Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-19T13:14:27.065Z Has data issue: false hasContentIssue false

Raman and Secondary Ion Mass Spectroscopy of Epitaxial CdTe/InSb Interfaces Grown by Low-Energy Bias Sputtering

Published online by Cambridge University Press:  25 February 2011

Suhit R. Das
Affiliation:
Institute For Microstructural Sciences, National Research Council, Ottawa, Ontario, CanadaK1A 0R6
David J. Lockwood
Affiliation:
Institute For Microstructural Sciences, National Research Council, Ottawa, Ontario, CanadaK1A 0R6
Stephen J. Rolfe
Affiliation:
Institute For Microstructural Sciences, National Research Council, Ottawa, Ontario, CanadaK1A 0R6
John P. McCaffrey
Affiliation:
Institute For Microstructural Sciences, National Research Council, Ottawa, Ontario, CanadaK1A 0R6
John G. Cook
Affiliation:
Institute For Microstructural Sciences, National Research Council, Ottawa, Ontario, CanadaK1A 0R6
Get access

Abstract

Heteroepitaxial (100)CdTe || (100)InSb structures have been fabricated by growing CdTe epilayers, at growth temperatures below 200°C, on single crystal InSb substrates by low-energy bias sputtering. Controlled low-energy ion bombardment at the substrate was employed to clean the growth surface in-situ just prior to film deposition and to modify the growth kinetics and enhance adatom mobility during deposition. Raman spectroscopy of the interface revealed no evidence of In2Te3 and secondary ion mass spectroscopy showed the interface to be chemically abrupt.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zheng, Y-D., Chang, Y.H., McCombe, B.D., Farrow, R.F.C., Temofonte, T., and Shirland, F., Appl. Phys. Lett. 49, 1187 (1986).Google Scholar
2. Alikacem, M., Leadbeater, M.L., Maude, D.K., Davies, M., Eaves, L., Heath, M., Dmowski, L., Portal, J.C., Ashenford, D., and Lunn, B., Surf. Sci. 229, 428 (1990).CrossRefGoogle Scholar
3. Golding, T.D., Greene, S.K., Pepper, M., Dinan, J.H., Cullis, A.G., Williams, G.M., and Whitehouse, C.R., Semicond. Sci. Technol. 5, S311, (1990).Google Scholar
4. Farrow, R.F.C., Wood, S., Greggi, J.C. Jr., Takei, W.J., Shirland, F.A., and Furneaux, J., J. Vac. Sci. Technol. B 2, 681 (1985).Google Scholar
5. Chew, N.G., Cullis, A.G., and Williams, G.M., Appl. Phys. Lett. 45, 1090 (1984).Google Scholar
6. Williams, G.M., Whitehouse, C.R., Chew, N.G., Blackmore, G.W., and Cullis, A.G., J. Vac. Sci. Technol. B 3, 704 (1985).Google Scholar
7. Glenn, J.L. Jr., Sungki, O., Kolodziejski, L.A., Gunshor, R.L., Kobayashi, M., Li, D., Otsuka, N., Haggerott, M., Pelekanos, N., and Nurmikko, A.V., J. Vac. Sci. Technol. B 7, 249 (1989).Google Scholar
8. Zahn, D.R.T., Mackey, K.J., Williams, R.H., Munder, H., Geurts, J., and Richter, W., Appl. Phys. Lett. 50, 742 (1987).CrossRefGoogle Scholar
9. Li, D., Otsuka, N., Qiu, J., Glenn, J. Jr., Kobayashi, M., and Gunshor, R.L., Mat. Res. Soc. Symp. Proc. 161, 127 (1990).Google Scholar
10. Das, S.R., McCaffrey, J.P., Cook, J.G., and Webb, J.B., Semicond. Sci. Technol. 5, S315 (1990).Google Scholar
11. Lockwood, D.J., Dharma-wardana, M.W.C., Baribeau, J.-M., and Houghton, D.C., Phys. Rev. B 35, 2243 (1987).Google Scholar
12. Mackey, K.J., Zahn, D.R.T., Allen, P.M.G., Williams, R.H., Richter, W., and Williams, R.S., J. Vac. Sci. Technol. B 5, 1233 (1987).Google Scholar