build the open set D_1 as follows. Considering the given hypotheses, we have that every point of $\Lambda_Q \setminus \{0\}$ can be joined by a smooth arc Υ_k to either the origin or the point at infinity, in such a way that every arc Υ_k is contained inside $\mathbb{C}^* \setminus Q(\Gamma)$ and every two different arcs Υ_j and Υ_k are disjoint. Thus, the open set D_1 defined as the complement of the finite union $\bigcup_k \Upsilon_k \cup \{0\}$ indeed satisfies the desired properties. Besides, one can also verify that the open set D_2 composed of all the points $x \in \mathbb{C}$ with $\exp(x) \in D_1$ is diffeomorphic to the whole plane \mathbb{C} , for the origin is contained in the unique bounded connected component of $\mathbb{C} \setminus D_1$. Consider the space M composed of all the points $(x, z) \in \mathbb{C} \times \mathbb{C}^n$ with $\exp(x) = Q(z)$; and the basic projections $\rho_1(x, z) = x$ and $\rho_2(x, z) = z$ defined from M onto \mathbb{C} and \mathbb{C}^n , respectively. We have the following commutative diagram,

$$\rho_1^{-1}(D_2) \xrightarrow{\rho_2} Q^{-1}(D_1)$$

$$\rho_1 \downarrow \qquad \qquad \downarrow Q$$

$$D_2 \xrightarrow{\exp} D_1.$$

Notice that the fibres of Q induce a locally trivial fibre bundle of $Q^{-1}(D_1)$ with base on D_1 , by Proposition 1.3 and because the intersection $D_1 \cap \Lambda_Q$ is empty. Hence, the fibres of ρ_1 induce a locally trivial fibre bundle of $\rho_1^{-1}(D_2)$ with base on D_2 as well. Recalling that D_2 is diffeomorphic to the plane \mathbb{C} , we can then deduce that $\rho_1^{-1}(D_2)$ is diffeomorphic to the product $D_2 \times Z_0$, where Z_0 is the fibre $\{Q(z) = \exp(x_0)\}$ for some point $x_0 \in D_2$, see [3, p. 27]. The fibre Z_0 is a Stein manifold of complex dimension n - 1, so both homology groups $H_n(Z_0, \mathbb{Z})$ and $H_n(\rho_1^{-1}(D_2), \mathbb{Z})$ vanish.

Finally, let $\Gamma_s = \sum_k m_k f_k$ be an *n*-dimensional singular cycle in the complement of H_Q , and suppose there exists a continuous function *h* defined from the associated set Γ into \mathbb{C} such that $\exp(h(z)) = Q(z)$. Notice that every point (h(z), z) is contained in *M*, for $z \in \Gamma$, so the sum $T_s = \sum_k m_k(h(f_k), f_k)$ is indeed an *n*-dimensional cycle in *M*. Moreover, recall that $Q(z) \in D_1$ and $h(z) \in D_2$, for any $z \in \Gamma$, so T_s is a cycle in $\rho_1^{-1}(D_2)$. Thus, there exists an (n + 1)-dimensional singular chain Δ_s in $\rho_1^{-1}(D_2)$ whose boundary $\partial \Delta_s = T_s$. We have that Γ_s is homologically trivial, because it is equal to the boundary $\partial \rho_2(\Delta_s)$.

Proof of Lemma 1.2 The main idea is to prove that the set Λ_P defined in Proposition 1.3 is either empty or the singleton $\{0\}$, whenever P(z) is a weighted homogeneous holomorphic polynomial.

Let Z_1 be the fibre $\{P(z) = 1\}$. We can deduce by simple derivation that the formula $P(z) = \sum \beta_k z_k \frac{dP(z)}{dz_k}$ always holds, after recalling the definition of weighted homogeneous. Thus, the differential $dP(y_0)$ is different from zero for any point y_0 with $P(y_0) = 1$, and so Z_1 is a Stein manifold of complex dimension n - 1. Consider the holomorphic function η from $\mathbb{C} \times Z_1$ into \mathbb{C}^n defined by $\eta(x, z) = (e^{x\beta_1}z_1, \cdots, e^{x\beta_n}z_n)$, it is easy to see that the equation $P \circ \eta(x, z) = e^x$ always holds. Hence, we have that η is a covering projection from $\mathbb{C} \times Z_1$ onto $\mathbb{C}^n \setminus P^{-1}(0)$, and that the fibres of P induce a locally trivial fibre bundle of $\mathbb{C}^n \setminus P^{-1}(0)$ with base on

Logarithms and Topology of Hypersurfaces

 $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. That is, the set Λ_p is either empty or equal to the singleton $\{0\}$. The conclusion of Lemma 1.2 can be deduced following the proof of Proposition 1.4 (1).

Proof of Proposition 1.4 (2) Let μ be a smooth universal covering projection from \mathbb{C} onto $D_3 = \mathbb{C} \setminus (\Lambda_Q \cup \{0\})$, and M be the space composed of all the points $(x, z) \in \mathbb{C} \times \mathbb{C}^n$ such that $\mu(x) = Q(z)$. Considering the projection $\rho_1(x, z) = x$ defined from M onto \mathbb{C} , recalling Proposition 1.3 and working as in the proof of Proposition 1.4 (1), we have that M is diffeomorphic to the product $\mathbb{C} \times Z_2$, where Z_2 is the fibre $\{Q(z) = \mu(x_2)\}$ for some point $x_2 \in \mathbb{C}$. Hence, the group $H_n(M, \mathbb{Z})$ vanishes.

Now let $\Gamma_s = \sum_k m_k f_k$ be an *n*-dimensional singular cycle in the complement of H_Q whose associated set Γ is compact, connected and locally arcwise connected; moreover, suppose that $H^1(\Gamma, \mathbb{Z})$ vanishes. Given any finitely generated free group \mathcal{G} , we are going to prove that every homomorphism from the fundamental group $\pi_1(\Gamma)$ into \mathcal{G} is trivial. The following short exact sequence is a consequence of the universal coefficient theorem, see [1, p. 282] or [4, p. 133],

$$\cdots \to H^1(\Gamma, \mathbb{Z}) \to \operatorname{Hom}(H_1(\Gamma, \mathbb{Z}), \mathbb{Z}) \to 0,$$

so every homomorphism from $H_1(\Gamma, \mathbb{Z})$ into \mathbb{Z} is trivial.

Since $H_1(\Gamma, \mathbb{Z})$ is isomorphic to the quotient $\pi_1(\Gamma)/\mathcal{E}$, where \mathcal{E} is the commutator subgroup of $\pi_1(\Gamma)$, then, every element of $H_1(\Gamma, \mathbb{Z})$ can be seen as an equivalence class $[a\mathcal{E}]$ for some a in $\pi_1(\Gamma)$, see for example [1, pp. 173–174]. We assert that every homomorphism f_1 from $\pi_1(\Gamma)$ into \mathbb{Z} is trivial. Recalling that \mathcal{E} is generated by all the commutators $aba^{-1}b^{-1}$ with a and b in $\pi_1(\Gamma)$, we obviously have that $f_1(aba^{-1}b^{-1}) = 0$ because \mathbb{Z} is abelian; so \mathcal{E} is contained in the kernel of f_1 . We may then define a homomorphism f_2 from $H_1(\Gamma, \mathbb{Z})$ into \mathbb{Z} by the formula $f_2([a\mathcal{E}]) = f_1(a)$, for any element $[a\mathcal{E}]$ of $H_1(\Gamma, \mathbb{Z})$. The homomorphism f_2 is well defined because $f_1(ab) = f_1(a)$ for each b in \mathcal{E} , and f_2 is trivial because $H^1(\Gamma, \mathbb{Z})$ vanishes. Moreover, supposing f_1 is non-trivial, there exists a_0 in $\pi_1(\Gamma)$ such that $f_1(a_0) \neq 0$, so $a_0 \notin \mathcal{E}$ and $f_2([a_0\mathcal{E}]) \neq 0$. We have a contradiction. Whence, we can conclude that every homomorphism from $\pi_1(\Gamma)$ into \mathbb{Z} is trivial whenever the cohomology group $H^1(\Gamma, \mathbb{Z})$ vanishes.

Finally, suppose there exists a non-trivial homomorphism f_3 from $\pi_1(\Gamma)$ into the free group \mathcal{G} , then, the image $f_3(\pi_1(\Gamma))$ is a non-trivial free subgroup of \mathcal{G} , see for example the Nielsen–Schreier theorem [7, p. 96]. Let b_1 be any generator of $f_3(\pi_1(\Gamma))$, different from the identity in \mathcal{G} . We can build a homeomorphism f_4 from \mathcal{G} into \mathbb{Z} defined by the following condition: given any word w in \mathcal{G} , the integer $f_4(w)$ is equal to the sum of all the exponents of b_1 in w. Obviously, if the word w contains no letter b_1 , then $f_4(w) = 0$. Notice that f_4 is a homeomorphism, so $f_4 \circ f_3$ is a non-trivial homeomorphism from $\pi_1(\Gamma)$ into \mathbb{Z} as well, because $f_4(b_1) = 1$ and b_1 is in $f_3(\pi_1(\Gamma))$. We have a contradiction. Therefore, we may conclude that every homomorphism from $\pi_1(\Gamma)$ into \mathcal{G} is trivial whenever the group $H^1(\Gamma, \mathbb{Z})$ vanishes.

Coming back to our original proof, we already have a pair of continuous functions $\mu \colon \mathbb{C} \to D_3$ and $Q|_{\Gamma} \colon \Gamma \to D_3$, notice that $Q(\Gamma) \subset D_3$ because $Q(\Gamma)$ and $\Lambda_Q \cup \{0\}$ are disjoint. We obviously have that the induced homomorphism $\pi^*\mu \colon \pi_1(\mathbb{C}) \to \pi_1(D_3)$

is trivial; and moreover, $\pi^* Q|_{\Gamma}$ defined from $\pi_1(\Gamma)$ into $\pi_1(D_3)$ is trivial as well by the analysis above and because $\pi_1(D_3)$ is a finitely generated free group. Hence, the composition $\pi^*\mu(\pi^*h)$ is identically equal to $\pi^*Q|_{\Gamma}$ for every homomorphism $\pi^*h: \pi(\Gamma) \to \pi(D_3)$. The lifting theorem implies the existence of a continuous function *h* from Γ into \mathbb{C} such that $\mu \circ h(z) = Q(z)$ for any $z \in \Gamma$, see [1, p. 143] or [12, p. 76]. Finally, proceeding as in the proof of Proposition 1.4 (1), we have that there exists an (n + 1)-dimensional singular chain Δ_s in *M* whose boundary $\partial \Delta_s$ is equal to $\sum_k m_k(h(f_k), f_k)$. Considering now the projection $\rho_2(x, z) = z$ defined from *M* into \mathbb{C}^n , we automatically have that the boundary $\partial \rho_2(\Delta_s)$ is equal to Γ_s .

3 Final Results

Recalling the hypotheses of Proposition 1.4, it is very easy to see that the logarithm $\ln Q(z)$ is well defined on Γ whenever the origin is contained in the unbounded connected component of $\mathbb{C} \setminus Q(\Gamma)$. Amazingly, this seems to be a very strong condition.

Proposition 3.1 Let H_Q be the zero locus of a non-constant holomorphic polynomial Q(z) in \mathbb{C}^n , for $n \ge 2$. Suppose that the origin is not contained in the finite set Λ_Q defined in Proposition 1.3. Given an n-dimensional singular cycle Γ_s represented by the set Γ in $\mathbb{C}^n \setminus H_Q$, we have that Γ_s is homologous to zero whenever the origin is in the unbounded connected component of $\mathbb{C} \setminus Q(\Gamma)$.

Proof The given hypotheses allow us to build a smooth injective function g defined from the real line into $\mathbb{C} \setminus (Q(\Gamma) \cup \Lambda_Q)$ such that g(1) = 0 and the limit of |g(t)| is equal to infinity when $t \to +\infty$. Now fix the infinite interval $R_0 = [1, +\infty)$ of the real line and define the arc Υ to be the image $g(R_0)$. Proposition 1.3 automatically implies that the fibres of Q(z) induce a locally trivial fibre bundle of $Q^{-1}(\Upsilon)$ with base on Υ . Therefore, since the arc Υ is obviously contractible and $H_Q = Q^{-1}(0)$, we may find a diffeomorphism F defined from $R_0 \times H_Q$ onto $Q^{-1}(\Upsilon)$ such that $Q \circ F(t, x) = g(t)$. We have the following commutative diagram, where $\rho(t, x) = t$,

$$\begin{array}{cccc} R_0 \times H_Q & \stackrel{F}{\longrightarrow} & Q^{-1}(\Upsilon) \\ \rho & & & & \downarrow Q \\ R_0 & \stackrel{g}{\longrightarrow} & \Upsilon. \end{array}$$

Define $\mathbb{C}^n \cup \{\infty\}$ to be the one point compactification of \mathbb{C}^n ; obviously, we have that $\mathbb{C}^n \cup \{\infty\}$ is diffeomorphic to the sphere S^{2n} . We assert that the one point compactification $Q^{-1}(\Upsilon) \cup \{\infty\}$ is contractible, analysing it as a closed subset of $\mathbb{C}^n \cup \{\infty\}$. Consider the inverse of *F* as a pair of smooth functions (f_1, f_2) defined from $Q^{-1}(\Upsilon)$ onto $R_0 \times H_Q$. We have for example that $f_1(z)$ is equal to $g^{-1} \circ Q(z)$. We may construct the homotopy,

$$G(z,s) = \begin{cases} \infty & \text{if } z = \infty \text{ or } s = 0, \\ F(f_1(z)/s, f_2(z)) & \text{otherwise.} \end{cases}.$$

It is easy to see that G(z, s) is a continuous function for all $0 \le s \le 1$ and z in $Q^{-1}(\Upsilon) \cup \{\infty\}$. Moreover, G(z, 1) = z is the identity and $G(z, 0) = \infty$ is a constant function. Hence, $Q^{-1}(\Upsilon) \cup \{\infty\}$ is contractible, and so the duality theorem of Alexander yields,

$$H_k(\mathbb{C}^n \setminus Q^{-1}(\Upsilon)) = \check{H}^{2n-k-1}(Q^{-1}(\Upsilon) \cup \{\infty\}) = 0,$$

for $1 \le k \le 2n-2$. Thus, Γ_s is homologically trivial in $\mathbb{C}^n \setminus Q^{-1}(\Upsilon)$. The result then follows by recalling that H_Q is contained in $Q^{-1}(\Upsilon)$.

Finally, given the right conditions, we may even *push* the points of Λ_Q to the unbounded connected component of $\mathbb{C} \setminus Q(\Gamma)$. Recall Proposition 1.3 and Definition 2.1.

Proposition 3.2 Let H_Q be the zero locus of a non-constant holomorphic polynomial Q in \mathbb{C}^n , and Γ_s be an n-dimensional singular cycle represented by a smooth manifold Γ in $\mathbb{C}^n \setminus H_Q$. If the logarithm $\ln Q(z)$ is well defined on Γ and every point of $\Lambda_Q \setminus \{0\}$ can be joined by a smooth arc $\Upsilon_k \subset \mathbb{C}^*$ to the point at infinity in such a way that every set $Q^{-1}(\Upsilon_k) \cap \Gamma$ is connected and every two different arcs Υ_j and Υ_k are disjoint. Then Γ_s is homologous to zero in the complement of H_Q .

Proof Recall that $H_n(\mathbb{C}^n, \mathbb{Z})$ vanishes, so there exists an (n+1)-dimensional singular chain Δ_s in \mathbb{C}^n whose boundary $\partial \Delta_s$ is equal to Γ_s . We may even choose Δ_s in such a way that it is represented by a compact smooth manifold Δ whose boundary (as a manifold) is equal to Γ as well. Notice that we shall have finished if Δ is contained in $\mathbb{C}^n \setminus H_O$, so we are supposing from now on that Q(z) has indeed a zero inside Δ .

Notice that each arc Υ_k is a closed subset of the complex plane, and that $Q^{-1}(\Upsilon_k) \cap \Gamma$ is connected, so we may define the set E_k to be the compact connected component of $Q^{-1}(\Upsilon_k) \cap \Delta$ which contains $Q^{-1}(\Upsilon_k) \cap \Gamma$. We already know that there exists a continuous function h_1 from Γ into \mathbb{C} with $\exp(h_1(z)) = Q(z)$. Hence, we can extend h_1 to a continuous function h_2 defined from the finite union $\bigcup_k E_k \cup \Gamma$ into \mathbb{C} such that $\exp(h_2(z)) = Q(z)$, because every intersection $E_k \cap \Gamma$ is connected, the origin is not contained in any Υ_k , and every two different arcs Υ_j and Υ_k are disjoint. We may even go a step further. We can find an open neighbourhood V of the union $\bigcup_k E_k \cup \Gamma$, and a continuous function h_3 defined from V into \mathbb{C} such that V is disjoint from H_Q and $\exp(h_3(z)) = Q(z)$ for every point $z \in V$.

On the other hand, since Δ is a smooth manifold with boundary, every compact $E_k \subset \Delta$ has a small enough open neighbourhood W_k such that the closure $\overline{W_k}$ is contained in V, every two different sets $\overline{W_j}$ and $\overline{W_k}$ are disjoint, the set E_k is equal to $Q^{-1}(\Upsilon_k) \cap \Delta \cap \overline{W_k}$, and the smooth boundary ∂W_k meets Δ transversally. That is, the compact sets $\Delta \cap \overline{W_k}$ and $\Delta \setminus W_k$ are all smooth manifolds with piecewise smooth boundary. Define T to be the boundary of the smooth manifold $\Delta \setminus (\bigcup_k W_k)$.

Each manifold $\Delta \cap \overline{W_k}$ is contained in $\mathbb{C}^n \setminus H_Q$ and Γ is the boundary of Δ , so we can find an *n*-dimensional singular cycle T_s which is represented by T and is homologous to Γ_s in $\mathbb{C}^n \setminus H_Q$. Besides, every point of T is contained in Γ or in some boundary $\partial W_k \subset V$. Whence, we have that T is completely contained in V, and so the logarithm $\ln Q(z)$ is well defined on *T*. Finally, if there exists a point *x* in $Q^{-1}(\Upsilon_k) \cap T$, then *x* must be contained in $Q^{-1}(\Upsilon_k) \cap \Delta \cap \overline{W_k}$. That is, the point *x* is contained in $E_k \subset W_k$. However, it is easy to see that *T* and W_k are disjoint. We have a contradiction. Hence, the set *T* does not meet any inverse image $Q^{-1}(\Upsilon_k)$. We can rewrite the previous statement as follows: every point of $\Lambda_Q \setminus \{0\}$ is the end point of an arc Υ_k which does not meet Q(T) and goes to infinity, so $\Lambda_Q \setminus \{0\}$ is contained in the unbounded connected component of $\mathbb{C} \setminus Q(T)$. We only need to apply Proposition 1.4 to deduce that Γ_s and T_s are both homologous to zero in the complement of H_Q .

Acknowledgement During the elaboration of this paper the author had the benefit of many insightful comments by Jesus Gonzalez and Elias Micha.

References

- [1] G. E. Bredon, *Topology and Geometry*. Graduate Texts in Mathematics 139, Springer-Verlag, New York, 1993.
- [2] S. A. Broughton, On the topology of polynomial hypersurfaces. In: Singularities, Proc. Sympos. Pure Math. 40, Part I, American Mathematical Society, Providence, RI, 1983, pp. 167–178.
- [3] A. Dimca, Singularities and Topology of Hypersurfaces. Springer-Verlag, New York, 1992.
- [4] C. T. J. Dodson and P. E. Parker, A user's guide to algebraic topology. Mathematics and its Applications 387, Kluwer Academic Publishers, Dordrecht, 1997.
- [5] P. A. Griffiths, On the periods of certain rational integrals. I. Ann. of Math. (2) 90(1969), pp. 460–495.
- [6] _____, On the periods of certain rational integrals. II. Ann. of Math. (2) 90(1969), pp. 496–541.
- [7] M. Hall, Jr., *The Theory of Groups*. Chelsea Publishing, New York, 1976.
- [8] Hà Huy Vui and Lê Dũng Tráng, Sur la topologie des polynômes complexes. Acta Math. Vietnam. 9(1984), pp. 21–32.
- [9] S. Yu. Nemirovskiĭ, *Topology of hypersurface complements in Cⁿ and rationally convex hulls*. Tr. Mat. Inst. Steklova 235(2001), pp. 169–180. English translation in Proc. Steklov Inst. Math. 235 (2001), pp. 162–172.
- [10] H. Poincaré, Sur les résidues des intégrales doubles. Acta Math. 9(1887), pp. 321-380.
- [11] E. G. Sklyarenko, Homology and cohomology theories of general spaces. General topology, II, Encyclopaedia Math. Sci. 50, Springer, Berlin, 1996, pp. 119–256.
- [12] E. H. Spanier, *Algebraic topology*, McGraw-Hill, New York, 1966.
- J. L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36(1976), pp. 295–312.

Departamento de Matemáticas Cinvestav Apartado Postal 14-740 México DF, 07000 México e-mail: eszeron@math.cinvestav.mx

480