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Abstract. Hot-Jupiters are a common sub-class of exoplanets, which are enough close to the
star to undergo tidal dissipation. The continuous action of tides modify the rotation of the
planets until an equilibrium situation is reached. It is often assumed that synchronous motion
is the most probable outcome of tidal evolution, since synchronous rotation is observed for
the majority of the satellites in the Solar System. This is true for circular orbits, but when
the orbits are eccentric, tidal effects are stronger when the planets are closer to the star, and
therefore, the rotation rate tends to equalize the orbital speed rate at the pericenter (which is
faster than synchronous rotation). An additional complication arises if the eccentricity is not
constant and undergoes periodic perturbations from an external companion. Here we obtain
an expression for the equilibrium rotation of Hot-Jupiters undergoing tidal dissipation and
planetary perturbations. We show that for these planets, the equilibrium rotation rate is faster
than for non-perturbed eccentric orbits.
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1. Introduction
At present, about half of the exoplanets that have been detected are close-in planets

with semi-major axis smaller than 0.4 AU (http://exoplanet.eu/). This percentage is bi-
ased, since close-in planets are easily detected by radial velocity and transit methods (the
two methods with greater success in discovering exoplanets). However, it shows that mas-
sive planets are often found within a distance to the star equivalent to the Sun-Mercury
distance. As a consequence, these planets undergo significant tidal interactions with the
star, resulting that their spins will be slowly modified.

The ultimate stage for tidal evolution corresponds to a low obliquity and synchronous
rotation, a configuration where the rotation rate coincides with the orbital mean motion,
since the synchronous equilibrium corresponds to the minimum of dissipation of energy.
However, when the eccentricity is different from zero some other configurations are pos-
sible, such as the 3/2 spin-orbit resonance observed for the planet Mercury (e.g., Correia
& Laskar 2004) or the chaotic rotation of Hyperion (Wisdom et al. 1984). Indeed, for
eccentric orbits the rotation rate of the planet tends to equalize the orbital speed rate at
the pericenter, which is faster than synchronous rotation. About 1/3 of the planets with
a semi-major axis smaller than 0.4 have an eccentricity above 0.1, so it is important to
understand how their equilibrium rotation rates will be modified.

Additional effects may also contribute to the final evolution of the spin, such as at-
mospheric tides or planetary perturbations. The effect of a dense atmosphere has been
studied in Correia et al. (2008). Here we will focus on the effect of planetary perturba-
tions on the eccentricity of the close-in planet. A similar problem has been studied for
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the spin of Mercury (Correia & Laskar 2004), but in that case we also needed to take into
account the contribution of the asymmetric equatorial moments of inertia C22 , which is
responsible for capture in spin-orbit resonances. Here we will look at the behavior of
Jupiter and Neptune-like planets for which the second order harmonics of the gravity
field are close to zero (e.g. Jacobson 2001), leading to insignificant chances of capture.
We thus expect that the final rotation of these planets is controlled uniquely by the
equilibrium tide.

2. Equations of motion
We will adopt here a viscous tidal model, with a linear dependence on the tidal fre-

quency, which is suitable to study slow rotations near the equilibrium, and is also valid
for any value of the eccentricity (e.g. Mignard 1979). Tidal dissipation and core-mantle
friction drive the planet’s obliquity (the angle between the equator and the orbital plane)
close to zero (e.g. Correia et al. 2003), so we will assume zero degree obliquity throughout
this study for simplicity. The tidal contribution to the rotation rate, ω, is then given by
(e.g. Correia & Laskar 2010):

ω̇ = −K [Ω(e)ω − N(e)n], (2.1)

with

Ω(e) =
1 + 3e2 + 3e4/8

(1 − e2)9/2 , (2.2)

N(e) =
1 + 15e2/2 + 45e4/8 + 5e6/16

(1 − e2)6 , (2.3)

and

K = 3n
k2

ξ Q

(
R

a

)3 (m0

m

)
, (2.4)

where ξ is a structure constant, k2 is the second Love number, Q is the dissipation quality
factor, and n, a, R, m, and m0 are the mean motion, the semi-major axis, the radius of
the planet, its mass, and the mass of the star, respectively.

For a non-constant varying eccentricity e(t), the solution of equation (2.1) is given by
(Correia & Laskar 2004):

ω(t) =
(

ω(0) + nK

∫ t

0
N(e(τ))g(τ)dτ

)
/g(t), (2.5)

with

g(t) = exp(K
∫ t

0
Ω(e(τ)) dτ). (2.6)

3. Approximations
The eccentricity of a planet that is disturbed by the gravitational perturbations of

additional planetary companions can be expressed as a sum of quasi-periodic terms (e.g.
Laskar 1988):

e(t) =
∑

i

ei ei(νi t+φi ) , (3.1)

where ei is an amplitude, νi is the frequency of the perturbation, and φi is a phase angle.
When there is a single companion, its orbit lies in the same plane as the planet (i.e., the
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system is coplanar), and we take into account only the linear terms of the perturbation,
the eccentricity variations can be simply written as:

e(t) = e0 + ∆e cos(νt + φ) . (3.2)

The expressions of Ω(e) (Eq. 2.2) and N(e) (Eq. 2.3) are functions of e2 . Since 0 � e �
1, we can develop these two functions in power series of e2 as

Ω(e) =
+∞∑
j=0

Ωj e
2j = 1 +

15
2

e2 +
105
4

e4 + ..., (3.3)

N(e) =
+∞∑
j=0

Nje
2j = 1 +

27
2

e2 +
573
8

e4 + .... (3.4)

Because e(t) can be expressed as a sum of quasi-periodic terms (Eq. 3.1), so does the
functions Ω(e) and N(e), as:

Ω(e) =
∑
i,j

Ωij e
ij (νi t+φi ) , N(e) =

∑
i,j

Nij e
ij (νi t+φi ) . (3.5)

Considering the case of a single companion in a coplanar orbit (Eq. 3.2), these expressions
can be obtained directly from equations (3.3) and (3.4), with

e2j = e2j
0

2j∑
k=0

k∑
l=0

(
2j
k

) (
k
l

) (
∆e

2e0

)k

ei(k−2l)(ν t+φ) . (3.6)

Henceforward we will restrict our analysis to the case of a single companion in a copla-
nar orbit, but our conclusions can be easily extended to the general situation given by
equations (3.1) and (3.5).

4. Averaging
Periodic varying quantities can be averaged in order to obtain their mean values. This

can be particularly interesting when the eccentricity variations occur in a time-scale that
is shorter than the time-scale for tidal variations (ν � K), which is often the case. Thus,

e(t) =
2π

ν

∫ 2 π
ν

0
e(t) dt = e0 , (4.1)

and

e2j = e2j
0

2j∑
k=0

k∑
l=0

(
2j
k

)(
k
l

)(
∆e

2e0

)k 2π

ν

∫ 2 π
ν

0
ei(k−2l)(ν t+φ) dt

= e2j
0

2j∑
k=0

k∑
l=0

(
2j
k

)(
k
l

)(
∆e

2e0

)k

δk,2l ei(k−2l)φ (4.2)

= e2j
0

j∑
l=0

(
2j
2l

)(
2l
l

)(
∆e

2e0

)2l

.

Finally, using the above quantity in the expressions of Ω(e) and N(e) (Eq. 3.3 and 3.4),
we get:
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Ω̄ = Ω(e) =
+∞∑
j=0

j∑
l=0

Ωj e2j
0 (2j)!

(2j − 2l)! (l!)2

(
∆e

2e0

)2l

= 1 +
15
2

e2
0 +

105
4

e4
0 +

15
4

∆e2 +
315
4

e2
0∆e2 +

315
32

∆e4 + ..., (4.3)

N̄ = N(e) =
+∞∑
j=0

j∑
l=0

Nj e2j
0 (2j)!

(2j − 2l)! (l!)2

(
∆e

2e0

)2l

= 1 +
27
2

e2
0 +

573
8

e4
0 +

27
4

∆e2 +
1719

8
e2

0∆e2 +
1719
64

∆e4 + ..., (4.4)

5. Implications
For a constant eccentricity e(t) = e0 , the solution of equation (2.1) becomes

ω(t) = ωe0 + ω(0)e−K Ω(e0 )t , (5.1)

the equilibrium being achieved when t � 1/(KΩ(e0)) for ω(t) = ωe0 = Cte, where

ωe0

n
=

N(e0)
Ω(e0)

= 1 + 6e2
0 +

3
8
e4

0 + .... (5.2)

This equilibrium is often presented as the equilibrium rotation rate for planets in ec-
centric orbits, but in fact, this is only true for unperturbed orbits. Since unperturbed
eccentricities of close-in planets are quickly damped to zero, contrarily to eccentricities of
close-in planets with companions (Mardling 2007), most of the observed close-in planets
with some eccentricities probably have companions, and therefore forced eccentricities.

For a non constant eccentricity e(t), the solution of equation (2.1) is given by expression
(2.5), which cannot be solved without some approximations. Assuming that e(t) is simply
given by expression (3.2), we have for t � 1/(KΩ̄) and ν/K � 1:

g(t) = exp(K
∫ t

0
Ω(e(τ)) dτ) ≈ exp(KΩ̄t), (5.3)

and
ω(t)
n

≈ Ke−K Ω̄t

∫ t

0
N(e(τ))eK Ω̄τ dτ. (5.4)

Thus, replacing equations (3.4) and (3.6) in the above expression, gives:

ω(t)
n

=
+∞∑
j=0

Nje
2j
0

2j∑
k=0

k∑
l=0

(
2j
k

) (
k
l

)(
∆e

2e0

)k

Φkl(t), (5.5)

where

Φkl(t) = Ke−K Ω̄t

∫ t

0
ei(k−2l)(ν τ +φ)+K Ω̄τ dτ

=
Kei(k−2l)(ν t+φ)

i(k − 2l)ν + KΩ̄
=

cos[(k − 2l)(νt + φ) − ψkl ]√
(k − 2l)2ν2/K2 + Ω̄2

, (5.6)

with

tan ψkl =
(k − 2l)ν

KΩ̄
. (5.7)
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5.1. average rotation rate
Both ω(t) and Φkl(t) are periodic functions, with period 2π/ν. One may then compute
their average value,

Φkl(t) =
2π

ν

∫ 2 π
ν

0

Kei(k−2l)(ν t+φ)

i(k − 2l)ν + KΩ̄
dt =

δk,2l

Ω̄
, (5.8)

and

ω(t)
n

=
+∞∑
j=0

Nje
2j
0

2j∑
k=0

k∑
l=0

(
2j
k

)(
k
l

)(
∆e

2e0

)k
δk,2l

Ω̄

=
1
Ω̄

+∞∑
j=0

Nje
2j
0

j∑
l=0

(
2j
2l

)(
2l
l

) (
∆e

2e0

)2l

=
N̄

Ω̄
(5.9)

=
N(e0)
Ω(e0)

+ 3∆e2 +
729
8

e2
0∆e2 +

369
64

∆e4 + ...,

that is, the average value of the rotation rate ω̄ = ω(t) � ωe0 is always faster than
the value of the equilibrium rotation rate for the average value of the eccentricity, e0
(Eq. 5.2). The difference depends on the amplitude of the eccentricity librations ∆e. We
then conclude that for orbits undergoing eccentricity excitations, the equilibrium rotation
rate of the planet is faster than for non-perturbed eccentric orbits.

5.2. weak tidal dissipation (ν � K)
In general, the time-scale for the eccentricity variations is shorter than the time-scale for
the tidal damping (ν � K). In this limit situation, we may neglect the contributions
from KΩ̄ in expression (5.6), except those from terms with k = 2l, which correspond to
the non-periodic terms contributing to the average ω̄ (Eq. 5.9). Thus, retaining only the
terms of minimal frequency, k − 2l = 0 and k − 2l = 1, we get

ω(t)
n

≈ N̄

Ω̄
+

K

ν

(
∆e

2e0

)
A1 cos(νt + φ − π/2), (5.10)

with

A1 =
+∞∑
j=0

Nje
2j
0

j−1∑
l=0

(
2j

2l + 1

)(
2l + 1

l

)(
∆e

2e0

)2l

. (5.11)

We then conclude that the rotation rate of a planet in an eccentric and excited orbit is
given by the average value of the rotation rate, ω̄, plus a sinusoidal function similar to
the eccentricity (Eq. 3.2), but with smaller amplitude and a phase delay of π/2. When we
include the remaining harmonics the behavior is identical, only the shape of the periodic
signal is modified (Eq. 5.6). As the magnitude of tidal effects increase, the amplitude of
the periodic variations becomes larger, and the phase delay becomes smaller than π/2.

Table 1. Initial parameters for the HD 11964 system (Wright et al. 2009).

HD 11964 (m0 = 1.1 M�)

parameter a e m Prot R ξ k2 Q
(unit) (AU) (MJ up ) (day) (×106m) (×103 )

planet (b) 3.16 0.041 0.622 − − − − −
planet (c) 0.229 0.300 0.0788 2.0 75 0.25 0.50 5
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6. Applications
We will now apply the results derived in previous sections to the planet HD 11964 c. The

planetary system around HD 11964 is composed of two planets with minimum masses
mc = 25M⊕ (planet c) and mb = 0.62MJup (planet b), at ac = 0.229 AU and ab =
3.16 AU, respectively (Wright et al. 2009, Table 1). The orbit of the planet c also presents
an eccentricity of about 0.3 and is enough close to the star to undergo substantial tidal

Figure 1. Evolution of the rotation rate with time, starting with the parameters from Table 1,
using a model with a varying eccentricity (Eq. 6.1, black solid curve), and a model with constant
eccentricity (e0 = 0.3, green dashed curve). We also plot the instantaneous value of the ratio
N (e)/Ω(e) for the varying eccentricity model (red solid curve). We observe that in the case of a
constant eccentricity, the rotation rate stabilizes in the equilibrium value ωe0 /n = 1.5571, while
in the case of a varying eccentricity, the rotation rate presents a periodic oscillations that follows
the equilibrium ratio N (e)/Ω(e) with a smaller amplitude and a delayed phase angle (Eq.5.10).
These oscillations are effectuated around a mean value given by ω̄/n = 1.6896 (blue dotted line).
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dissipation. Therefore, this is a good system to illustrate our theoretical results. The
average distance between the two planets is relatively high, so if the two orbits are
coplanar the eccentricity of the inner body only experiences small oscillations. However,
the mutual inclination between the planets is unknown. Veras & Ford (2010) performed
extensive n-body simulations for this system and concluded that it is stable for very high
mutual inclinations, which can excite significantly the eccentricity of the inner orbit.
We will thus assume that the eccentricity of the planet c can be written in the form of
equation (3.2) with ∆e = 0.1 and ν = 10−4 yr−1 :

e(t) = 0.3 + 0.1 sin(10−4 t[yr]). (6.1)

Figure 2. Same as Fig. 1b, but with Q = 2.5× 104 (a) and Q = 103 (b). In the case of a weaker
dissipation (a), we observe that the rotation rate shows only very small amplitude librations
around the averaged value ω̄/n = 1.6896 (blue dotted line). In the case of a stronger dissipation
(b), we observe that the rotation rate oscillations closely follow the instantaneous equilibrium
rotation given by N (e)/Ω(e) (red solid line).
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In Figure 1 we plot the evolution of the rotation rate of the planet, starting with a
rotation period of 2 days, that is, ω(0)/n ≈ 18.9, and using a dissipation factor identical
to Jupiter, Q = 5 × 103 (Table 1). We plot the evolution of ω(t)/n using the varying
eccentricity given by the expression (6.1) (Eq. 2.1, black curve), but also using a constant
eccentricity e0 = 0.3 (Eq. 5.1, green curve). We observe that the evolution of the rotation
rate is identical for two situations during the initial damping (Fig. 1a). We also plot the
instantaneous value of the ratio N(e)/Ω(e) for the varying eccentricity (red curve). After
about 0.2 Myr, the rotation rate is fully damped and enter in an equilibrium regime.
In the case of a constant eccentricity, the rotation rate stabilizes in the equilibrium
value ωe0 /n = 1.5571 (Eq. 5.2), while in the case of a varying eccentricity, the rotation
rate presents a periodic oscillations that follows the equilibrium ratio N(e)/Ω(e) with a
smaller amplitude and a delayed phase angle (Eq. 5.10, Fig. 1b). These oscillations are
effectuated around a mean value given by ω̄/n = 1.6896 (Eq. 5.9, blue straight line),
which is clearly above the rotation rate for constant eccentricity, that is, ω̄ > ωe0 .

In Figure 2 we plot the final evolution of the rotation rate (same as Fig. 1b), but for
different values of the tidal dissipation factor: (a) Q = 2.5×104, i.e., the dissipation is five
times weaker; (b) Q = 103, i.e., the dissipation is five times more efficient. In the case of
a weaker dissipation we observe that the rotation rate shows only very small amplitude
librations around the averaged value, that is, ω(t) ≈ ω̄ (Fig. 2a). This behavior is in
agreement with expression (5.10), since K/ν ≈ 0. In the case of a stronger dissipation we
observe that the rotation rate oscillations closely follow the instantaneous equilibrium
rotation given by N(e)/Ω(e). In a limit situation for which K � ν, we would have
ω(t)/n ≈ N(e)/Ω(e), since the eccentricity can be considered constant with respect to
tidal evolution (Eq. 5.2).

7. Conclusions
In these paper we obtained an expression for the equilibrium rotation of Hot-Jupiters

undergoing tidal dissipation and planetary perturbations on its orbit. We show that
the equilibrium rotation rate is faster than the synchronous rotation, but also than the
equilibrium for non-perturbed eccentric orbits (Eq. 5.2). Indeed, the rotation rate presents
small oscillations with the same periodicity of the eccentricity around an average value
ω̄ > ωe0 , where ωe0 is the equilibrium value for constant eccentricity. In particular, for a
regular sinusoidal perturbation of the eccentricity with a small amplitude ∆e (Eq. 3.2),
we show that the mean equilibrium rotation rate is given by:

ω̄ = ωe0 + 3∆e2 +
729
8

e2
0∆e2 +

369
64

∆e4 + O(∆e6) . (7.1)
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