A DECOMPOSITION THEOREM FOR m-CONVEX SETS IN R^{d}

MARILYN BREEN

1. Introduction. Let S be a subset of some linear topological space. The set S is said to be m-convex, $m \geqq 2$, if and only if for every m-member subset of S, at least one of the $\binom{m}{2}$ line segments determined by these points lies in S. A point x in S is said to be a point of local convexity of S if and only if there is some neighborhood N of x such that if $y, z \in N \cap S$, then $[y, z] \subseteq S$. If S fails to be locally convex at some point q in S, then q is called a point of local nonconvexity (lnc point) of S.

Several interesting decomposition theorems have been obtained for closed m-convex sets in the plane. Valentine [7] has proved that a closed planar 3 -convex set is expressible as a union of three or fewer convex sets, and Stamey and Marr [4] have obtained conditions under which a closed planar 3 -convex set may be written as a union of two convex sets.

In general, for S a closed, planar m-convex set, if $\operatorname{ker} S \neq \emptyset$, then S is a union of $2(m-1)$ convex sets, and without any restriction on $\operatorname{ker} S, S$ will be a union of $(m-1)^{3} 2^{m-3}$ or fewer convex sets for $m \geqq 3$ (Breen and Kay [2]).

However, little work has been done on the problem of obtaining decomposition theorems for closed m-convex sets in higher dimensions. The purpose of this paper is to obtain conditions under which an analogue of some of the planar results might be proved in R^{d}.

The following familiar terminology will be used. For points x, y in S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. Points x_{1}, \ldots, x_{n} in S are visually independent via S if and only if for $1 \leqq i<j \leqq n$, x_{i} does not see x_{j} via S. Throughout the paper, conv S, aff $S, \operatorname{cl} S$, int S, rel int S, and ker S will be used to denote the convex hull, affine hull, closure, interior, relative interior, and kernel, respectively, of the set S. Also if S is convex, $\operatorname{dim} S$ will denote the dimension of the affine hull of S.
2. The decomposition theorem. We will prove the following result.

Theorem 1. Let $S=\operatorname{cl}\left(\operatorname{int} S\right.$) be an m-convex set in $R^{d}, d=\operatorname{dim} \operatorname{aff} S$, and let Q denote the set of points of local nonconvexity of S, with Q a finite union of parallel convex sets-i.e., $Q=\bigcup_{i=1}^{n} C_{i}$, where C_{i} is convex and aff C_{i} is a

Received October 7, 1975 and in revised form, June 1, 1976.
translate of aff $C_{j}, 1 \leqq i \leqq j \leqq n$. If $p \in \operatorname{ker} S \sim Q$, then S is a union of $\sigma(m)=2(m-1)$ or fewer convex sets.

Proof. Without loss of generality, we assume that $Q=\bigcup_{i=1}^{n} C_{i}$, where each C_{i} is maximal-i.e., no C_{i} is properly contained in a convex subset of Q. (If C_{i} is properly contained in a convex subset $C_{i}{ }^{\prime}$ of Q, replace C_{i} by $C_{i}{ }^{\prime}$. Notice that aff $C_{i}=$ aff $C_{i}{ }^{\prime}$, for otherwise $\operatorname{dim} C_{i}{ }^{\prime}>\operatorname{dim} C_{i}$ and Q could not be represented as a finite union of convex sets parallel to C_{i}.) Since Q is closed, each C_{i} will be closed.

The following series of preliminary lemmas will be important in the proof.
Lemma 1. For each $i, 1 \leqq i \leqq n, \operatorname{dim} C_{i}=d-2$.
Proof. For convenience of notation, let $C_{i}=C$. We will show that the set $\operatorname{aff}(\{p\} \cup C)$ has dimension no greater than $d-1$: Suppose on the contrary that $\operatorname{aff}(\{p\} \cup C)$ has dimension d. Clearly C cannot be d-dimensional, so C must have dimension $d-1$. Let $J=$ aff C, with J_{1} and J_{2} the distinct open halfspaces determined by the hyperplane J. Certainly $p \notin J$ so we may assume that p lies in J_{1}. Consider the set

$$
\operatorname{cone}(p, C) \equiv \cup\{R(p, x): x \in C\}
$$

where $R(p, x)$ denotes the ray emanating from p through x. Since $\operatorname{conv}(\{p\} \cup C) \subseteq S$ and $C \subseteq Q$, there are interior points of the cone in $S \cap J_{2}$, and since $S=\operatorname{cl}\left(\right.$ int S), interior points of the cone lie in (int S) $\cap J_{2}$. However, if U is an open set in (int S) $\cap J_{2}$, then points of C lie interior to $\operatorname{conv}(\{p\} \cup U)$, and these points of C cannot be in Q. We have a contradiction, our assumption is false, and $\operatorname{dim} \operatorname{aff}(\{p\} \cup C) \leqq d-1$.

Now let H be any hyperplane containing aff $(\{p\} \cup C)$, with H_{1} and H_{2} the corresponding open halfspaces, and let M be a convex neighborhood of H disjoint from all the C_{j} sets which do not lie in H. (Clearly such a neighborhood exists since the C_{j} sets are parallel and there are finitely many of them.) Examine $S \cap M \cap H_{1}$: For x, y in $S \cap M \cap H_{1},[p, x] \cup[p, y] \subseteq S \cap M$, no lnc point of S lies in $\operatorname{conv}\{p, x, y\}$, so $[x, y] \subseteq S \cap M \cap H_{1}$ by a lemma of Valentine [6, Corollary 1]. Thus $S \cap M \cap H_{1}$ is convex. Similarly $S \cap M \cap H_{2}$ is convex. Furthermore, since $S=\mathrm{cl}$ (int S), we have

$$
\operatorname{cl}(S \cap M)=\operatorname{cl}\left(S \cap M \cap H_{1}\right) \cup \operatorname{cl}\left(S \cap M \cap H_{2}\right),
$$

so $S^{\prime} \equiv \operatorname{cl}(S \cap M)$ is a union of two convex sets and hence is 3 -convex. It is easy to show that every lnc point of a closed 3 -convex set lies in the kernel of that set, and clearly the set Q^{\prime} of lnc points of S^{\prime} consists of exactly those points of Q which lie in H. Thus Q^{\prime} is a finite union of convex sets which lie in $\operatorname{ker} S^{\prime}$.

Also, since $p \in \operatorname{ker} S^{\prime} \sim Q^{\prime}$ and $S=\mathrm{cl}($ int S), it is easy to see that the set $S^{\prime} \sim Q^{\prime}$ is connected: If $w \in S^{\prime} \sim Q^{\prime}$, then for one of the open halfspaces determined by H, say H_{1}, w is in $\operatorname{cl}\left(S \cap M \cap H_{1}\right)$. For any point w_{0} in
$S \cap M \cap H_{1}, \quad\left(w, w_{0}\right] \cup\left[w_{0}, p\right) \subseteq S \cap M \cap H_{1} \subseteq S^{\prime} \sim Q^{\prime}$. Hence the set $S^{\prime} \sim Q^{\prime}$ is polygonally connected and therefore connected. We conclude that S^{\prime} satisfies the hypothesis of Lemma 3 in [1], so by the corollary to that lemma, $\operatorname{dim} C=d-2$, finishing the proof of Lemma 1 .

Lemma 2. For each $i, 1 \leqq i \leqq n$, (aff $\left.C_{i}\right) \cap S=C_{i}$.
Proof. As in the proof of Lemma 1, let $C=C_{i}$, let H be a hyperplane containing aff $(\{p\} \cup C)$ with H_{1} and H_{2} the corresponding open halfspaces, and let M be a convex neighborhood of H disjoint from all the C_{j} sets which do not lie in H. Then by our earlier argument $S \cap M \cap H_{i}$ is convex for $i=1,2, Q \cap M \subseteq \operatorname{ker}(S \cap M)$, and the set $S^{\prime} \equiv \operatorname{cl}(S \cap M)$ satisfies the hypothesis of Lemma 3 in [1].

Let N be a convex neighborhood of aff $C, N \subseteq M$, with $N \cap C_{j}=\emptyset$ for all $C_{j} \nsubseteq$ aff C. First we wish to show that (aff $\left.C\right) \cap S \subseteq \operatorname{ker}(S \cap N)$. For $x \in($ aff $C) \cap S$, clearly it suffices to show that x lies in the convex set $\operatorname{cl}\left(S \cap N \cap H_{i}\right)$ for $i=1,2$: By Lemma 3 in [1], the set $(S \cap N) \sim Q$ is connected, and since it is also locally convex, the set is polygonally connected [5]. Then by standard arguments, since $S=\operatorname{cl}($ int $S)$, $\operatorname{int}(S \cap N)$ is polygonally connected. Hence $H \cap S \cap N$ contains some interior point w of $S \cap N$, and $w \in \operatorname{cl}\left(S \cap N \cap H_{1}\right) \cap \operatorname{cl}\left(S \cap N \cap H_{2}\right) \subseteq \operatorname{ker}(S \cap N)$. Clearly w cannot lie in aff C : Otherwise, for U any neighborhood of w in $S \cap N$, since $C \subseteq \operatorname{ker}(S \cap N)$, the set $\operatorname{conv}(U \cup C) \subseteq S \cap N$ would capture points of C in its interior, contradicting the fact that $C \subseteq Q$. Thus we may select a convex neighborhood V of $w, V \subseteq[\operatorname{int}(S \cap N)] \sim \operatorname{aff} C$.

Since $S=\operatorname{cl}($ int $S)$, we may assume that $x \in \operatorname{cl}\left(S \cap N \cap H_{1}\right)$. Select a point z in $V \cap H_{2}$. Since $w \in \operatorname{ker}(S \cap N)$, we have $[w, x] \cup[w, z] \subseteq S \cap N$. Also, no point of aff C and hence no point of Q is in $\operatorname{conv}\{x, w, z\} \sim[x, z]$, so $[x, z] \subseteq S$ by a generalization of Valentine's lemma [6, Corollary 1]. Therefore, $(x, z] \subseteq S \cap N \cap H_{2}$ and $x \in \operatorname{cl}\left(S \cap N \cap H_{2}\right)$, the desired result. We have $x \in \operatorname{cl}\left(S \cap N \cap H_{i}\right)$ for $i=1,2$, so $x \in \operatorname{ker}(S \cap N)$ and our assertion is proved.

Our next goal is the relation (aff $C) \cap S \subseteq Q$. Let $x \in($ aff $C) \cap S \subseteq$ $\operatorname{ker}(S \cap N)$. Select $r \in S \cap N \cap H_{1}$ and $s \in S \cap N \cap H_{2}$ so that $[r, s] \nsubseteq S$ and $s \notin \operatorname{aff}(\{r\} \cup C)$. (Clearly this is possible since $S=\operatorname{cl}(\mathrm{int} S)$.) Then since $x \in \operatorname{ker}(S \cap N), \quad[x, r] \cup[x, s] \subseteq S$. Since $[r, s] \nsubseteq S$, by Valentine's lemma there must be some lnc point q of S in conv $\{x, r, s\} \sim[r, s]$. Note that $q \in Q \cap N \subseteq$ aff C. Now if $x \neq q$, then $q \notin[x, r] \cup[x, s]$, so q would be in rel int $\operatorname{conv}\{x, r, s\}$, and $s \in \operatorname{aff}\{x, r, q\} \subseteq \operatorname{aff}(\{r\} \cup C)$, impossible. Thus $x=q, x \in Q$, and we conclude that (aff C) $\cap S \subseteq Q$.

Moreover, the set (aff $C) \cap S$ is convex: If $u, v \in($ aff $C) \cap S$, then $u, v \in Q \cap N \subseteq \operatorname{ker}(S \cap N)$, so $\lceil u, v\rceil \subseteq($ aff $C) \cap S$. Hence (aff $C) \cap S$ is a convex subset of Q containing C, and since C is maximal, it follows that aff $C \cap S=C$, finishing the proof of Lemma 2.

Corollary. If $p \in S \sim Q$, then $p \notin$ aff $C_{i}, 1 \leqq i \leqq n$.

Lemma 3. If $H=\operatorname{aff}\left(\{p\} \cup C_{i}\right)$ for some i, the set $S \cap H$ is convex.
Proof. Clearly H is a hyperplane since $\operatorname{dim} C_{i}=d-2$ and $p \notin$ aff C_{i}. As in the proof of Lemma 2, let M be a convex neighborhood of H disjoint from every C_{j} set which does not lie in H.

Note that since $p \in S \cap H$, the set $S \cap H$ is connected. By a well-known result [5], a closed, connected, locally convex set is convex, so to prove the lemma, it suffices to show that $S \cap H$ is locally convex. Clearly any lnc point of $S \cap H$ necessarily would lie in Q, so select $q \in Q \cap H$ to prove that q is not an lnc point for $S \cap H$. Assume that $q \in C_{j} \equiv C$. By Lemmas 1 and 2, C must be a component of Q having dimension $d-2$. Let N be any convex neighborhood of q disjoint from the remaining components of $Q, N \subseteq M$, and let $x, y \in S \cap H \cap N$. We wish to show that $[x, y] \subseteq S$.

Now if x and y both belong to the convex set $\operatorname{cl}\left(S \cap N \cap H_{i}\right)$ for either $i=1$ or $i=2$, then the argument is finished, so assume $x \in \operatorname{cl}\left(S \cap N \cap H_{1}\right)$, $y \in \operatorname{cl}\left(S \cap N \cap H_{2}\right)$. Also, if x or y were in aff $C \cap S=C$, then since $C \subseteq \operatorname{ker}(S \cap M),[x, y]$ would lie in S, so we will assume that $x, y \notin$ aff C.

There are two cases to consider: Either x and y are on the same side of the (d-2)-flat aff C in H, or x and y are on opposite sides of aff C in H. Examine the former case. Since $C \subseteq \operatorname{ker}(S \cap M)$, both x and y see every point of C via S, and the convex sets $\operatorname{conv}(\{x\} \cup C), \operatorname{conv}(\{y\} \cup C)$, intersect in some point $z \in(S \cap H \cap N) \sim Q$. In particular, z, x, y are all on the same side of aff $C,[z, x] \cup[z, y] \subseteq S$, no point of C and hence no lnc point of S lies in $\operatorname{conv}\{z, x, y\}$, so by Valentine's useful lemma, $[x, y] \subseteq S$, the desired result.

For the latter case, suppose that x and y are on opposite sides of aff C in H. Since $p \notin C=($ aff $C) \cap S$, without loss of generality we may assume that x and p are on the same side of aff C in H. Select a point p^{\prime} in $\operatorname{conv}(\{p\} \cup C) \cap$ $(N \sim C)$. Since $\{p\} \cup C \subseteq \operatorname{ker}(S \cap M)$, $\operatorname{conv}(\{p\} \cup C) \subseteq \operatorname{ker}(S \cap M)$, and certainly p^{\prime} sees $S \cap N$ via $S \cap N$. Clearly p^{\prime} and x are on the same side of aff C in H, so $\left[x, p^{\prime}\right] \cap C=\emptyset$ and hence $\left[x, p^{\prime}\right] \cap Q=\emptyset$. Now since we are assuming that $y \in \operatorname{cl}\left(S \cap N \cap H_{2}\right)$, let $\left\{y_{n}\right\}$ be a sequence in $S \cap N \cap H_{2}$ converging to y. For each $n,\left[p^{\prime}, x\right] \cup\left[p^{\prime}, y_{n}\right] \subseteq S \cap N$, there are no points of C and therefore no lnc points of S in conv $\left\{p^{\prime}, x, y_{n}\right\}$, so $\left[x, y_{n}\right] \subseteq S$. Then since S is closed, $[x, y] \subseteq S$, finishing this case and completing the proof of Lemma 3.

The final lemma will require the following result by Lawrence, Hare and Kenelly [3, Theorem 2].

Theorem (Lawrence, Hare, Kenelly). Let T be a subset of a linear space such that for each finite subset $F \subseteq T, F$ may be written as a union of k sets F_{1}, \ldots, F_{k}, where conv $F_{i} \subseteq T, 1 \leqq i \leqq k$. Then T is a union of k convex sets.

Lemma 4. Without loss of generality we may assume that S is bounded.
Proof. For any finite subset F of S, let B be an open d-dimensional ball containing $F \cup\{p\}$, and let $S^{\prime}=\operatorname{cl}(S \cap B)$. Then $S^{\prime}=\mathrm{cl}\left(\right.$ int $\left.S^{\prime}\right)$ is an
m-convex set in R^{d} whose corresponding set Q^{\prime} of lnc points is exactly $\bigcup_{i=1}^{n} C_{i}{ }^{\prime}$, where $C_{i}{ }^{\prime}=\operatorname{cl}\left(C_{i} \cap B\right), 1 \leqq i \leqq n$. Clearly $p \in \operatorname{ker} S^{\prime} \sim Q^{\prime}$. Hence S^{\prime} is a bounded set satisfying the hypothesis of Theorem 1. By the Lawrence, Hare, Kenelly Theorem, it suffices to prove that F is a union of $\sigma(m)=2(m-1)$ sets, each having its convex hull in $S^{\prime} \subseteq S$. Therefore, we need only show that S^{\prime} is a union of $\sigma(m)$ convex sets, and we may assume that S is bounded.

At last we return to the proof of the theorem.
Since the result is trivial for $d=1$ and a consequence of $[\mathbf{2}$, Theorem 1 , Corollary 3] for $d=2$, we assume that $d \geqq 3$. From Lemmas 1 and 2 , each C_{i} set is a component of Q having dimension $d-2$. Let Π denote a plane which is orthogonal to aff C_{i} for each i, and define f to be the projection of R^{d} onto Π in the direction of aff C. Clearly $f(S)$ is a closed planar m-convex set, and $f(p)$ lies in its kernel. Hence by [2, Theorem 1, Corollary 3], $f(S)$ is a union of $\sigma(m)=2(m-1)$ or fewer convex sets, $B_{1}, \ldots, B_{2 m-2}$.

Define $A_{i} \equiv\left\{x: x \in S\right.$ and $\left.f(x) \in B_{i}\right\}, 1 \leqq i \leqq 2 m-2$. We assert that the A_{i} 's are convex sets whose union is S, and clearly it suffices to show that for x, y in S, whenever $[f(x), f(y)] \subseteq f(S)$, then $[x, y] \subseteq S$: Suppose on the contrary that the result fails for some pair x, y in S, and without loss of generality assume that $(x, y) \cap S=\emptyset$. By Valentine's lemma, it follows that there must be a point of Q in $\operatorname{conv}\{x, y, p\} \sim[x, y]$. We have two cases to consider.

Case 1. First assume that for some component C of Q, a point of C lies in rel int $\operatorname{conv}\{x, y, p\}$, and let $H=\operatorname{aff}(\{p\} \cup C)$. We assert that $x, y \notin H$: Otherwise, if $x \in H$, then since there are points of C in rel int $\operatorname{conv}\{x, y, p\}$, this would imply that $y \in H$ also. By Lemma $3, S \cap H$ is convex, so [x, y] would lie in $S \cap H$, impossible.

As in the proof of the lemmas, let M be a convex neighborhood of H disjoint from every component of Q which does not lie in H. Since some point of C lies in rel int $\operatorname{conv}\{x, y, p\},[x, y]$ cuts the set $\operatorname{cone}(p, C) \equiv \cup\{R(p, c): c \in C\}$. Furthermore, since $x, y \notin H,[x, y]$ cuts cone (p, C) at a single point z, and since $(x, y) \cap S=\emptyset, z \notin S$. Now $p \in \operatorname{ker} S$ and $z \notin S$, so $z \notin \operatorname{conv}(\{p\} \cup C)$, and (p, z) intersects C.

Recall by an earlier argument that $S \cap M \cap H_{i}$ is convex for $i=1,2$, where H_{1} and H_{2} denote the open balfspaces determined by H. We assert that we may select points r, s in $S \cap H$ and segments $\left[r_{0}, r\right)$ in $S \cap M \cap H_{1}$ and $\left(s, s_{0}\right]$ in $S \cap M \cap H_{2}$ such that f maps $\left[r_{0}, r\right]$ and $\left[s, s_{0}\right]$ into $[f(x), f(y)]$: Clearly $f(x) \in H_{1}, f(y) \in H_{2}$, and $f(z) \in[f(x), f(y)] \cap H$. Select a sequence $\left\{b_{n}\right\}$ in $[f(x), f(y)] \cap H_{1}$ converging to $f(z)$, and let $\left\{r_{n}{ }^{\prime}\right\}$ be a corresponding sequence in $S \cap H_{1}$, with $f\left(r_{n}{ }^{\prime}\right)=b_{n}$. By Lemma 4 we may consider S to be bounded, and hence some subsequence $\left\{r_{n}\right\}$ of $\left\{r_{n}{ }^{\prime}\right\}$ converges to a point r in $S \cap H$. Clearly we may assume that $r_{n} \in M$ for each n. Then r is in the convex set $\operatorname{cl}\left(S \cap M \cap H_{1}\right)$, so $\left[r_{n}, r\right) \subseteq S \cap M \cap H_{1}$ for each n. Choose r_{0} to be any point r_{n}. Since f preserves convex sets, f maps $\left[r_{0}, r\right]$ onto a segment in
$f(S)$, and hence f maps $\left[r_{0}, r\right]$ into $[f(x), f(y)]$. A similar argument may be used to select a point s in $S \cap H$ and a segment $\left(s, s_{0}\right]$ in $S \cap M \cap H_{2}$ so that f maps $\left[s, s_{0}\right]$ into $[f(x), f(y)]$. Clearly $f(r)=f(s)=f(z)$.

Since (p, z) intersects C, both (p, r) and (p, s) must intersect aff C. Now $\{p\} \cup C \subseteq \operatorname{ker}(S \cap M)$, so each point of $\left[r_{0}, r\right] \cup\left[s, s_{0}\right]$ sees $\operatorname{conv}(\{p\} \cup C)$ via $S \cap M$. But then points of C are captured interior to the d-dimensional set $\operatorname{conv}\left(C \cup\{p\} \cup\left[r_{0}, r\right]\right) \cup \operatorname{conv}\left(C \cup\{p\} \cup\left[s, s_{0}\right]\right) \subseteq S$, contradicting the fact that $C \subseteq Q$. Our assumption for Case 1 must be false, and no point of Q lies in rel int $\operatorname{conv}\{p, x, y\}$.

Case 2 . Since there can be no points of Q in rel int $\operatorname{conv}\{p, x, y\}$, suppose there are points of Q in $(p, x) \cup(p, y)$. Say for some component C of Q, $(p, x) \cap C \neq \emptyset$, and let $H=\operatorname{aff}(\{p\} \cup C)$. Since $S \cap H$ is convex and $x \in H$, it follows that $y \notin H$, and we may assume that y lies in the open halfspace H_{2} determined by H. As in Case 1 , let M be a convex neighborhood of H disjoint from all components of Q which do not lie in H, and select a point $s \in H$ and a segment $\left(s, s_{0}\right]$ in $S \cap M \cap H_{2}$ such that f maps $\left[s, s_{0}\right]$ into $[f(x), f(y)]$.

First we show that $x \in \operatorname{cl}\left(S \cap H_{2}\right)$: If $x \in \operatorname{cl}\left(S \cap H_{1}\right)$, then for any point x_{0} in the convex set $S \cap M \cap H_{1},\left[x_{0}, x\right] \subseteq S \cap M$. Using an argument in Case 1 above, since $\{p\} \cup C \subseteq \operatorname{ker}(S \cap M)$, each point of the set $\left[x_{0}, x\right] \cup$ $\left[s, s_{0}\right]$ would see $\operatorname{conv}(\{p\} \cup C)$ via $S \cap M$. Hence points of C would be captured interior to the d-dimensional set $\operatorname{conv}\left(C \cup\{p\} \cup\left[x_{0}, x\right]\right) \cup$ $\operatorname{conv}\left(C \cup\{p\} \cup\left[s, s_{0}\right]\right) \subseteq S$, mpossible. iWe conclude that $x \notin \operatorname{cl}\left(S \cap H_{1}\right)$, and since $S=\mathrm{cl}($ int $S)$, it follcws that $x \in \operatorname{cl}\left(S \cap H_{2}\right)$.

Next we select a convex neighborhood U of $\operatorname{conv}\{p, x, y\}$ such that the only components of Q containing points of $U \cap S$ necessarily intersect $[p, x] \cup$ $[p, y]$. (Clearly this is possible: Since $(x, y) \cap S=\emptyset$ we have $Q \cap$ $\operatorname{conv}\{p, x, y\} \subseteq[p, x] \cup[p, y]$, and Q is a finite union of closed convex sets.) Since $x \in \operatorname{cl}\left(S \cap H_{2}\right)$, we may select a sequence $\left\{x_{n}\right\}$ in $S \cap U \cap H_{2}$ converging to x.

If $(p, y) \cap Q=\emptyset$, then $Q \cap U \subseteq H$, for every n there would be no lnc points in conv $\left\{x_{n}, y, p\right\} \sim\left[x_{n}, y\right]$, so $\left[x_{n}, y\right] \subseteq S$ and $[x, y] \subseteq S$, impossible. Thus $(p, y) \cap Q \neq \emptyset$, and for some convex component D of $Q,(p, y)$ cuts D. (Note that $D \neq C$ since $y \notin H$.) Let $J=\operatorname{aff}(D \cup\{p\})$. By an earlier argument $x \notin J$, so assume x is in the open halfspace J_{1} determined by J. Now it is easy to show that $y \notin \operatorname{cl}\left(S \cap U \cap J_{1}\right)$, for if $\left\{y_{n}\right\}$ were a sequence in $S \cap$ $U \cap J_{1}$ converging to y, then since $Q \cap U \subseteq H \cup J$, for n sufficiently large there would be no lnc point in $\operatorname{conv}\left\{x_{n}, y_{n}, p\right\},\left[x_{n}, y_{n}\right] \subseteq S$, and $[x, y] \subseteq S$, a contradiction. Therefore $y \in \operatorname{cl}\left(S \cap U \cap J_{2}\right)$.

Again as in Case 1, select a point r in J and a segment $\left[r_{0}, r\right)$ in $S \cap J_{1}$ such that f maps $\left[r_{0}, r\right]$ into $[f(x), f(y)]$. Using earlier arguments, select y_{0} in $S \cap J_{2}$ with $\left[y, y_{0}\right] \subseteq S$. For r_{0}, y_{0} sufficiently close to r and y, respectively, each point of $\left[r_{0}, r\right] \cup\left[y, y_{0}\right]$ sees every point of D via S, and points of D lie
interior to the set $\operatorname{conv}\left(D \cup\{p\} \cup\left[r_{0}, r\right]\right) \cup \operatorname{conv}\left(D \cup\{p\} \cup\left[y, y_{0}\right]\right)$, impossible. We have a contradiction, our assumption for Case 2 cannot be true, and $(p, x) \cup(p, y)$ must be disjoint from Q.

From Cases 1 and 2 we conclude that $\operatorname{conv}\{p, x, y\} \sim[x, y]$ contains no points of Q. Hence our original supposition is false and $(x, y) \subseteq S$, the desired result. It follows that each A_{i} set is convex, $1 \leqq i \leqq 2 m-2$, and S is indeed a union of $2(m-1)$ or fewer convex sets, finishing the proof of the theorem.

References

1. Marilyn Breen, $A n n+1$ member decomposition for sets whose Inc points form n convex sets, Can. J. Math. 27 (1975), 1378-1383.
2. Marilyn Breen and David C. Kay, General decomposition theorems for m-convex sets in the plane, to appear, Israel J. Math.
3. J. F. Lawrence, W. R. Hare and John W. Kenelly, Finite unions of convex sets, Proc. Amer. Math. Soc. 34 (1972), 225-228.
4. W. L. Stamey and J. M. Marr, Unions of two convex sets, Can. J. Math. 15 (1963), 152-156.
5. F. A. Valentine, Convex sets (McGraw-Hill Book Co., Inc., New York, 1964).
6. -L_Local convexity and L_{n} sets, Proc. Amer. Math. Soc. 16 (1965), 1305-1310.
7. ———A three point convexity property, Pacific J. Math. Y (1957), 1227-1235.

University of Oklahoma,
Norman, Oklahoma

