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Abstract

We apply the Schwarz lemma to find general formulas for the third coefficient of Carathéodory functions
dependent on a parameter in the closed unit polydisk. Next we find sharp estimates of the Hankel
determinant H2,2 and Zalcman functional J2,3 over the class CV of analytic functions f normalised such
that Re{(1 − z2) f ′(z)} > 0 for z ∈ D := {z ∈ C : |z| < 1}, that is, the subclass of the class of functions convex
in the direction of the imaginary axis.
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1. Introduction

Let D := {z ∈ C : |z| < 1}, D := {z ∈ C : |z| ≤ 1} and T := ∂D. Let H be the class of all
analytic functions in D andA the subclass of functions f normalised by f (0) := 0 and
f ′(0) := 1, that is, of the form

f (z) =

∞∑
n=1

anzn, a1 := 1, z ∈ D. (1.1)

Given n, q ∈ N,

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
denotes the Hankel determinant of a function f ∈ A of the form (1.1). The problem of
finding the upper bound of the Hankel determinant over selected compact subclasses
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of A has been intensively studied. Many authors have examined the second Hankel
determinant H2,2( f ) = a2a4 − a2

3 (see, for example, [2, 4, 5, 10, 11, 17, 21]).
We investigate H2,2( f ) and also the functional J2,3( f ) := a2a3 − a4, a specific case of

the generalised Zalcman functional Jn,m( f ) := anam − an+m−1 for n,m ∈ N \ {1}, which
was investigated by Ma [20] (see also [23] for other results). Many authors (see, for
example, [1, 2, 4, 5, 11, 14]) have computed upper bounds for the functional J2,3 over
various subclasses ofA.

By CV, we denote a subclass ofA of functions f such that

Re{(1 − z2) f ′(z)} > 0, z ∈ D. (1.2)

The class CV plays an important role in geometric function theory. Each f ∈ CV
maps D univalently onto a domain f (D) convex in the direction of the imaginary
axis, that is, for w1,w2 ∈ f (D) such that Re w1 = Re w2 the line segment [w1,w2] lies
in f (D) with the additional property that there exist two points ω1, ω2 ∈ ∂ f (D) for
which {ω1 + it : t > 0} ⊂ C \ f (D) and {ω2 − it : t > 0} ⊂ C \ f (D) (see, for example,
[7, page 199]). In fact, the classCV is a subclass of the classCV(i) of functions convex
in the direction of the imaginary axis introduced by Robertson [24] in 1936. Robertson
gave an analytic condition for the class CV(i) under some regularity of functions in
CV(i) on the unit circle. The proof of Robertson’s conjecture for the whole class CV(i)
was finally completed by Hengartner and Schober [9] by dividing the class CV(i) into
three subclasses with the class CV as one of them. A supplement to their proof was
given by Royster and Ziegler [25]. For further information on convexity in the direction
of the imaginary axis, see, for example, [7, pages 193–206]. The condition (1.2) has
been generalised by replacing the polynomial 1 − z2 by quadratic polynomials [15, 16]
and by any polynomials having their roots in C \ D [12, 13].

In this paper we derive sharp estimates of H2,2 and J2,3 over the class CV:

max
f∈CV
|H2,2( f )| = 1

and
max
f∈CV
|J2,3( f )| =

1
486

(233 + 7
√

7).

Since the class CV has a representation through the Carathéodory class P, that is,
the class of functions p ∈ H of the form

p(z) = 1 +

∞∑
n=1

cnzn, z ∈ D, (1.3)

having a positive real part in D, the coefficients of functions in CV can be expressed in
terms of the coefficients of functions in P. Therefore, to get the upper bounds of H2,2
and J2,3, our calculations are based on parametric formulas for the second and third
coefficients in P. However, the class CV is not rotation invariant, that is, if f ∈ CV,
then fθ < CV for each θ ∈ (0, 2π), where fθ(z) := e−iθ f (eiθz) for z ∈ D. Results in the
cited papers mostly concern rotation-invariant subclasses ofA and use the formula for

https://doi.org/10.1017/S0004972718001429 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001429
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c3 due to Libera and Zlotkiewicz [18, 19] with the restriction that c1 ≥ 0. However,
this cannot work for the whole class CV. So, to solve the problems of this paper,
we first find a general formula for c3. We present two different methods of proof. The
second one is constructive and gives some extremal functions. It can be applied to other
coefficients of functions in the Carathéodory class. We believe that this new result will
be useful for other coefficient problems for classes which are not rotation invariant.

2. Parametric formulas for coefficients of Carathéodory functions

The following lemma is due to Carathéodory (see, for example, [8]).

Lemma 2.1. The power series for a function p given by (1.3) converges in D to a
function in P if and only if the Toeplitz determinants

Dn :=

∣∣∣∣∣∣∣∣∣∣∣∣
2 c1 c2 · · · cn

c1 2 c1 · · · cn−1
...

...
...

...
...

cn cn−1 cn−2 · · · 2

∣∣∣∣∣∣∣∣∣∣∣∣ , n ∈ N,

are nonnegative. They are strictly positive except for

p(z) =

m∑
k=1

ρkL(eitk z), z ∈ D,

where m ∈ N,

L(z) :=
1 + z
1 − z

, z ∈ D,

ρk > 0,
∑m

k=1 ρk = 1, tk ∈ [0, 2π) and tk , t j for k , j; in this case Dn > 0 for n < m − 1
and Dn = 0 for n ≥ m.

In particular, D1 ≥ 0 yields the well-known inequality (2.1) due to Carathéodory [3]
(see, for example, [6, page 41]). In turn, D2 ≥ 0 leads to the inequality (2.2) (see, for
example, [22, page 166]).

Lemma 2.2. If p ∈ P is of the form (1.3), then

|c1| ≤ 2 (2.1)

and
|2c2 − c2

1| ≤ 4 − |c1|
2. (2.2)

Now, using D3 ≥ 0, we prove the inequality for the third coefficient of functions
in P. When c1 ≥ 0, this was done by Libera and Zlotkiewicz [18, 19]. The formula
due to Libera and Zlotkiewicz is useful in applications when the class of analytic
functions characterised in terms of the class P and the coefficient functional are
rotation invariant. Then by suitable rotation it can be assumed that the coefficient c1 is
real. However, when the class or the coefficient functional are not rotation invariant we
need to use the general formulas for the third as well as for further coefficients of P.
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Lemma 2.3. If p ∈ P is of the form (1.3), then

|(4 − |c1|
2)(2c3 − c1c2) − (c2

1 − 2c2)(c1c2 − 2c1)| ≤ (4 − |c1|
2)2 − |2c2 − c2

1|
2. (2.3)

Proof. By Lemma 2.1, for p ∈ P of the form (1.3),

D3 =

∣∣∣∣∣∣∣∣∣∣∣
2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

∣∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣
2 c1 c2
c1 2 c1
c2 c1 2

∣∣∣∣∣∣∣∣ − c1

∣∣∣∣∣∣∣∣
c1 c1 c2
c2 2 c1
c3 c1 2

∣∣∣∣∣∣∣∣ + c2

∣∣∣∣∣∣∣∣
c1 2 c2
c2 c1 c1
c3 c2 2

∣∣∣∣∣∣∣∣ − c3

∣∣∣∣∣∣∣∣
c1 2 c1
c2 c1 2
c3 c2 c1

∣∣∣∣∣∣∣∣
= 16 + |c1|

4 − 12|c1|
2 − 8|c2|

2 + |c2|
4 − 2|c1|

2|c2|
2 − 4|c3|

2 + |c1|
2|c3|

2 + 4c2
1c2

+ 4c2
1c2 + 4c1c2c3 + 4c1c2c3 − c3

1c3 − c1
3c3 − c1c2

2c3 − c1c2
2c3 ≥ 0. (2.4)

Since a straightforward algebraic computation shows that

[(4 − |c1|
2)2 − |2c2 − c2

1|
2]2 − |(4 − |c1|

2)(2c3 − c1c2) − (c2
1 − 2c2)(c1c2 − 2c1)|2

= 4(4 − |c1|
2)D3,

the inequality (2.3) follows from (2.4). �

Let B0 be the class of all self-maps of D of the form

ω(z) =

∞∑
n=1

bnzn, z ∈ D, (2.5)

that is, the class of so-called Schwarz functions. Given α ∈ D, let

ψα(z) :=
z − α
1 − αz

, z ∈ D.

It is well known that ψα is a conformal automorphism of D, ψα(D) = D, ψα(T) = T and
ψ−1
α = ψ−α. Moreover, for n ∈ N,

ψ(n)
α (α) =

n!αn−1

(1 − |α|2)n . (2.6)

It is easy to check that the inequalities (2.1)–(2.3) can be written in the forms (2.7)–
(2.9), respectively, that is, in a form dependent on a parameter lying in the polydisk
D

k
for k = 1, 2, 3. As remarked earlier, formulas (2.7) and (2.8) are known. Now we

will prove the formula (2.9) in a new way. This method based on the Schwarz lemma
readily allows us to find formulas for each coefficient of Carathéodory functions.

Lemma 2.4. If p ∈ P is of the form (1.3), then

c1 = 2ζ1, (2.7)
c2 = 2ζ2

1 + 2(1 − |ζ1|
2)ζ2 (2.8)
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and

c3 = 2ζ3
1 + 4(1 − |ζ1|

2)ζ1ζ2 − 2(1 − |ζ1|
2)ζ1ζ

2
2 + 2(1 − |ζ1|

2)(1 − |ζ2|
2)ζ3 (2.9)

for some ζi ∈ D and i ∈ {1, 2, 3}.
For ζ1 ∈ T, there is a unique function p ∈ P with c1 as in (2.7), namely,

p(z) =
1 + ζ1z
1 − ζ1z

, z ∈ D. (2.10)

For ζ1 ∈ D and ζ2 ∈ T, there is a unique function p = L ◦ ω ∈ P with c1 and c2 as in
(2.7)–(2.8), where

ω(z) = zψ−ζ1 (ζ2z), z ∈ D, (2.11)

that is,

p(z) =
1 + (ζ1ζ2 + ζ1)z + ζ2z2

1 + (ζ1ζ2 − ζ1)z − ζ2z2
, z ∈ D. (2.12)

For ζ1, ζ2 ∈ D and ζ3 ∈ T, there is a unique function p = L ◦ ω ∈ P with c1, c2 and c3

as in (2.7)–(2.9), where

ω(z) = zψ−ζ1 (zψ−ζ2 (ζ3z)), z ∈ D, (2.13)

that is,

p(z) =
1 + (ζ2ζ3 + ζ1ζ2 + ζ1)z + (ζ1ζ3 + ζ1ζ2ζ3 + ζ2)z2 + ζ3z3

1 + (ζ2ζ3 + ζ1ζ2 − ζ1)z + (ζ1ζ3 − ζ1ζ2ζ3 − ζ2)z2 − ζ3z3
, z ∈ D. (2.14)

Proof. Let p ∈ P be of the form (1.3). Then there exists ω ∈ B0 of the form (2.5) such
that

(1 − ω(z))p(z) = 1 + ω(z), z ∈ D. (2.15)

Putting the series (1.3) and (2.5) into (2.15), by equating coefficients,

c1 = 2b1, c2 = 2b2 + 2b2
1, c3 = 2b3 + 4b1b2 + 2b3

1. (2.16)

Part 1. By the Schwarz lemma (see, for example, [7, Vol. I, pages 84–85]),

|b1| = |ω
′(0)| ≤ 1, (2.17)

that is,
b1 = ζ1 (2.18)

for some ζ1 ∈ D. By (2.16), we get the formula (2.7).
Moreover, equality in (2.17), that is, the case ζ1 ∈ T in (2.18), holds if and only if

ω(z) = ζ1z, z ∈ D

(see [7, Vol. I, page 85]). From (2.15), it follows that then p can only be as in (2.10).
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Part 2. By Part 1, we can assume that b1 ∈ D. Define

ϕ1(z) :=
ω(z)

z
, z ∈ D \ {0}, ϕ1(0) := b1. (2.19)

By the maximum principle for analytic functions, the function ϕ1 is a self-map of D,
so a function

ω1(z) := ψb1 (ϕ1(z)) = b(1)
1 z + b(1)

2 z2 + · · · , z ∈ D, (2.20)

is a Schwarz function. By the Schwarz lemma,

|b(1)
1 | = |ω

′
1(0)| =

|b2|

1 − |b1|
2 ≤ 1, (2.21)

that is,
b(1)

1 = ζ2 (2.22)

for some ζ2 ∈ D. Taking into account (2.18) and (2.21),

b2 = (1 − |ζ1|
2)ζ2. (2.23)

By (2.18), the formula (2.8) follows from (2.16).
Moreover, equality in (2.21), that is, the case ζ2 ∈ T in (2.23), holds if and only if

ω1(z) = ζ2z, z ∈ D. Consequently, by (2.19), (2.20) and (2.18),

ω(z) = zϕ1(z) = zψ−b1 (ω1(z)) = zψ−ζ1 (ζ2z), z ∈ D,

that is, ω is as in (2.11). From (2.15), it follows that then p can only be as in (2.12).

Part 3. By Parts 1 and 2, we can assume that b1, b
(1)
1 ∈ D. Define

ϕ2(z) :=
ω1(z)

z
, z ∈ D \ {0}, ϕ2(0) := b(1)

1 . (2.24)

Since the function ϕ2 is a self-map of D, a function

ω2(z) := ψb(1)
1

(ϕ2(z)) = b(2)
1 z + b(2)

2 z2 + · · · , z ∈ D, (2.25)

is a Schwarz function. By the Schwarz lemma,

|b(2)
1 | = |ω

′
2(0)| =

|b(1)
2 |

1 − |b(1)
1 |

2
≤ 1, (2.26)

that is,
b(2)

1 = ζ3 (2.27)

for some ζ3 ∈ D. Taking into account (2.26) and (2.22),

b(1)
2 = (1 − |ζ2|

2)ζ3. (2.28)
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On the other hand, from (2.20), by applying (2.6), (2.18) and (2.23),

b(1)
2 =

1
2
ω′′1 (0) =

b1b2
2

(1 − |b1|
2)2 +

b3

1 − |b1|
2 = ζ1ζ

2
2 +

b3

1 − |ζ1|
2 .

This together with (2.28) yields

b3 = −(1 − |ζ1|
2)ζ1ζ

2
2 + (1 − |ζ1|

2)(1 − |ζ2|
2)ζ3.

By (2.18), the formula (2.9) follows from (2.16). Moreover, equality in (2.26), that
is, the case ζ3 ∈ T in (2.27), holds if and only if ω2(z) = ζ3z, z ∈ D. Thus, by (2.24),
(2.25) and (2.22),

ω1(z) = zϕ2(z) = zψ
−b(1)

1
(ω2(z)) = zψ−ζ2 (ζ3z), z ∈ D.

Now (2.20) and (2.19) with (2.18) yield

ω(z) = zϕ1(z) = zψ−b1 (ω1(z)) = zψ−ζ1 (zψ−ζ2 (ζ3z), z ∈ D,

that is, ω is as in (2.13). From (2.15), it follows that then p can only be as in (2.14). �

Remark 2.5. In a similar way we can get formulas for the coefficients cn for n ≥ 4.

3. Applications

Having the formulas (2.7)–(2.9), we now find the sharp estimate of the Hankel
determinant H2,2 over the class CV.

Theorem 3.1. We have
max
f∈CV
|H2,2( f )| = 1 (3.1)

with the extremal function
f (z) =

z
1 − z2 , z ∈ D. (3.2)

Proof. Let f ∈ CV be of the form (1.1). By (1.2),

(1 − z2) f ′(z) = p(z), z ∈ D, (3.3)

for some function p ∈ P of the form (1.3). By putting the series (1.1) and (1.3) into
(3.3) and equating coefficients,

a2 = 1
2 c1, a3 = 1

3 (c2 + 1), a4 = 1
4 (c1 + c3). (3.4)

Hence, by using the equalities (2.7)–(2.9),

a2a4 − a2
3 = 1

72 (9c1c3 + 9c2
1 − 8c2

2 − 16c2 − 8)

= 1
18 [ζ4

1 + ζ2
1 − 2 + 2(ζ2

1 − 4)(1 − |ζ1|
2)ζ2

− (|ζ1|
2 + 8)(1 − |ζ1|

2)ζ2
2 + 9ζ1(1 − |ζ1|

2)(1 − |ζ2|
2)ζ3].
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Setting x := |ζ1| ∈ [0, 1], y := |ζ2| ∈ [0, 1] and taking into account that |ζ3| ≤ 1,

|a2a4 − a2
3| ≤

1
18 [x4 + x2 + 2 + 2(x2 + 4)(1 − x2)y

+ (x2 + 8)(1 − x2)y2 + 9x(1 − x2)(1 − y2)]

= 1
18 [x4 + x2 + 2 + 9x(1 − x2) + 2(x2 + 4)(1 − x2)y

+ (1 − x)(8 − x)(1 − x2)y2] =: 1
18 F(x, y), x, y ∈ [0, 1]. (3.5)

For x = 1,
|a2a4 − a2

3| ≤
2
9 . (3.6)

Now let x ∈ [0, 1). Then

∂F
∂y

= 2(x2 + 4)(1 − x2) + 2(1 − x)(8 − x)(1 − x2)y = 0

only for

y = −
x2 + 4

(1 − x)(8 − x)
= y0.

Since y0 < 0, for each x ∈ [0, 1) the function [0, 1] 3 y 7→ F(·, y) is strictly increasing.
Therefore, by (3.5),

|a2a4 − a2
3| ≤

1
18 F(x, 1) = 1

18 (−2x4 − 12x2 + 18) ≤ 1, x ∈ [0, 1).

This together with (3.6) shows that

|H2,2( f )| ≤ 1. (3.7)

For the function (3.2), which is in CV, we have a2 = a4 = 0 and a3 = 1. This gives
the equality in (3.7) and proves (3.1). �

Now we find the sharp estimate of the Zalcman functional J2,3 over the class CV.

Theorem 3.2. We have

max
f∈CV
|J2,3( f )| = 1

486 (233 + 7
√

7) ≈ 0.51753 (3.8)

with the extremal function

f (z) =

∫ z

0

p(t)
1 − t2 dt, z ∈ D, (3.9)

where p is of the form (2.14) with

ζ1 =
4 −
√

7
6

i, ζ2 =
−5 + 2

√
7

3
, ζ3 = i. (3.10)
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Proof. For f ∈ CV, by (3.4),

a4 − a2a3 = 1
12 (3c3 + 3c1 − 2c1c2 − 2c1)

= 1
6 [−ζ3

1 + ζ1 + 2ζ1(1 − |ζ1|
2)ζ2 − 3ζ1(1 − |ζ1|

2)ζ2
2

+ 3(1 − |ζ1|
2)(1 − |ζ2|

2)ζ3]. (3.11)

Setting x := |ζ1| ∈ [0, 1], y := |ζ2| ∈ [0, 1] and taking into account that |ζ3| ≤ 1,

|a4 − a2a3| ≤
1
6 [x3 − 3x2 + x + 3 + 2x(1 − x2)y − 3(1 − x)2(1 + x)y2] =: 1

6 F(x, y).
(3.12)

For x = 0,
F(0, y) = 3(1 − y2) ≤ 3, y ∈ [0, 1]. (3.13)

For x = 1,
F(1, y) = 2, y ∈ [0, 1]. (3.14)

Let x ∈ (0, 1). Note that 3(1 − x)2(1 + x) > 0 and ∂F/∂y = 0 only for

y =
x

3(1 − x)
=: y0.

For y0 ≥ 1, that is, for x ∈ [3/4, 1),

F(x, y) ≤ F(x, 1) = 6x − 4x3 ≤ F
( 3

4 , 1
)

= 45
16 = 2.8125 (3.15)

and, for y0 ∈ [0, 1), that is, for x ∈ (0, 3/4),

F(x, y) ≤ F(x, y0) = 1
3 (4x3 − 8x2 + 3x + 9) =: 1

3ϕ(x). (3.16)

Since ϕ attains its maximum value

ϕ
(4 −

√
7

6

)
=

1
81

(233 + 7
√

7) ≈ 3.10519

at x0 = (4 −
√

7)/6 ≈ 0.2257, taking into account (3.12)–(3.16) yields

|J2,3( f )| ≤ 1
486 (233 + 7

√
7). (3.17)

By Lemma 2.4, a function p of the form (2.14) with ζ1, ζ2 and ζ3 as in (3.10) belongs
to P. Thus, the corresponding function f given by (3.9) belongs to CV and, by (3.11),

a4 − a2a3 =
i
6

[x3
0 + x0 + 2x0(1 − x2

0)y0 + 3x0(1 − x2
0)y2

0 + 3(1 − x2
0)(1 − y2

0)]

=
i
6

[
x3

0 + x0 + 2x0(1 − x2
0)

x0

3(1 − x0)
+ 3x0(1 − x2

0)
x2

0

9(1 − x0)2

+ 3(1 − x2
0)
(
1 −

x2
0

9(1 − x0)2

)]
=

1
18

(4x3
0 − 8x2

0 + 3x0 + 9) =
1
81

(233 + 7
√

7).

This gives equality in (3.17) and proves (3.8). �
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