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Abstract

In many large shallow lakes across the globe, the surface wind field drives the hydrodynamic
process directly through the momentum and energy exchange at the air–water interface. Numer-
ous field measurements, experiments and modeling show that wind-driven hydrodynamic
disturbances have profound impacts on the structure and function of lake ecosystems. In this
article, we review the response of the shallow lake to the wind-driven wave and flow field, which
may accelerate the sediment resuspension and nutrient cycling and, in turn, affect the concen-
trations of nutrients and dissolved oxygen. Furthermore, the life activities of bacterioplankton,
plankton and fish in the aquatic ecosystem are closely related to these water-quality factors.
Althoughwe have a developed understanding of the physical processes and biogeochemical cycles
of lakes by process-based modeling, the most basic wind-driven hydrodynamic process in some
lake models is imprecise. Comprehensive results of physical parameterization, including the wind
stress and wind drag coefficient, with their mathematical expressions for depicting the wind-
driven force in the hydrodynamic model of lakes are synthesized. Some of these expressions are
empirically determined without considering the dynamic environment, and expressions based on
physicalmechanisms have beenwidely recognized. Additionally, the adaptation standard ofwind-
driven force parameterizations to inland lake models under light winds is provided. This article
highlights the importance of heterogeneous wind field variability and suggests future studies on
thewind fields in extreme climates, which could also cause damage to deep lake ecosystems and the
biodiversity effects of wind wave turbulence.

Impact statement

With concerns about extreme events and ecosystem restoration on large shallow lakes growing,
the wind is often the focus for driving the hydrodynamic process and profoundly impacting
water quality and the ecosystem. In this study, we review how the wind field disturbs the flow
movement and the sediment at the bottom of the shallow lake, as well as the chain impact on the
aquatic organism, such as the bacterioplankton, plankton and fish. In order to better understand
the wind-driven hydrodynamic process with the help of the model, we summarize the math-
ematical expressions of the wind field for depicting the wind-driven force in the hydrodynamic
model of lakes. Furthermore, the hurricanes’ impact on lakes and the wind-induced impacts on
biodiversity are put forward prospectively. Our work, therefore, points out the direction for
future research across the lake ecosystem.

Introduction

Owing to the vast water area and small vertical depth of large shallow lakes, wind force is inevitably
one of the most crucial parts of the hydrodynamic process (Li et al., 2017). The effects of wind
fields on the motion of water, possibly leading to nutrient redistribution and food web recon-
struction in lakes (Stockwell et al., 2020), are raising concerns, especially for dealing with severe
eutrophication as well as water-quality degradation (Shi et al., 2022). In this study, we clarify the
characteristics of the wind-driven hydrodynamic process of shallow lakes and their profound
influence on the water quality and ecological process. Then, the mathematical expression of the
wind-driven force in the hydrodynamic model is summarized. Additionally, the response of
shallow lakes to extreme climates and the potential impacts of wind turbulence on biodiversity are
put forward prospectively.

Impact of wind force on the large shallow lake ecosystem

Here cluster analysis of a wind-driven large shallow lake was obtained from Figure 1.
The keywords were “wind” and “lake.” The larger the node circle, the stronger the influence of
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the keyword in the related research, and the more connections
between the nodes indicated that the keyword was more closely
related to other keywords. The results showed that “wind” and
“lake” were the core of related research. Besides, “large shallow
lake,” “dynamic” and “model” were the hot research object, process
andmethod, respectively; “water quality” and “eutrophication”were
important issues people were concerned. In addition, “wind-driven
circulation” and “sediment resuspension,” “phytoplankton,”
“nutrient” and “cyanobacteria” were the focal processes or objects
in the study of hydrodynamic–water quality–ecological system of
lakes.

Wind-driven hydrodynamics

Wind speed and direction dominate the flow movement of large
shallow lakes straightforwardly. The water velocity of shallow lakes
increases with stronger winds; meanwhile, the surface velocity is
generally higher than the bottom velocity, and the vertical inter-
layer velocity distribution is approximately logarithmic (Zheng
et al., 2015). Besides, reverse flows usually occur in each layer of
the water body except the surface under dominant winds. The
mesoscale shear appears at the middle layer and the reverse flow
is dominated by wind speed, while the large-scale shear appears at
the bottom layer and the reverse flow is dominated by wind
direction (Li et al., 2017). The surface flow pattern in large shallow
lakes will be steady under a long-term stable wind field, and the
development of wind-induced flow in lakes could be divided into
three stages: the flow direction is nearly consistent with the dom-
inant wind direction at first, then it gradually deviates from the
dominant wind direction, and, finally, a relatively stable circulation
forms. The duration of wind field is different when each layer of the
water body reaches a steady state; the closer the water body is to the
surface, the shorter the time required. Generally, the duration of
wind field in the same direction in Taihu Lake is 10–11 hours when
the wind-induced flow is stable (Ma et al., 2013). Actually, the wind

speed and direction change continuously in a natural wind field.
The wind direction of a high frequency will have a more compli-
cated influence on the shear of flow field, which means that the
reverse flow field occurs more frequently in all layers of the water
body (Li et al., 2017).

Impacts of wind-driven hydrodynamics on water quality and
ecological activity

The wind-induced flow movement affects the temporal and spatial
distribution ofwater quality in the lake by affecting processes such as
sediment resuspension and dissolved oxygen concentration
(Roberts et al., 2019). The sediment resuspends when the shear
force of the flow on the surface of the sediment is higher than the
critical shear force, which then accelerates the circulation of nutri-
ents and the migration and diffusion of pollutants in the overlying
water body (Lövstedt and Bengtsson, 2008). Compared with light
and moderate winds, shallow lakes under strong winds are accom-
panied by greater shear force, significantly increasing suspended
sediment concentration. The resuspension of sediment is also
accompanied by a change in the physical and chemical properties
of overlying water and sediment, including pH, dissolved oxygen
and redox potential. The nitrification and denitrification in water
are intense under the disturbance of wind field, which can promote
the conversion of different forms of endogenous nitrogen in shallow
lakes and might enhance endogenous phosphorus rapidly by even
tens of times than before the disturbance (McCarthy et al., 2016; Shi
et al., 2022). Note that the input of particulate and interstitial P into
the water body by wind energy may be in the orders of magnitude
greater than those of external loading inputs, and the release rate is
directly related to the intensity of sediment disturbance (Huang
et al., 2016). The redox environment at the sediment–water interface
may change continuously owing to the disturbance of suspended
sediment, which can strongly affect the binding of iron, aluminum,
calcium and other metal ions with phosphate (McCarthy et al.,

Figure 1. Cluster analysis and keywords co-occurrence of a wind-driven large shallow lake ecosystem. A total of 6,917 papers on the response of lakes to wind field were obtained
from Web of Science Core Collection (WOSCC) published during 1985 to 2023; the keywords were the “wind” and “lake.”
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2016). Furthermore, wind direction affects nutrient distribution by
means of different lake flows (Huang et al., 2016). The concentration
of dissolved oxygen in the water body is enriched when absorbing
more oxygen from the air throughwind andwave processes, and the
rate of reaeration increases with increasing wind-induced hydro-
dynamic force. Nonetheless, the extinction of algae will deplete
oxygen in the water, and wind directly drives algae migration and
impacts the horizontal and vertical distribution of dissolved oxygen
concentration in different regions, which in turn limits the redox
process in lakes (Deng et al., 2016).

Ecological activities in shallow lakes are also affected by wind-
driven lake environments. There are differences in the adaptability
of phytoplankton to a series of changes in lake environments,
resulting in an entirely new competition for nutrients, light energy
and buoyancy regulation (Mesman et al., 2022). Therefore, bio-
logical species that can quickly absorb and store nutrients and grow
well in low light can get growth advantages, and eventually, the
biological community is restructured (Ptacnik et al., 2010). As a
result of an hurricane, the dominant algae in Lake Okeechobee, a
shallow tropical lake, changed from a cyanobacteria community
that is easily limited by nutrients to a diatom community that is
tolerant to weak light (Stockwell et al., 2020). The phytoplankton
biomass in the downwind direction is higher than that in the
upwind direction, and the gap increases linearly with an increase
in wind speed (Cyr, 2017). As for the zooplankton, the respiration
rate under wind and wave disturbance increases by 90% compared
with that under static conditions (Alcaraz et al., 1994). Higher
metabolic rate and energy consumption together caused by exercise
(Visser et al., 2008) has an adverse effect on the maintenance of
biomass. It has gradually become a consensus that there is a “dome

effect” of hydrodynamics on plankton, that is, hydrodynamics
promotes the growth of plankton in a certain range of low wind
and wave intensity, but not if the intensity exceeds (Mackenzie
et al., 1994). However, in comparison, the phytoplankton commu-
nity is less sensitive to wind and waves, which may be related to its
high abundance, high potential for rapid growth and strong ability
to adapt to evolution through gene mutation (Zhou et al., 2016).
The competition among species does not affect apparently their
abundance, while plane turbulence significantly will (Zhou et al.,
2016). At higher trophic levels of the food web, wind-induced
hypoxia events negatively impact the distribution of benthic inver-
tebrates such as Drosophila melanogaster and fish (Jabbari et al.,
2021). Coincidentally, significant research links the onset of lake
trout reproduction with strong autumn winds, indicating the
importance of wind events on fish reproduction (Callaghan et al.,
2016).

Mathematical expressions of wind-driven hydrodynamics

The influence of wind field on wind-induced flow field in the
hydrodynamic mathematical model was mainly imposed in the
wind stress term as surface boundary conditions (Jin and Ji, 2001;
Koçyigit and Falconer, 2004). Wind stress can be expressed as a
function of wind velocity at 10m above the lake surface using a bulk
formulation:

τ = ρCdU
2
10,

where τ is the lake surface wind stress, N/m2, increasing with wind
speed; ρ is the air density, kg m-3;U10 is the wind speed, m s-1; Cd is

Table 1. Expressions of wind drag coefficients and their adaptation to hydrodynamic models of large lakes at light winds (U10 = 2 m/s)

Number References Equations Water body Wind speed U10 Parameters Cd×10
-3 RE Adaptation

1 Garratt (1977) (0.75+0.067 U10)×10
-3 Sea 3 < U10 < 21 U10 0.88 55.8% Poor

2 Smith (1980) (0.61+0.063 U10)×10
-3 Sea 6 < U10 < 22 U10 0.74 63.2% Poor

3 Large and
Pond (1981)

(0.49+0.065 U10)×10
-3 Sea 11 < U10 < 25 U10 – – –

0.0012 0 < U10 < 11 1.20 40.0% Normal

4 Wu (1982) (0.8+0.065 U10)×10
-3 Sea 0 < U10 < 50 U10 0.93 53.5% Poor

5 Edson et al.
(2013)

(κ/ln(10/(z0
smooth+z0

rough)))2 Sea 0 < U10 < 25 U10, u*, β* 1.10 45.0% Normal

6 Gao et al.
(2009)

0.78β10
-2/3×10-3 Coastal zone

and lake
5 < U10 < 25 β10 – – –

7 Wang et al.
(2013)

2.5δ0.64RB
1/6×10-3 Sea and lake 12 < U10 < 20 δ, RB – – –

8 Gao et al.
(2022)

κ
ln 10=z0ð Þ

� �2

z0 = 2:303� 12:649
0:143+ 0:184U0:564

10 F0:064d�0:037ð Þ0:5

Sea and lake 5 < U10 < 24.5 U10, F, d – – –

9 Wüest and
Lorke (2003)

0.0044 U10
-1.15 Lake 0 < U10 < 4 U10 2.00 0.86% Good

0.005 U10
0.5 4 < U10 < 15 – – –

0.0026 U10 > 15 – – –

10 Wu et al. (2022) 0.00074 Lake 0 < U10 < 7.5 U10 0.74 63.0% Poor

0:0046
1:8+ e4�0:2U10 +0.00041 U10 > 7.5 – – –

*z0 is roughness length, m; β10 and β* are wave ages corresponding to wind speed (U10) and friction wind speed u*, respectively; δ is the wave steepness; RB is wind sea Reynolds number; F is wind
fetch, m; and d is water depth, m.
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the wind drag coefficient. Therefore, the impact of wind stress
on hydrodynamics is also related to the wind drag coefficient,
which represents the momentum transfer intensity between air
and water.

The expression of Cd is traditionally considered as constant
between 0.001 and 0.003 (Botte and Kay, 2002; Koçyigit and Fal-
coner, 2004) or linear functions of wind speed ranging from 5 to
25 m/s, as shown in Table 1, formed like Cd = β + γU10ð Þ× 10�3

regressed by a tremendous number of observations and experiments
over open seas, in which β and γ are the underdetermined coeffi-
cients (Garratt, 1977; Smith, 1980; Large and Pond, 1981;Wu, 1982;
Eqs. 1–4). However, most of these formulae are representative of
moderate wind speeds. Under extremely high winds, the wind drag
coefficient may reach up to 0.0025. It might then decrease slightly
with wind speed because of wave breaking and airflow separation
accompanied by solid wind waves over seas (Jarosz et al., 2007).
Wind speed over inland lakes is mostly below 5 m/s wherein Cd

decreases with increasing wind speed (Bradley et al., 1991; Edson
et al., 2013) and can reach two or more factors of that over seas
(Lükő et al., 2022). Aminimumvalue forU10 ranges from 2 to 5m/s,
andCd forU10 = 2m/s is around 0.002 (Geernaert et al., 1987;Wüest
and Lorke, 2003). The negative relationship between Cd and U10 at
lowwinds in inland lakesmight be caused by the shallowwater effect
(Zhao et al., 2015), while some others believe that wind stress of
shallow lakes is dominated by viscous stress and follows the law of
smooth flow (Wu, 1982), which differs from the rough flow char-
acteristics at moderate and high winds. Expressions of Cd decrease
with wind speed or depend on both wind speed and water depth at
light winds (Jarosz et al., 2007; Zhao et al., 2015).

In addition, based on the observations of wind waves in Lake
Ontario, it was found that the higher Cd in shallow water might be
related to the changes in surface wave state (significant height,
period, phase speed, wave age, and steepness) and wave energy
spectrum (Anctil and Donelan, 1996). As widely recognized by
Edson et al. (2013), wind stress is supposed to be divided into a
smooth component and a rough component according to the sur-
face wave state at different wind speeds (Eq. 5). The parameters of
wave age and wind sea Reynolds number, containing information
on both wind field and wind-induced wave, are paid more attention
for precise physicalmechanisms (Gao et al., 2009;Wang et al., 2013).
They have often been used to describe momentum exchange inten-
sity of the coexistence interface between wind and wave, and so
Eqs. 6–7 were proposed. Moreover, the wave state varies with wind
fetch, and thus, wind stress is also fetch-dependent, which might
have a significant impact on the vorticity field of flow field in
different spatial regions of lakes. Eq. 8, which depends on wind
fetch and water depth, was also proposed (Gao et al., 2022).

At present, a considerable number of commonly used hydro-
dynamic models adopt empirical constants or linearly increasing
wind drag coefficient expressions to depict the surface wind stress
of lakes (Koçyigit and Falconer, 2004). For example, the Delft3D
model defaults to set Cd to 0.0025 without limiting the wind speed.
In the MIKE21 model, Cd was set to be a constant between 0.0016
and 0.0026 according to the settled wind speed range. The EFDC
and SWAN models adopt the empirical formula by Wu (1982)
(Eq. 4) to calculate the wind drag coefficient. In theWCCM (Wave
and Current Coupled Model) model constructed by Wu et al.
(2022) and the CE-QUAL-W2 model, sectional expressions
(Eqs. 9, 10) were provided, in which Cd increases with winds
over the critical wind speed while it remains a constant at first in
the former model and negatively correlates with winds in the
latter one.

Overall, wind speed dominates wind stress on water surface, and
the wave state, water depth and wind distance are also of great
importance. The mathematical expression for wind stress is gener-
ally semi-empirical and semi-theoretical. The adaptation of differ-
ent mathematical expressions for wind stress in lake models might
result in apparent errors in the hydrodynamic process at low wind
speed. For example, it was found that a short-term underestimation
of water level modeling in Lake Ontario might result from the wind
drag coefficient as an inappropriate constant (Paturi et al., 2012).
Recent studies have shown that the water velocity in the Upper
Klamath Lake in Oregon, USA, based on the EFDC model was
seriously underestimated, while the problem was alleviated effect-
ively by expanding the wind drag coefficient using a multiplier
based on the original Cd formula that only increases with winds
(Chen et al., 2020). In this study, the calculated wind drag coeffi-
cients of several expressions at 2 m/s were compared with observed
values around 0.002 (Wüest and Lorke, 2003) for hydrodynamic
modeling of shallow lakes at light winds. The adaptation of these
expressions to shallow lakes was evaluated and shown in Table 1.
The adaptation was “good” when the relative error (RE) between
reference and actual results was within 20%, while it was “normal”
when the RE was between 20% and 50%, and “poor” when the RE
was above 50%. The results showed that a comprehensive consid-
eration of the negative relationship between drag coefficient and
wind speed was recommended for the hydrodynamic model of
inland lakes, whose adaptation was better at light winds (Eqs. 3,
5, 9). Besides, the surface wave state of shallow lakes is essential for
depicting the drag coefficient (Eq. 5); nevertheless, more pertinent
observations for U10 < 5 m/s are needed. There is no doubt that
linear expressions of Cd are no more appropriate in lake models.

Perspective of further studies

Hurricanes impact on lakes

There are still many complicated problems to be studied regarding
the process of wind-driven hydrodynamics of lakes. Under the
catastrophic events of short-term hurricanes, submersed and emer-
gent macrophytes in shallow lakes and even in deep lakes were
uprooted (James et al., 2008; Stockwell et al., 2020), the spatial
distribution of both micro- and macro-zooplankton changed sub-
stantially, and even the fishery collapsed (Havens et al., 2011).
Previous studies have shown that extreme wind events still have
an increasing trend in various regions (e.g., Western Europe),
including intensification of intensity, duration and frequency,
whichmay have an aggressive impact on the structure and function
of lake ecosystems (Mesman et al., 2022). Clearly, the global influ-
ence of extreme events on lake ecosystems warrants further study.

The response of lake ecosystems to hurricanes can be similar to
that of seasonal wind events, but more intense and persistent. The
wind-induced flow is mainly monolayer downwind flow in the entire
water column under strong wind stress, without an opposite bottom
compensation flow at light wind speed (Wu et al., 2018). Meanwhile,
seiches are induced by the pulse disturbance of wind, potently des-
troying the vertical thermal structure and thermocline of the stratified
lake. Themixing depth also deepens rapidly, which limits light for the
growth of aquatic organisms to a certain extent, thus reshaping the
physical and chemical environments of the lake (Stockwell et al.,
2020). For closed shallow lake systems without substantial flushing,
severe sediment resuspension magnifies the contradictory effects of
wind events on nutrient release and light limitation, which are more
persistent than in estuarine and deep waters (Havens et al., 2011;
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Mesman et al., 2022). Besides, the possibility of “escape” of motile
organisms through the water space under anoxic conditions is also
limited to stratified lakes (Clegg et al., 2007).

In addition, apart from the intensity, duration and frequency of
the storm, the topography and size of the lake and antecedent lake
conditions, such as the turbidity, oxygen saturation, stratification
and pH, are particularly significant to the resistance of the lake
ecosystem after the hurricane. For example, a clear lake may be less
resistant to turbidity changes. In contrast, if the lake is mixed
entirely before the hurricane, extreme wind events might have little
effect on phytoplankton since the previous turbidity was mainly
driven by algae in the lake (Thayne et al., 2021). In particular, the
physical structure of lakes will recover to pre-storm levels in a few
days, while biogeochemical processes might take months or even a
year or two to recover fully (James et al., 2008; Thayne et al., 2021).

Wind-induced biodiversity changes

Wind forces affect the biodiversity of lakes directly or indirectly. The
wind-driven hydrodynamic–water quality–ecological process of a
shallow lake ecosystem is shown in Figure 2. Strong winds could
remove attached algae to drive the succession of the epiphytic
community and reduce biodiversity; then prostrate diatoms with
strong adhesion will gain the advantage for growth (De et al., 2016,
2021). Wind-induced lake mixing could also redirect successional
trajectory by changing the critical regulatory factors such as water
temperature, light and nutrient availability, as well as the inter-
actions between biotic and abiotic factors (Strock et al., 2019). For
example, changes in water temperature and light limitations directly
impact the photosynthesis/respiration (P/R) ratio of primary pro-
ducers and the metabolic rate and ratio of consumers to decom-
posers (Havens et al., 2011). Nitrogen-fixing algae (e.g., Alternaria)

and Cyanobacteria tend to multiply in nitrogen-limited lakes
(De et al., 2016). The diversity of phytoplankton may be higher at
themean wind speed of about 6m s–1, which obeys the intermediate
disturbance hypothesis (Cornell, 1978), while it could decrease with
increased wind speed or a sudden fall in disturbance intensity and
frequency (De et al., 2016, 2021). Some believe that the reduction of
disturbance leads to competitive exclusion, thus reducing the abun-
dance and diversity of the community to a minimum. In the food
web, phytoplankton is a quality food resource for many consumers,
which results in a potential response of aquatic biodiversity to wind
disturbance. Studies have shown that the Copepods and Cladocer-
ans follow large motile diatoms in abundance. The significant
correlation between algae diversity and rotifer abundance indicates
the bottom-up or top-down regulation of the food web (Agasild
et al., 2012).Whenwindwaves and turbulence are strong, the loss of
submerged vegetation and increased turbidity will reduce the effi-
ciency of visually feeding fish. The contact frequency between
zooplankton and its prey increases while the capture rate decreases
(Pécseli et al., 2014). Therefore, Copepods and other zooplankton
avoid the risk of being preyed on by visible fish when the daytime
light conditions are good (Seuront et al., 2004), and the biomass
increases significantly.

It should be noted that the understanding of wind-induced
changes in lake ecosystems is still based on the monitoring results
at present, while the understanding of the mechanisms of wind-
induced disturbance affecting biodiversity directly or indirectly is
relatively superficial, so the conclusions proposed by different
teams are contradictory to each other. For example, Strock et al.
(2019) believed that deepening the wind-inducedmixed layer could
increase the yield of diatoms, dinoflagellates, chrysophytes and
other algae. Conversely, Bergeretal (2010) believed that the total
yield of phytoplankton is not affected by the deepening of themixed

Figure 2. Wind-driven hydrodynamic–water quality–ecological process of shallow lake ecosystems.
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layer, while it could increase when the mixed layer becomes shal-
low. The disagreements could possibly address the possible effects
on accurately predicting the impact of wind-induced lake mixed
changes on aquatic food webs. Research on the wind-induced
disturbance mechanism was still urgent.

Heterogeneous wind field variability

The wind field is rarely wholly uniform in the lake scale, but is
considerably variable (Rueda et al., 2005). The main external
reasons for the spatial variability of wind field are the topography,
the islands in the lake, the shielding effect of coastal buildings and
trees, and the uneven roughness of the lake surface (Juntunen et al.,
2019). Besides, the variability also results from the varying wind
force with the fetch. Although people gradually realize the influence
of non-uniform wind fields on flow movements in lakes, there is
little practical application of heterogeneous wind fields in lake
models (Venäläinen et al., 2003). First of all, the reason lies in the
lack of enoughmeteorological stations on the lake scale to represent
the local wind field. The wind field over lakes is sometimes repre-
sented by the observations on the land shore when conditions for
observability are limited. However, the wind field also has spatial
heterogeneity between the land and the lake regions. The wind on
lake surface is more robust than on land because of less surface
friction (Li et al., 2010). Secondly, there is a lack of economical and
effective methods to calculate local wind field in models (Juntunen
et al., 2019). Therefore, further efforts are expected to observe the
local wind field with sufficient density, and studies are needed to
determine the form of an heterogeneous wind field model.

Challenges for modeling

Following an extensive review of the responses of large shallow
lakes to surface wind field, it is realized that not only the hydro-
dynamic process but also the water quality and aquatic process are
continuously impacted by the wind, and the challenge remains to
clarify the response mechanism through a process-based model.
The development of wind and wind wave-dependent mathematical
expressions imposed on the process-basedmodel can be effective in
improving hydrodynamic process modeling, and it is suggested
that the expressions need to have high adaptability to different
scenarios. In this regard, the burgeoning data-driven model
(i.e., machine learning) is available to combine with the process-
based model, making use of the data-driven model’s high compu-
tational efficiency andmaking up for its lack of physicalmechanism
(Castelletti et al., 2012; Peach et al., 2023). Various efforts to derive a
hybrid model have been carried out pointing out a promising
direction for the promotion of models of water environments
(Feng et al., 2022).
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