
Journal of Functional Programming 1 (1): 3-20, January 1991

Encapsulating non-determinacy in an abstract
data type with determinate semantics

F. WARREN BURTON
School of Computing Science, Simon Fraser University, British Columbia

Abstract

A parallel program may be indeterminate so that it can adapt its behavior to the number of
processors available.

Indeterminate programs are hard to write, understand, modify or verify. They are impossible
to debug, since they may not behave the same from one run to the next.

We propose a new construct, a polymorphic abstract data type called an improving value,
with operations that have indeterminate behavior but simple determinate semantics. These
operations allow the type of indeterminate behavior required by many parallel algorithms.

We define improving values in the context of a functional programming language, but the
technique can be used in procedural programs as well.

Capsule review

Alpha-beta game tree searching is a subtle programming problem that has an elegant
functional solution (see, for example, Chapter 9 in Introduction to Functional Programming by
Bird and Wadler, 1988). Typical imperative solutions are much harder to understand.
Unfortunately, the imperative solutions can be modified to run in parallel, while it is hard to
see how to do that with the functional alpha-beta program.

The basic problem is that a parallel search program contains many processes that repeatedly
need to communicate the best answer they have found so far, before they have found a final
result. The 'best answer found so far' changes with time, and its value may depend on
extraneous factors like processor speed. Functional languages are deliberately designed to hide
such issues.

Warren Burton introduces a novel way of expressing and reasoning about this kind of
problem in a functional language. The key idea is the improving value, which can be represented
by a list of monotonically better approximations to the final value. He gives very short
solutions to several combinatorial search algorithms, including parallel alpha-beta, based on
improving values.

Non-determinism is a controversial topic in the functional community. Burton's programs
have an unusual property: the final result of a program may be uniquely determined by its
input, even though the sequence of computations leading to the result depends on the relative
speeds of the parallel processes. This property appears to provide a way to encapsulate non-
determinism within a program module, without making it harder to reason about the rest of
the program. Furthermore, a set of axioms provides a way to reason about the non-
deterministic part of the program.

1-2

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

4 F. Warren Burton

1 Introduction

A parallel program may be indeterminate so that it can adapt its behavior to the
number of processors available. For example, in a combinatorial search, many
different processes may be searching different subspaces in parallel. These processes
may all access and update a global variable that gives information on the best solution
found so far. The current value of the variable may be used to determine if a subspace
may be pruned from the search. Since the processes are not synchronized, the pruning
of a particular subspace may depend on when a shared variable is read. This causes
indeterminate behavior. The overall result of the program may or may not be
determinate.

Indeterminate programs are hard to write, understand, modify or verify. They are
impossible to debug, since they may not behave the same from one run to the next.

We propose a new construct, a polymorphic abstract data type called an improving
value, with operations that have indeterminate behavior but simple determinate
semantics. These operations allow the type of indeterminate behavior required by
many parallel algorithms. Operationally, we may know a lower bound (or upper
bound) for an improving value at any given time. If this bound is sufficient, we may
act on it. Otherwise, the bound may improve as the computation proceeds.

We define improving values in the context of a functional programming language,
but the technique can be used in procedural programs as well. We will use the
notation of the Miranda functional programming language (Turner, 1985 a, b, 1986).

In section 2 we will briefly review the concept of speculative evaluation. The
improving value abstract data type will be introduced in section 3. Several examples
of the use of improving values are given in section 4, including a parallel least-cost
search algorithm that is only seven lines long. In these three sections we will limit our
attention to two types of computing devices: those with a single processor and those
with an infinite number of processors. Since machines of the second type are not yet
on the market, in section 5 we will consider how to make best use of a limited number
of processors. The least-cost search algorithm will again be considered. An axiomatic
definition of improving values is given in section 6, along with several properties of
improving values, and an outline for a simple correctness proof for the least-cost
search algorithm. Section 7 is the conclusion.

2 Speculative evaluation

Often it is necessary for a good parallel algorithm to perform more work in total than
would be performed by a good sequential algorithm for the same problem. Sometimes
the best sequential algorithm may not have a very high potential for parallelism, so
a different algorithm must be used. In other cases, the sequential algorithm may have
a high potential for parallelism, but only if some work is done before it is known to
be required. We are interested in algorithms of the second kind.

Recall that, by definition, any problem in NP can be solved by a non-deterministic
Turing machine in polynomial time. Consider any AT-complete problem, and any
non-deterministic polynomial time algorithm to solve the problem where none of the

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

Encapsulating non-determinacy 5

non-deterministic choices leads to a non-terminating computation. A sequential
algorithm for this problem can be produced by simulating the non-determinism by
backtracking. In the worst case, we will have to do an exhaustive search using the
backtracking algorithm. No other sequential algorithm can solve this problem in
polynomial time in the worst case, assuming P 4= NP.

With unbounded parallelism, we can solve any iVP-complete problem in polynomial
time by considering all of the alternatives of the non-deterministic choices in parallel.
Since no sequential algorithm for any .W-complete problem has a worst-case
polynomial time solution (assuming P + NP), all A^P-complete problems must have
a high potential for parallelism. On the other hand, a sequential backtracking
algorithm could go directly to the solution, solving the problem as quickly as with
unbounded parallelism, in the best case. Hence we have an example of a problem
where we can gain speed through the use of parallelism, in the average case, but only
if we are willing to perform some work that may not be required.

The use of speculative evaluation (Burton, 1985 a, b, 1987) has been proposed for
problems such as this. A speculative computation is a computation that may or may
not be required later. For example, while considering one alternative in a backtracking
algorithm, speculative computations may be exploring other alternatives.

It is important that a programmer be able to assign priorities to speculative
computations, since some but not all speculative computations will normally be
needed eventually. For example, in a speculative backtracking algorithm, one
speculative computation should have a higher priority than another if it is searching
further to the left in the backtracking tree.

All computation that is not speculative is called mandatory. If a speculative
computation is found not to be required, then it may be terminated. If a speculative
computation is found to be required, then it must be upgraded to mandatory.
Mandatory computation must be favored over speculative computation, at least to
the extent that some mandatory computation is always progressing. Higher priority
speculative computation should be favored over lower priority speculative com-
putation. In the degenerate case of a single processor, no speculative computation will
ever be performed. With unbounded parallelism, all speculative computation will be
performed, at least until it is found to be not required.

We note that the problem of locating and terminating unneeded computation may
be expensive, so speculative computation is probably advisable only for highly
parallel systems. A technique similar to garbage collection may be used to collect
unneeded processes (Grit and Page, 1981; Hudak and Keller, 1982).

Another approach to unneeded speculative computation is to let speculative
computation continue to run until the program as a whole is ready to terminate. At
this time all remaining speculative computation can be terminated at once. If no
unneeded speculative computation has a priority as high as any needed speculative
computation, and no speculative computation is ever run when either a mandatory
computation or higher priority speculative computation could be run instead, then
aside from overheads and storage costs, there is no harm in letting speculative
computation continue to run. However, the overheads and storage costs may be
sufficient to argue for the former method. In any case, unneeded speculative

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

6 F. Warren Burton

computation does not need to be terminate with any particular speed provided
speculative computations have been assigned appropriate priority values.

A single function spec is sufficient to introduce speculative evaluation. The type of
spec is tik 4 4 . ,± i 4 .

spec ::(* -> **) -> (* -> **).

Semantically j/>ec is the identity function restricted to functions. That is

specfx=fx.
Operationally, spec will initiate the speculative evaluation of its second argument
before applying its first argument to its second.

Two useful functions are defined in fig. 1. The function spec^or is defined in terms
of the conditional or operator, V. When applied, spec^or will evaluate its first
argument as a mandatory computation and its second argument as a speculative
computation. If the first argument returns True then the speculative computation may
be terminated by the implementation. If the first argument evaluates to False then the
speculative evaluation must be upgraded to mandatory if it has not already
terminated. This function could be useful in a simple backtracking algorithm that
returns a boolean result. The function start will initiate the speculative evaluation of
all of the elements in the list to which it is applied. In Miranda, the colon is an infix
cons operator.

Examples of speculative algorithms may be found in Burton (1985 b).

spec-or a b = spec (or a) b
where
or a b = a V b

start [] = []
start (x:xs) = spec (spec cons x) (start xs)

where
cons a b = a:b.

Fig. 1. Two useful functions for initiating speculative computation.

3 Improving values

Often in combinatorial search algorithms, bounds are maintained to help decide when
pruning is possible. For example, in a branch-and-bound search for a least-cost
solution, a program may keep the value of the best solution found so far. If it is
possible to establish that a subspace cannot return a better solution, then the subspace
can be pruned. Alpha-beta search, and similar algorithms, also maintain bounds. In
all of these cases, the values of the bounds change monotonically as the computation
progresses. We will limit our attention to lower bounds. Upper bounds can be
handled in a similar manner.

We proposed the use of the polymorphic abstract data type improving for a lower

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

Encapsulating non-determinacy 1

bound that may improve (become a tighter bound) over time. The type signature is
given in fig. 2.

abstype improving *
with
make ::*-»• improving *
break :: impro ving * -> *
minimum :: improving * -> improving * -> improving *
spec^max :: improving * -»• improving * -> improving *.

Fig. 2. Signature of type improving.

The functions wa&e and break are type transfer functions, and minimum and
spec^max compute the minimum and maximum of improving values, respectively,
with some added laziness.

The function minimum is strict in both its arguments, but spec_max is strict only in
its first argument. The second argument of specmax is evaluated as a speculative
computation. We will be able to use the result returned by spec-max before its second
argument has been evaluated if its first argument provides sufficient information, just
as we are able to use the result returned by spec^or before its second argument has
been evaluated provided its first argument is True. In general, once the first argument
of spec-max has been evaluated, we will have a lower bound on the result. If this is
not sufficient, we can wait for the bound to improve, which will happen when the
value of the second argument is available.

For example,

break {minimum {make 5) {spec_max {make 7) J-)) = 5.

Here 1 denotes an undefined value or a non-terminating computation. We cannot test
a value for equality with 1, since the halting problem is undecidable. In practice, we
are not really concerned with handling non-terminating computations or undefined
values. However, if any subexpression of an expression can be replaced by J. without
changing the value of the expression, then the subexpression need not be evaluated.
We will refer to the value of {spec_max {make 7) _L) as 'at least 7'. In general,
{spec-max {make a) b) may be approximated by 'at least a' = {spec^max {make a) _L).
If this approximation is sufficient for our purposes, then b need never be evaluated.
If we need a better approximation, then b will need to be evaluated. By analogy, when
computing {hd{a:b)), the value of b is not required because an approximation to a list,
with the first element defined, is all that the head function, hd, requires.

The definition of improving values is asymmetric in two ways. First, spec-max is
asymmetric in its arguments. That is, it is not commutative when viewed as a binary
operation. For example,

break {minimum {make 5) {spec-max J. {make 7))) = J_.

It would be nice if this expression would evaluate to 5. However, to implement this
would require the implementation of nonsequential functions. An example of a non-

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

8 F. Warren Burton

sequential function is the parallel-or function, defined so that {paralleLor True J.) =
{parallel-or L True) = True. Since parallel-or a b must return True if either a or b
evaluate to True, both arguments must be evaluated in parallel with fair scheduling,
or at least concurrently. This tends to be much more expensive than speculative
evaluation.

If we had a paralleLmax operation, denned so that

break {minimum {make 5) {paralleLmax {make 7) J.)) = 5
and

break {minimum {make 5) {paralleLmax A. {make 7))) = 5

then we could define paralleLor by

parallel-or a b = break {minimum {make True) {paralleLmax {make a) {make b)))

assuming that False < True. Notice that as soon as either a or b is known to be True,
we have sufficient information to arrive at the overall result. The use of minimum is
required since a polymorphic paralleLmax operation would not know that True is the
largest possible boolean value.

The second way in which improving values are asymmetric is that minimum is strict
in both of its arguments, while spec_max is strict only in its first argument. For
example,

break {spec_max {make 5) {minimum {make 2) 1)) = _L.

Again, it would be nice if we could restore symmetry and produce a more general
abstract data type. Suppose we replace minimum with a spec^min operation, and that
spec^min a b will return an improved improving value corresponding to the minimum
of a and b, but with the further property that we need not evaluate b if a gives
sufficient information. The problem with this is that we can construct a general
minimax tree. The best parallel evaluation strategy for minimax trees is still an active
research area. The most common sequential method for evaluating minimax trees is
to use a sequential alpha-beta search algorithm. When the above expression

break {spec_min {spec_max ab) {spec^max cd))

is evaluated using an alpha-beta search, a, b and c will be evaluated first, and then,
if required, d will be evaluated. However, with our asymmetric operators (i.e.
minimum rather than spec-miri),

break {minimum {spec^max a b) {spec^max c d))

both a and c will be evaluated initially, since minimum is strict in both of its arguments
and spec-max is strict in its first argument. If the value of a is {make 5) and the value
of c is {make 2), then clearly the value of d will be required. If d is {make 3), then the
value of the overall expression can be computed as 3, without evaluating b. In this
case our evaluation strategy is more efficient than alpha-beta. We do not claim that
our operators are better in general for searching minimax trees, but argue that using
alpha-beta search to implement a more general improving abstract data type is not

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

Encapsulating non-determinacy 9

what we want. In general, our approach is simpler than alpha-beta, and powerful
enough to implement alpha-beta (see section 4).

As a general rule, the right argument of an application of spec-max need not be
evaluated if the overall result of the computation containing the application can be
computed without this value. There are some minor exceptions. For example, the
value of

break (minimum (spec_max (make 5) -L) (spec_max (make 5) (make 4)))

will be 1. The reason for this is that minimum is commutative. In order to look at the
4 without being caught by the 1, minimum would have to be either non-sequential or
noncommutative. Similarly,

break (minimum (spec-max (make 5) J.) (make 5))

is J_, since we want
spec^max (make 5) (make 4) = make 5

to hold. A precise formal definition of the improving value operators is given in
section 6.

In a typical application of improving values, spec^max is likely to be applied to a
pair of arguments where the left argument is known to be a lower bound for the right
argument. The left argument will often be of the form (make a), while the right
argument will usually be a complicated recursive expression. If the lower bound given
by the left argument is large enough, then the right argument will not need to be
evaluated. This is how pruning occurs in combinatorial searches.

An improving value can be represented by a strictly increasing list of lower bounds.
The final element of the list will be the true value that previous list elements bound.
Infinite lists and partial lists will be considered in section 6. We will assume that for
any two values a and b, the value of a < b is defined. This assumption is discussed
further in section 6.

With this representation, the improving abstract data type can be implemented as
shown in fig. 3. The function make produces a singleton list, and break returns the last
element of a list. The spec_max function starts the speculative evaluation of its second
argument and then appends its arguments, removing any values in the second list that
are less than or equal to the final element of the first list. This ensures that the list of
approximations remains strictly increasing. On the other hand, minimum merges two
lists, removing duplicates in order to maintain strict monotonicity. In addition, the
merge ends as soon as either list ends. Notice how the second and third equations
defining short-merge discard the value of one of the arguments. This is where the
pruning of unneeded computation takes place. For example,

minimum (make 4) (specjmax (make 3) (make 5))

will cause the lists [4] and [3,5] to be merged to produce [3,4], with the 5 thrown away.
As a second example,

minimum (make 4) (spec-jnax (make 5) 1)

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

10 F. Warren Burton

improving * = = [*]

make a = [a]

break x = last x

spec-max xs ys = spec (monotonic—append xs) ys

minimum xs ys = short-merge xs ys

monotonic_append xs ys = xs + + dropwhile (< last xs) ys

short-merge [] [] = []
short-merge (x:xs) [] = []
short-merge [] (y.ys) = []
short-merge (x:xs) (y.ys)

= x:short-merge xs ys, if x = y
= x:short-merge xs (y.ys), if x < y
= y.short_merge (x:xs) ys, if x > y

Fig. 3. A simple implementation of improving.

will be represented by the singleton list [4]. The 5 will cause the second list to be
discarded before the _L is encountered.

We will sometimes refer to the elements of a list representing an improving value as
a progress report. Each progress report gives some new information about the final
value of an improving value. An improving value will continue to produce progress
reports until either some progress report contains sufficient information or a final
value for the improving value is produced. It is easy to see that every element of a list
representing an improving value, except for the final element of the list, must at some
time have occurred in a left argument of an application of spec-max. This property
is trivially true of the singleton lists produced by make, and is preserved by minimum
and spec_max. Hence we may also refer to a value in the left argument of a call to
spec-max as a progress report.

If the abstract type improving is implemented as a language primitive, then a more
efficient implementation than the one described above is possible. Each improving
value is represented by a pair consisting of the best approximation found so far and
a flag indicating whether this is a final value. Each improving value has an associated
process that will update the approximation as required and supply the latest value to
other processes upon request. This saves storing more than one value and saves other
processes the cost of examining out-of-date values before coming to the most recent
value. In some cases this can significantly reduce the amount of communication
between processes. However, if this approach is to retain deterministic semantics,
then it is necessary that the domain used for improving values be a flat domain, as
discussed in section 6, and that the order used be a total order, for example so that
distinct nodes with identical cost be ordered in a unique way, regardless of which is
encountered first. This can be enforced by making make force total evaluation of its
argument, as outlined in section 6, and allowing only the standard ' < ' relation to be
used in improving values.

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

Encapsulating non-determinacy 11

A dual abstract data type, improving' may be defined using a ' > ' comparison
rather than ' < '. This abstract data type will have operations make', break',
maximum' and spec-min'. In Burton (1989) it was suggested that the improving
abstract type be parameterized with an order relation. However, if other than a total
order is used, then the theoretical foundations discussed later fail to hold, and the
improved implementation suggested above may produce non-deterministic results.

If we want a type improving t, for some type t, except we want to use an order
relation R rather than ' < ', then it is sufficient to define a function/:: f-> t', for some
type t', such that (fx) < (fy) holds whenever xRy does. It is now possible to pair
each value x with/* and use the type improving (f, i), since (fx, x) < {fx, y) whenever
(fx) < (fy) with the standard ' < ' comparison in Miranda. On the other hand, if
(fx) = (fy) then (fx, x) < (fx, y) will hold if and only if x < y with the default
ordering on type t. Two improving values are ' equal' only if they are identical.

One other obvious extension to the improving value abstract data type would be the
addition of comparison operators, such as less defined by

less [] [] = False
less (x:xs) [] = False
less [] (y.ys) = True
less (x:xs) (y.ys)

= less xs ys, if x = y
= less xs (y.ys), if x < y
= less (x:xs) ys, if x > y

If we wanted a ' less than or equal to' test, we could replace the first line with

less-equal [] [] = True

and change names throughout the rest of the function definition. An early version of
improving values included comparison operations. However, we found we never used
them.

4 Examples

In this section we will consider parallel versions of three search algorithms.

4.1 Least-cost search
With many combinatorial problems it is necessary to search a solution space for the
best solution to the problem. We will assume that 'best' means smallest and call the
measure of a solution the cost of the solution. Horowitz and Sahni (1978) present a
least-cost search algorithm for this problem. Assuming the costs of leaves and lower
bounds for internal nodes are all distinct, this algorithm expands exactly the same
nodes as the A* algorithm in the case of a single processor, which is optimal (Nilsson,
1971).

We will assume that the solution space is organized as a tree with all possible
solutions at leaves. For any node node, is-leaf node is a bool indicating whether or not
the node is a leaf. For any leaf node, cost node is the cost of the solution. If the node

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

12 F. Warren Burton

is not a leaf, then children node is a list of the children of node and lower abound node
is a lower bound on the least-cost solution to be found in the subtree rooted at node.
We will assume that any node that is not a leaf will have at least one child. Finally,
nil-node is a special node such that niLnode < node for any node, node, that may be
encountered during a search. Otherwise nodes are ordered arbitrarily.

search root
= (cost root, root), if isAeaf root
= subtreesearch, otherwise

where
subtreesearch = (foldrl mini-map search-children) root

Fig. 4. An exhaustive search algorithm.

Let us first consider a simple exhaustive search algorithm to solve this problem.
Such an algorithm is given in fig. 4. The function returns an ordered pair, consisting
of the cost of the best solution together with that solution. Note that if costl < cost2
then (costl, nodel) < (cost2, node!) in Miranda. We should note that ' •' is an infix
function composition operation and foldrl is a function that will apply a binary
function to elements of a list, reducing the list to a single value (e.g. foldrl (+) xs will
compute the sum of the elements of the list xs). We will use mini and maxi for binary
minimum and maximum functions, respectively. The function map will apply a
function individually to elements of a list, producing a new list.

Fig. 5 gives an equivalent (but slightly less efficient) version of this search. We know
that lower-bound root is a lower bound on the cost of the node returned by searching
the subtree rooted at root and, in case it is a tight lower bound, nil-node is less than
any other node. It follows that

(lower-bound root, nil-node) < (foldrl mini • map search • children) root

so the two algorithms must return the same result.

search root
= (cost root, root), if is-leaf root
= maxi bound subtreesearch, otherwise

where

bound = (lower-bound root, niLnode)
subtree-search = (foldrl mini-map search • children) root

Fig. 5. A modified exhaustive search algorithm.

A minor further modification, to introduce improving values, yields the least-cost
search algorithm in fig. 6. Notice how the search of each subtree starts by providing
a progress report in the form of a lower bound on the best solution to be found in
the subtree. If a better solution has been found anywhere in the tree, this progress
report is sufficient for the subtree to be pruned.

In the case of a single processor, where no speculative evaluation is performed until
it becomes mandatory, only those nodes with a lower bound less than or equal to the

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

Encapsulating non-determinacy 13

search = break-search'

search' root
= make (cost root, root), if isJeaf root
= spec-max bound subtreesearch, otherwise

where

bound = (make (lower-bound root, nil-node))
subtree^search = (foldrl minimum • map search • children) root

Fig. 6. A least-cost search algorithm.

cost of the optimal solution can ever be expanded. Hence, in the sequential case this
algorithm is optimal with respect to the number of nodes expanded, assuming all
costs and lower bounds are distinct. With an unbounded number of processors, all
paths are searched in parallel, at least until a least-cost solution is found.

We should note that we have associated an improving value with each internal node
in the tree we are searching. Each pruned node is pruned at the level where a better
solution exists in the subtree rooted at its sibling node. If each improving value is
represented by the best approximation found so far, and a flag indicating whether this
is a final value, as suggested at the end of section 3, then this approach can
considerably reduce communication bottlenecks.

On the other hand, some branch-and-bound algorithms may maintain a single
global bound, which can be a bottleneck in massively parallel computer systems. It
does not appear to be possible to use a single global bound with the improving value
approach. The reason is that the improving value representing the global optimal
value depends on the search space as a whole. The final value cannot be known until
the search has been completed. On the other hand, if a node is not to be pruned, we
need the final value of the global bound to establish this fact, because if the global
bound is still improving, it can improve to the point where the subtree in question can
be pruned. In other words, we need the overall result to determine if a local search
can be pruned, but need the local search result to compute the overall result if the
local search is not to be pruned.

4.2 Breadth-first search
Breadth-first search can be considered a special case of least-cost search, where the
cost of a solution is its depth in the tree. We will consider a breadth-first search where
a subtree may contain no solutions and solutions may be found at other than leaf
nodes. We will require that the left-most solution node be returned in case there are
several solutions at the same depth.

Fig. 7 shows a parallel breadth-first search algorithm. The algorithm takes a node
as a parameter and returns a pair consisting of the depth of a least deep solution and
the solution itself. We assume that we are given two functions: issolution, which
determines whether a node is a solution to the problem of interest, and children, which
will generate a list of the children of a node. As with the least-cost search algorithm,
we assume the existence of a node niLnode. We also assume the existence of a value

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

14 F. Warren Burton

breadth-first = break • search 0
search depth root

= make (depth, root), if issolution root
= make (infinity, nil-node), if kids = []
= spec^max progress^report solution, otherwise

where
kids = children root
progress-report = make (depth, niLnode)
solution = foldrl minimum (start [search (depth +1) k\k*-kids])

Fig. 7. A parallel breadth-first search algorithm.

infinity which is greater than the depth of any reasonable search. This simplifies the
algorithm and allows us to use the built-in order relation ' < '. Notice that we have
used the function start denned in fig. 1 to initiate the parallel searching of all subtrees
when the subtree root has been found not to be a solution. A subtree is pruned
whenever a progress report is sufficient to eliminate it from consideration. That is, if
the local search is at a greater depth than a known solution, it is terminated.

4.3 Alpha-beta search
As a final example we will consider a parallel alpha-beta search algorithm for
searching a game tree, based on the sequential alpha-beta search algorithm given in
Horowitz and Sahni (1978). For simplicity, the algorithm returns the value of the best
move, not the move itself. Again start is used to initiate the searching of subtrees. The
algorithm is given in fig. 8.

alpha-beta root alpha beta
= eval root, if is_leaf root
= break (minimum (make beta) best), otherwise

where
best = (foldrl spec^max • map make) alphas
alphas = spec (scan maxi alpha) (start searches)
searches = [— (alphaJbeta child (— beta) (— new_alpha)) \

(child, new^alpha) -«- zip2 (children root) alphas]

Fig. 8. An alpha_beta search algorithm.

We assume the existence of three functions. The function isAeaf determines
whether a node is a leaf. For leaf nodes eval computes the value of the node to the
player whose turn it is, and for other nodes children computes the children of the node
(of which we assume that there is at least one).

The function scan is a commonly used function, similar to foldrl, but returning a
list of 'partial sums' rather than just the final 'sum'. It is defined by

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

Encapsulating non-determinacy 15

scan f a xs
— a: scan' f a xs

where
scan' fa [] = []
scan' f a (x:xs) = scan f{f a x) xs

The function zip2 maps two lists into a list of corresponding pairs, ending as soon as
either list ends.

The expression {alpha-beta node alpha beta) searches for the value of the best move
for the player whose turn it is, subject to the constraint that only moves with value
between alpha and beta are considered. We know that by making a different move,
we can get to a position with value at least alpha, and also know that our opponent
can keep us from getting to a position of value greater than beta by making a different
move earlier. The initial call is of the form

alpha^beta root { — m)m

where m is chosen such that for any position, p,

— m< eval p < m

The list alphas is the list of alpha values that result after the search of each child.
The recursion allows each element of this list to be used as a bound in the
computation of the next element.

Parallel algorithms for minimax searching is an active area of research. This simple
parallel alpha-beta algorithm is probably not the best solution to the problem. Our
notation makes it easier to understand and verify algorithms, but fundamental
problems of finding the best algorithm for a given problem remain.

5 Priorities

If all computation is mandatory then scheduling is not a difficult problem, assuming
we have a shared memory of sufficient size so we do not need to worry about
communication between processors or running out of memory. There are simple
scheduling algorithms (Eager et al., 1989) that are within a factor of two of being
optimal, in the worst case, with respect to the time required to finish all computation.

This is not true with speculative computation. If we have n processors and a
potential for parallelism that is much higher than n, then it is possible for a program
to have a speedup approaching n if all processors do mandatory work or speculative
work that will later become mandatory almost all of the time. On the other hand, if
one processor does mandatory work and all other processors spend almost all of their
time on speculative computation that will prove to be unneeded, then the speedup
may not be much greater than one. Clearly, given a limited number of processors, we
prefer to do that speculative work that is most likely to be required later. In general,
it is not possible for the implementation to determine which speculative computations
are the most worthwhile.

The solution to this problem is to let the programmer specify priorities. We

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

16 F. Warren Burton

can introduce a new function, priority of type nutn^* ->- *. The semantics of priority
are

priority n x = 1 , if n = ±
= x, otherwise

If priority is called within a speculative computation, it initiates a new speculative
computation with priority n, where n is any number, to compute x. The higher the
value of n, the higher the priority of the speculative computation. All speculative
computations started with spec have higher priority than any started by priority. The
priority of a speculative computation cannot be changed, except that the speculative
computation may become mandatory. In particular, when one speculative com-
putation finds it needs the result of another, possibly lower priority, speculative
computation in order to proceed, it must wait for the second speculative computation
to finish (unless, of course, the waiting computation becomes upgraded to
mandatory). Of course, if priority is invoked by a mandatory computation, then the
resulting computation will immediately become mandatory, since it would not have
been invoked if its result were not needed.

As an example, we can modify the least-cost search algorithm in fig. 6 by changing
the subexpression

{foldrl minimum • map search • children) root
to

(priority (— (lower_bound root)) • foldrl minimum • map search • children) root

so that nodes that are more promising (have a smaller lower bound) are expanded
with higher priority. (Of course, we would want to factor out the computation of
lower_bound root and compute it only once.)

6 Formal properties

We will assume that the values used in improving values are finite in size and come
from a fiat domain. That is, values are either completely defined or are JL. An example
of a nonflat domain would be the domain of lazy lists. For example, the lazy list 1:1
has 1 as its first element, but any attempt to evaluate the tail of the list will result in
a nonterminating computation or an undefined result.

If we allow values from a nonflat domain to be improving values, we have some
awkward special cases. For example, with lists ordered in the obvious way,

break (minimum (make (1:1)) (spec^max (make (1:1)) (make (2:_L)))) = 1

since the comparison of (1:1) with (V.I.) will not terminate. On the other hand,

mini (1:1) (maxi (1:1) (2:1)) = 2:1.

In this case, maxi is applied first and the nonterminating comparison does not arise.
Similar problems can arise with infinite lists. We would like the improving value
operations to be at least as well defined as the corresponding operations on ordinary
values.

Sometimes it will be useful to have improving values where values come from a flat
subdomain of a nonflat domain. For example, we might want to use improving lists

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

Encapsulating non-determinacy 17

in a context where we know that all lists will be finite and well defined. In section 4,
we used improving ordered pairs. The domain of ordered pairs is not flat, since it
includes elements such as (1,1) . However, we only used fully defined ordered pairs.
In cases such as these, we must restrict ourselves to a flat subdomain. If type
improving is implemented as suggested at the end of section 3, the restriction to finite,
fully defined values can be enforced by requiring make to fully evaluate its argument.
However, if the base domain is not a flat domain, the theoretical results that follow
do not apply. For example, it will no longer be the case that {break • make) = id if
make forces complete evaluation of its argument. The results in the remainder of this
section depend on values being finite and either fully defined or completely undefined
before make is applied.

With the implementation of type improving given in fig. 3, a number of different
lists may all represent the same abstract improving value. Recall that lists are strictly
increasing sequences of lower bounds. If a and b are any two well-defined values with
a < b then it is not possible to distinguish a:b:xs from b:xs provided both are valid
representations for improving values. Since spec-max and minimum both examine list
elements sequentially, lists of the form xs + + X -I- + ys, where ' + + ' is an infix
append operator, cannot be generated, although lists of the form xs + + 1 can be
produced. Finally, while both [1] and 1 are possible representations for improving
values, a:[±] is not a possible representation. For example, spec^max {make a) {make
1) will produce an improving value represented by a:±, even though make 1 produces
[-L]. We cannot distinguish between the improving values represented by 1 and [J.].

With these observations, we can divide representations into equivalence classes. We
have five cases to consider: fully defined finite lists; partial lists with at least one
element; -L; infinite lists with an upper bound; and infinite lists without an upper
bound.

We will let a! represent the class of all finite, fully defined lists with final value a.
If xs is a member of the equivalence class a\, then we will represent the equivalence
class that includes xs + + 1 by a + ?. We will read a! as 'exactly a', and a+ ? as 'a t
least a\ Both [_L] and _L belong to the same equivalence class which we will represent
by 1 .

Finally, we have two cases to consider with infinite lists. An infinite list having no
upper bound on the size of its elements is in an equivalence class represented by co.
For example foldrl spec-max {map make [1. .]) will generate oo. An infinite list where
the elements have a least upper bound, a, is a member of the equivalence class a + ?
considered above. Since the list is infinite and strictly increasing, the upper bound can
never be reached.

Axioms for improving values are given in fig. 9. In this figure, a and b may represent
any values and x may represent any improving value. These axioms are complete, in
that they fully specify the result for each possible combination of arguments.

We can prove that these axioms are satisfied by the implementation given in fig. 3
using inductive proofs similar to those found in Bird and Wadler (1988, chapter 7).
For example, to prove

minimum a\ 6 + ? = if a < b then a! else b+ ?

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

18 F. Warren Burton

make ± = J.
make a = a!

break _L = _L

break a\ = a
break a + ? = 1
break oo = JL

minimum x y = minimum y x
minimum A. x = _L
minimum co x = x
minimum a\ b\ = if a < b then a! else ft!
minimum a\ b+1 = if a < b then a! else ft + ?
minimum a+1 b+1 = if a <b then a + ? else ft + ?

specmax _L x = _L
spec_max oo x = oo
spec_max a+1x = a+1
specmax a\ ± = a + ?
spec_max a! oo = oo
spec_max a! ft! = if a < ft then ft! else a!
spec_max a\ b+1 = \f a <b then ft+ ? else a + ?

Fig. 9. Axioms for type improving.

we need to consider a number of cases. The representation of a! must be of the form
x:xs where xs may or may not be the empty list. Similarly, the representation of b+1
either must be of the form y:ys+ + 1, where ys may or may not be empty, or must
be an infinite list bounded about by b. In the case where ft+ ? is represented by an
infinite list we must recognize that its representation is the limit of a sequence of
representations for cx + ?, c2 + ?,..., where ct < c{+1 < b for all i ^ 1, but for any
d < ft, there exists / ^ 1 such that / ^ / implies c(> d. Finally, for each of these cases
we must consider the cases x < y, x = y, and x > y.

With these axioms, we can prove a number of interesting properties. These include:

make {mini a ft) = minimum {make a) {make b) (1)

make {maxi a ft) Cspec_max {make d) {make ft) (2)

mini {break a) {break ft) C break {minimum a ft) (3)

maxi {break a) {break ft) = break {spec-max a ft) (4)

break • make = id (5)

make • break C id (6)

We can use these properties to prove the correctness of efficient combinatorial
search algorithms using improving values. To show that an implementation meets its
specification, we show that specification C implementation. That is, where the

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

Encapsulating non-determinacy 19

specification is defined, the implementation must agree with it, but the implementation
may be stronger. For example, we may take an exhaustive search algorithm as a
specification for a more efficient search algorithm that avoids searching unnecessary
subspaces. In these cases, the implementation must exceed the specification, because
nonterminating computations in the pruned portion of the search space will not be
encountered by the implementation, but would cause the specification to fail to
terminate.

If we take the algorithm in fig. 4 as a specification for the more efficient least-cost
search algorithm of fig. 6, then we can easily prove the least-cost search algorithm
correct. First we recall that the algorithm in fig. 5 is equivalent to the one in fig. 4.
Using properties 6, 1, 2 and 5 above, it is easy to show that the least-cost search
algorithm meets its specification.

7 Conclusion

We have seen that the polymorphic abstract data type improving allows us to express
various combinatorial algorithms in a manner that is simpler than most previous
expressions, yet at the same time introduces parallelism into the problem.
Furthermore, the type improving has an axiomatic specification from which we can
derive several important properties, which in turn can be used to prove the
correctness of programs using the type.

As an example, we presented a short program for a parallel least-cost search that
is optimal on a single processor and can make good use of any number of processors.
A correctness proof of the function was outlined and can be easily completed by the
reader.

Acknowledgements

Discussions with N. S. Sridharan on methods for maintaining bounds in parallel
combinatorial search algorithms contributed to the development of the idea of
improving values. The author would also like to thank Simon Peyton Jones and Ken
Jackson for numerous helpful comments on earlier drafts of this paper. In particular,
Ken Jackson made an observation that simplified the set of axioms considered in
section 6.

This work was supported by the Natural Science and Engineering Research
Council of Canada. An earlier version of this paper appeared in the Proceedings of
the 1989 Conference on Functional Programming Languages and Computer Archi-
tecture. Copyright 1989, Association for Computing Machinery, Inc., reprinted by

Miranda is a trademark of Research Software Ltd.

References

Bird, Richard and Wadler, Philip. 1988. Introduction to Functional Programming. Prentice Hall.
Burton, F. Warren. 1985a. Controlling speculative computation in a parallel functional
programming language. In Proceedings of the Fifth International Conference on Distributed
Computing Systems, pp. 453-8, Denver, Colorado (May).
Burton, F. Warren. 19856. Speculative computation, parallelism, and functional programming.
IEEE Trans. Comput., C-34(12): 1190-3 (Dec).

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

20 F. Warren Burton

Burton, F. Warren. 1987. Functional programming for concurrent and distributed computing.
Comput. J., 30(5): 437-50 (Oct.).
Burton, F. Warren. 1989. Indeterminate behavior with determinate semantics in parallel
programs. In Proc. Functional Programming Languages and Computer Architecture.
Eager, Derek L., Zahorjan, John and Lazowska, Edward D. 1989. Speedup versus efficiency
in parallel systems. IEEE Trans. Comput., 38(3): 408-23. (Mar.).
Grit, D. H. and Page, R. L. 1981. Deleting irrelevant tasks in an expression-oriented
multiprocessor system. ACM Trans. Prog. Lang, and Syst., 3(1): 49-59 (Jan.).
Horowitz, Ellis and Sahni, Sartaj. 1978. Fundamentals of Computer Algorithms. Computer
Science Press.
Hudak, Paul and Keller, Robert M. 1982. Garbage collection and task deletion in distributed
applicative processing systems. In Proc. 1982 ACM Symposium on LISP and Functional
Programming, pp. 168-78, Pittsburgh, Penn. (Aug.).
Nilsson, Nils J. 1971. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill.
Turner, David A. 1985a. Functional programs as executable specifications. In C. A. R. Hoare
and J. Shepherdson (editors), Mathematical Logic and Programming Languages, pp. 29-54.
Prentice-Hall.
Turner, David A. 1985b. Miranda: A non-strict functional language with polymorphic types.
In Jean-Pierre Jouannaud (editor), Functional Programming- Languages and Computer
Architecture, Lecture Notes in Computer Science, 201, pp. 1—16. Springer-Verlag.
Turner, David A. 1986. An overview of Miranda. SIGPLAN Notices, 21(12): 158-66 (Dec).

F. Warren Burton, School of Computing Science, Simon Fraser University, Burnaby, British
Columbia, Canada V5A IS6

https://doi.org/10.1017/S0956796800000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000046

