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A DECOMPOSITION THEOREM FOR m-CONVEX 
SETS IN Rd 

MARILYN BREEN 

1. Introduction. Let 5 be a subset of some linear topological space. The 
set 5 is said to be in-convex, m ^ 2, if and only if for every w-member subset 

( VYl \ 
I line segments determined by these points lies 

in S. A point x in 5 is said to be a point of local convexity of S if and only if 
there is some neighborhood N of x such that if y, z £ N C\ S, then [3/, z] Ç S. 
If 5 fails to be locally convex at some point a in S, then q is called a point of 
local nonconvexity (lnc point) of S. 

Several interesting decomposition theorems have been obtained for closed 
m-convex sets in the plane. Valentine [7] has proved that a closed planar 
3-convex set is expressible as a union of three or fewer convex sets, and 
Stamey and Marr [4] have obtained conditions under which a closed planar 
3-convex set may be written as a union of two convex sets. 

In general, for 5 a closed, planar m-convex set, if ker 5 ^ 0 , then 5 is a 
union of 2(tn — 1) convex sets, and without any restriction on ker S, S will 
be a union of (m — l)32w _ 3 or fewer convex sets for m ^ 3 (Breen and Kay 
[2]). 

However, little work has been done on the problem of obtaining decom
position theorems for closed m-convex sets in higher dimensions. The purpose 
of this paper is to obtain conditions under which an analogue of some of the 
planar results might be proved in Rd. 

The following familiar terminology will be used. For points x, y in S} we say 
x sees y via S if and only if the corresponding segment [x, y] lies in 5. Points 
Jv I * • * » I «A/ M 1 1 1 5 are visually independent via S if and only if for 1 ^ i < j ^ n, 
Xi does not see x;- via S. Throughout the paper, conv S, aff S, clS, int S, 
rel int S, and ker ,S will be used to denote the convex hull, affine hull, closure, 
interior, relative interior, and kernel, respectively, of the set 5*. Also if 5 is 
convex, dim 5 will denote the dimension of the affine hull of S. 

2. The decomposition theorem. We will prove the following result. 

THEOREM 1. Let S = cl (int S) be an m-convex set in Rd, d = dim aff S, and 
let Q denote the set of points of local nonconvexity of S, with Q a finite union of 
parallel convex sets—i.e., Q = U?=i Cu where Ct is convex and aff C\- is a 
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translate of aff Cjt 1 ^ i ^ j ^ n. If p G ker 5 ^ Q, then S is a union of 
a(m) = 2(m — 1) or fewer convex sets. 

Proof. Without loss of generality, we assume that Q = U?=i Cu where each 
Ci is maximal—i.e., no Ct is properly contained in a convex subset of Q. 
(If d is properly contained in a convex subset C/ of Q, replace d by C/. 
Notice that aff C* = aff C/, for otherwise dim C/ > dim C* and Q could not 
be represented as a finite union of convex sets parallel to d.) Since Q is 
closed, each C* will be closed. 

The following series of preliminary lemmas will be important in the proof. 

LEMMA 1. For each i, 1 ^ i ^ n, dim Ct ~ d — 2. 

Proof. For convenience of notation, let Ct = C. We will show that the set 
aff({^>} U C) has dimension no greater than d — 1: Suppose on the contrary 
that aff({#>} U C) has dimension d. Clearly C cannot be ^-dimensional, so C 
must have dimension d — 1. Let / = aff C, with J i and J2 the distinct open 
halfspaces determined by the hyperplane / . Certainly p (? / so we may 
assume that p lies in Jx. Consider the set 

cone(£, C) = \J {P(p,x) : a 6 C] 

where R(p, x) denotes the ray emanating from p through x. Since 
conv({^>} U C) Ç 5 and C Ç Q, there are interior points of the cone in 
S P J2, and since S = cl(int S), interior points of the cone lie in (int S) P J2. 
However, if U is an open set in (int S) P J2, then points of C lie interior to 
conv({^>} VJ U), and these points of C cannot be in Q. We have a contra
diction, our assumption is false, and dim aff({/?} KJ C) S d — 1. 

Now let H be any hyperplane containing aff({^>} VJ C), with Hi and H2 

the corresponding open halfspaces, and let i f be a convex neighborhood of H 
disjoint from all the C3- sets which do not lie in H. (Clearly such a neighborhood 
exists since the Cj sets are parallel and there are finitely many of them.) 
Examine S P M P HY: For x, y in 5 Pi M P Hu [p, x] U [p,y] Ç 5 P M, 
no lnc point of 5 lies in conv{p, x, y\, so [x, y] Q S P I f P ifi by a lemma of 
Valentine [6, Corollary 1]. Thus S P M P # i is convex. Similarly 5 P MC\H2 

is convex. Furthermore, since 5* = cl (int S), we have 

c l ( 5 P M) = c l ( 5 P MnHi) U c l ( 5 P Mr\H2), 

so 5 ' = cl(5 P Af) is a union of two convex sets and hence is 3-convex. It is 
easy to show that every lnc point of a closed 3-convex set lies in the kernel 
of that set, and clearly the set Qf of lnc points of S' consists of exactly those 
points of Q which lie in H. Thus Q' is a finite union of convex sets which lie 
in ker Sf. 

Also, since p £ ker S' ^ Q' and S = cl (int S), it is easy to see that the set 
S' ~ Qf is connected: If w £ S' ~ Q', then for one of the open halfspaces 
determined by H, say Hi, w is in c l ( 5 P MC\Hi). For any point w0 in 
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5 H M H ffi, (w, wo] U [wo, f ) Ç 5 n M n f f i Ç S ' - Ç ' . Hence the set 
5 ' ~ Q' is polygonally connected and therefore connected. We conclude that 
S' satisfies the hypothesis of Lemma 3 in [1], so by the corollary to that lemma, 
dim C = d — 2, finishing the proof of Lemma 1. 

LEMMA 2. For each i, 1 ^ i S n, (aff Ct) P 5 = Ct. 

Proof. As in the proof of Lemma 1, let C = C<, let H be a hyperplane 
containing aff({p} U C) with Hi and if2 the corresponding open halfspaces, 
and let M be a convex neighborhood of iï" disjoint from all the Cj sets which 
do not lie in H. Then by our earlier argument S H M H iï"* is convex for 
i = 1,2, QC\ M Qker(Sr\ M), and the set S' = cl(5 H M) satisfies the 
hypothesis of Lemma 3 in [1]. 

Let TV be a convex neighborhood of aff C, TV C if, with TV P C;- = 0 for 
all C, g aff C. First we wish to show that (aff C) H S Q ker(S P TV). For 
x G (aff C) P S, clearly it suffices to show that x lies in the convex set 
cl(5 P TV P Ht) for i = 1, 2: By Lemma 3 in [1], the set (S P TV) ~ Ç is 
connected, and since it is also locally convex, the set is polygonally connected 
[5]. Then by standard arguments, since 5 = cl(intS), i n t ( 5 P TV) is polygo
nally connected. Hence H P 5 P TV contains some interior point w of 5 P TV, 
and w G cl(S P TV P Hx) P cl(5 P TV P H2) C ker(S P TV). Clearly w can
not lie in aff C: Otherwise, for U any neighborhood of w in S P TV, since 
C Ç ker(5 P TV), the set conv(U W C) C 5 P TV would capture points of C 
in its interior, contradicting the fact that C C Q. Thus we may select a convex 
neighborhood V oi w, V C [int(5 P TV)] ~ aff C. 

Since 5 = cl(intS), we may assume that x G cl (5 P TV P i?i). Select a 
point s in V P i72. Since w G ker(5 P TV), we have [w, x] KJ \_w,z\ Q S P TV. 
Also, no point of aff C and hence no point of Q is in convfx, w, z) ~ [x, z], so 
[x, z] Ç 5 b y a generalization of Valentine's lemma [6, Corollary 1]. Therefore, 
(x, z] C 5 P TV P H2 and x G cl (5 P TV P H2), the desired result. We have 
x G c l ( 5 P TV P iff) for i — 1, 2, so x G ker(5*P TV) and our assertion is 
proved. 

Our next goal is the relation (aff C)C\S<Z,Q. Let x G (aff C) P S C 
ker(5 P TV). Select r G 5 P TV P i7x and 5 G 5 P TV P H2 so that [r, 5] g 5 
and 5 G aff({r} U C). (Clearly this is possible since 5 = cl(intS).) Then 
since x G ker(,S P TV), [x, r] VJ [x, 5] C 5. Since [r, 5] ^ 5, by Valentine's 
lemma there must be some lnc point q of S in conv{x, r, s] ~ [r, s]. Note that 
g G 0 P TV Ç aff C. Now if x ^ g, then q G [x, r] U [x, 5], so g would be in 
rel int convjx, r, s}, and 5 G aff{x, r, g} C aff({r} W C), impossible. Thus 

G Q, and we conclude that (aff C) C\ S Q Q. 
Moreover, the set (aff C) P S is convex: If u, v G (aff C) P S, then 

w, v G Q P TV Ç ker(5 P TV), so [w, *;] Ç (aff C) P 5. Hence (aff C) P 5 is 
a convex subset of Q containing C, and since C is maximal, it follows that 
aff C P 5 = C, finishing the proof of Lemma 2. 

COROLLARY. If p £ S ~ Q, then p G aff C<, 1 ^ i ^ w. 
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LEMMA 3. If H = aff({p} U Ct) for some i, the set S P H is convex. 

Proof. Clearly H is a hyperplane since dim Ct = d — 2 and p Q aff Ct. As 
in the proof of Lemma 2, let M be a convex neighborhood of H disjoint from 
every Cj set which does not lie in H. 

Note tha t since p £ S P H, the set S P H is connected. By a well-known 
result [5], a closed, connected, locally convex set is convex, so to prove the 
lemma, it suffices to show tha t 5 Pi H is locally convex. Clearly any lnc point 
oi S C\ H necessarily would lie in Q, so select g f Q P H to prove tha t q is 
not an lnc point for S P H. Assume tha t g £ Cj = C. By Lemmas 1 and 2, C 
must be a component of Q having dimension d — 2. Let Af be any convex 
neighborhood of q disjoint from the remaining components of Q, N C AT, and 
let x, y Ç 5 P 2? P iV. We wish to show tha t [x, y] C 5 . 

Now if x and 3> both belong to the convex set c l (5 P A" P i J f ) for either 
i = 1 or i = 2, then the argument is finished, so assume x Ç c l (5 P Ar P -ffi), 
y G cl (5 P A" P i J 2 ) . Also, if x or y were in aff C P 5 = C, then since 
C C ke r (5 P i f ) , [x, y] would lie in S, so we will assume tha t x, y d aff C 

There are two cases to consider: Ei ther x and 3/ are on the same side of the 
(d — 2)-flat aff C in H, or x and y are on opposite sides of aff C in H. Examine 
the former case. Since C Q k e r ( 5 P M), both x and y see every point of C 
via S, and the convex sets conv({x} U C), conv({3>} VJ C), intersect in some 
point z d (S P H P A0 ^ Q. In part icular, z, x, 3̂  are all on the same side of 
aff C, [z, x] VJ [z, y] ÇZ S, no point of C and hence no lnc point of 5 lies in 
convfs, x, y\, so by Valentine 's useful lemma, [x, y] Ç 5, the desired result. 

For the lat ter case, suppose t ha t x and y are on opposite sides of aff C in H. 
Since p d C = (aff C) P 5 , wi thout loss of generali ty we may assume tha t x 
and p are on the same side of aff C in H. Select a point p' in conv({/?} W C) P 
( i V ~ C). Since {p\ U C Ç k e r ( 5 P M ) , c o n v ( { £ } U Q Ç k e r ( 5 P Af) ,and 
certainly £>' sees S C\ N via S C\ N. Clearly / / and x are on the same side of 
aff C in H, so [x, J ' ] H C = B and hence [x, p'] P Q = 0. Now since we are 
assuming t ha t 3/ £ cl (5 P A" P H2), let {3^} be a sequence in 5 P Af P H2 

converging to y. For each n, [pf, x] U [pf, 3/J Ç 5 P AT, there are no points of 
C and therefore no lnc points of S in conv{^>', x, 3/^}, so [x, yn] Ç 5 . Then since 
5 is closed, [x, y] ÇI 5 , finishing this case and completing the proof of Lemma 3. 

T h e final lemma will require the following result by Lawrence, Hare and 
Kenelly [3, Theorem 2]. 

T H E O R E M (Lawrence, Hare , Kenel ly) . Let T be a subset of a linear space such 
that for each finite subset F Cl T, F may be written as a union of k sets Fi, . . . , Fk, 
where conv Ff C T, 1 ^ i ^ k. Then T is a union of k convex sets. 

LEMMA 4. Without loss of generality we may assume that S is bounded. 

Proof. For any finite subset F of S, let B be an open J-dimensional ball 
containing F\J {p}, and let S' = cl(S C\ B). Then S' = c l ( i n t S ' ) is an 
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m-convex set in Rd whose corresponding set Q' of lnc points is exactly U?=i C/, 
where C( = c\(Ct P B), 1 ^ i ^ n. Clearly p G ker S' ~ Q'. Hence S' is a 
bounded set satisfying the hypothesis of Theorem 1. By the Lawrence, Hare , 
Kenelly Theorem, it suffices to prove tha t F is a union of a(m) = 2(m — 1) 
sets, each having its convex hull in Sf C S. Therefore, we need only show tha t 
S' is a union of a(m) convex sets, and we may assume tha t S is bounded. 

At last we return to the proof of the theorem. 
Since the result is trivial for d — 1 and a consequence of [2, Theorem 1, 

Corollary 3] for d = 2, we assume tha t d ^ 3. From Lemmas 1 and 2, each C* 
set is a component of Q having dimension d — 2. Let II denote a plane which 
is orthogonal to aff Ci for each i, and def ine / to be the projection of Rd onto II 
in the direction of aff C. C lea r ly / (S ) is a closed planar ra-convex set, and f(p) 
lies in its kernel. Hence by [2, Theorem 1, Corollary 3], f(S) is a union of 
<j{m) = 2(w — 1) or fewer convex sets, B1} . . . , B2m-2. 

Define 4 , = {x : x G S and / ( # ) G £<}» 1 ^ t ^ 2m - 2. We assert t ha t 
the A / s are convex sets whose union is S, and clearly it suffices to show tha t 
for x, y in S, whenever [f(x),f(y)] Qf(S), then [x, y] Ç 5 : Suppose on the 
contrary tha t the result fails for some pair x, y in S, and without loss of 
generality assume tha t (x, y) P S = 0. By Valentine's lemma, it follows tha t 
there must be a point of Q in conv{x, y, p\ ^ [x, y\. We have two cases to 
consider. 

Case 1. First assume tha t for some component C of Q, a point of C lies in 
rel int conv{x, y, p}, and let H = aff({^>} W C). We assert t ha t x, y (I H: 
Otherwise, ii x £ H, then since there are points of C in rel int convjx, y, p\, 
this would imply tha t y G H also. By Lemma 3, S P H is convex, so [x, y] 
would lie in 5 Pi H, impossible. 

As in the proof of the lemmas, let M be a convex neighborhood of H disjoint 
from every component of Q which does not lie in H. Since some point of C lies 
in rel int conv{x, y, p}} [x, y] cuts the set cone(p, C) = U {R(p, c) : c G C}. 
Fur thermore , since x,y d H, [x, y] cuts cone(£, C) a t a single point s, and 
since (x, y) P S = 0, s G 5 . Now /? G ker 5 and z d S, so z (? conv({^>} W C), 
and (£, z) intersects C 

Recall by an earlier a rgument t ha t 5 P M r\Ht is convex for i = 1, 2, 
where i l l and H2 denote the open half spaces determined by H. We assert t ha t 
we may select points r, s in S f~\ H and segments [r0, r) in S C\ M C\ Hi and 
(s, so] in 5 P M P i72 such tha t / maps [r0, r] and [s, s0] into [ / ( x ) , / ( y ) ] : 
C l ea r l y / (x ) G Huf(y) G ff2, a n d / 0 ) G [ / ( * ) , / ( ? ) ] H # • Select a sequence 
{frn} in [f(x),f(y)] P i^i converging t o / ( z ) , and let {rw'} be a corresponding 
sequence in 5 P Hi, with f(rn

f) = bn. By Lemma 4 we may consider 5 to be 
bounded, and hence some subsequence {rn} of {rn') converges to a point r in 
S C\ H. Clearly we may assume tha t rn G M for each n. Then r is in the convex 
set d{SC\ M C\ Hi), so [rn, r) C 5 P M P i2\ for each «. Choose r0 to be 
any point rn. Since / preserves convex sets, / maps [r0, r] onto a segment in 

https://doi.org/10.4153/CJM-1976-102-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-102-5


1056 MARILYN BREEN 

/(5), and hence/maps I/o, r] into [f(x),f(y)]. A similar argument may be used 
to select a point 5 in 5 P H and a segment (s, s0] in S (^ M C\ H2 SO tha t / 
maps [s, sQ\ into [f(x),f(y)]. C l e a r l y / ( r ) = / ( s ) = / ( z ) . 

Since (p, z) intersects C, both (p, r) and (£, 5) must intersect aff C. Now 
{p\ U C Ç ke r (5 H M), so each point of [r0, r] ^ [s, So] sees conv({p} U C) 
via 5 Pi M". Bu t then points of C are captured interior to the ^-dimensional 
set c o n v ( C U \p] U [r0, r]) U c o n v f C U {£>} W [5, s0]) £ 5 , contradict ing 
the fact tha t C Ç (X Our assumption for Case 1 must be false, and no point of 
Q lies in rel int conv{^>, x,y}. 

Case 2. Since there can be no points of Q in rel int conv{^>, x, y\, suppose 
there are points of Q in (p, x) U (p, y). Say for some component C of Q, 
(p, x) P C j* 0, and let H = aff({£} U C). Since 5 P H is convex and 
x G iiT, it follows tha t y d H, and we may assume tha t y lies in the open 
halfspace H2 determined by H. As in Case 1, let ikf be a convex neighborhood 
of H disjoint from all components of Q which do not lie in H, and select a 
point s G H and a segment (s, s0] in S C\ M (^ H2 such t h a t / maps [s, sQ] into 

First we show tha t x G cl(S P # 2 ) : If tf G cl (5 P i J i ) , then for any point 
x0 in the convex set S r\ M C\ Hi, [x0, x] Ç 5 H ikf. Using an a rgument in 
Case 1 above, since {p} VJ C Ç ker(,S Pi Af), each point of the set [x0, x] \J 
[s, SQ] would see conv({^ j VJ C) via 5 P M. Hence points of C wrould be 
captured interior to the ^-dimensional set conv(CVJ {p} VJ [x0, x]) W 
conv(CVJ {p} W [s, so]) Ç 5, mpossible. iWe conclude t ha t x G c l ( S P / /1 ) , 
and since 5 = cl(int S), it follows tha t x G cl (5 P i7 2 ) . 

Next we select a convex neighborhood £/ of conv{^>, x, ^} such t ha t the only 
components of Q containing points of [ / H 5 necessarily intersect [p,x] \J 
[P> y]- (Clearly this is possible: Since (x, 3;) P 5 = 0 we have Q P 
conv{p, x, y} Q [p, x] U [p, y], and Ç is a finite union of closed convex sets.) 
Since x G c l Ç S P H2), we may select a sequence {xn} in 5 P £/ P ZZ2 con
verging to x. 

If (p, 3>) P <2 = 0, then Ç P U C H, for every n there would be no lnc 
points in conv{xn , y, p\ ~ [xn, y], so [xni y] C S and [x, y] ÇZ 5 , impossible. 
T h u s (p, y) P Q ?£ 0, and for some convex component Z) of Q, (p, y) cuts Z). 
(Note t ha t D 7* C since y G # . ) Let / = aff(£> U {/>}). By an earlier argu
ment x G / , so assume x is in the open halfspace J\ determined by / . Now it is 
easy to show t h a t y G cl (5 P U P / 1 ) , for if {yn} were a sequence in 5 P 
U P J i converging to y, then since Ç P U Ç Z7 U J , for n sufficiently large 
there would be no lnc point in conv{xw, yn, p}, [xni yn] CI S, and [x, y] Ç 5 , a 
contradict ion. Therefore y G c l ( 5 P U P J^) . 

Again as in Case 1, select a point r in J and a segment [r0, r) in 5 P / 1 such 
tha t / maps [r0, r] into [ / (x ) , / ( ;y ) ] . Using earlier a rguments , select y0 in 
S r\ J2 with Qy, ^0] £ -S1. For r0, yo sufficiently close to r and y, respectively, 
each point of [r0, r] U [y, yo] sees every point of D via 5 , and points of D lie 
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interior to the set conv(D U {p} VJ [r0, r]) U conv(Z) U {̂ } U [3;, y0]), im
possible. We have a contradiction, our assumption for Case 2 cannot be true, 
and (p, x) U (p, y) must be disjoint from Q. 

From Cases 1 and 2 we conclude that conv{p, x, y] ~ [x, y] contains no 
points of Q. Hence our original supposition is false and (x, y) C S, the desired 
result. It follows that each A t set is convex, 1 ^ i ^ 2m — 2, and 5 is indeed 
a union of 2(w — 1) or fewer convex sets, finishing the proof of the theorem. 
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