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1. Introduction and summary

We consider the motion of a particle of mass tn and electrical charge e,
moving in a constant magnetic field Bk, where A is a unit vector, and acted
upon by a force mf(t). The position vector r(t) of this particle is governed
by the differential equation

(1.1) r(t)+a>kxf(t) = /(*)

where <a = eB\m.
The subscript j_ will be used to indicate vectors and their components

which are perpendicular to k.
An analysis of this motion has been given by Alfve'n [1], and Alfve'n

ind Falthammar [2]. A result given on p. 18[1] is that, if projected on to
i plane transverse to k, "the path is a circle the centre of which drifts with
velocity ux given by the differential equation x

(1.2) u± = - (mleB*)B X {f±(t) - (dujdt)}."

In the relations (26) and (27) on p. 18 of [1] Alfve'n gives a series
solution for u± in terms of the derivatives of f±(t).

Taking the vector product of each side of the equation (1.2) with k
ihows that it is an algebraic rearrangement of the perpendicular part of the
iriginal equation of motion (1.1) with u± replacing r x . Thus no integration
»f equation (1.1) has been achieved.

In this paper we obtain the solution of the differential equation (1.1)
ising a method which is essentially that given by Westfold [7] for any
inear, vector differential equation with a gyroscopic term, g(D), viz.,

1.3) f(D)r+(okxg(D)r = f(t),

/here D represents the operator djdt.
Our main result is to show that this solution in the transverse plane

lay be rearranged systematically by repeated integration by parts, and
hat each time this is done an expression of the same form is obtained.

1 A change of units and notation has been used here.
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386 L- J- Gleeson [2]

These forms may be considered to be a combination of "guiding
centre" and "rotation" about the guiding centre. Such descriptions are
most helpful when the "rotation" is substantially uniform over many periods
of the free motion, and the path of the guiding centre is specified by a
relatively simple function.

The "rotation" is further divided into a uniform rotation and a residual
term. The residual term can be made to depend on successively higher-
order integrals or derivatives of the forcing function f(t). If it is negligible,
we have the solution expressed conveniently in terms of a guiding-centre
function and uniform rotation.

The form with a higher-order derivative of the forcing function in the
integrand of the residual term is useful when the forcing function varies
by a small fraction of itself during a period of the free motion. We describe
this as varying slowly. An alternative form with a successively higher-order
integral of the forcing function in the integrand of the residual term is useful
when the forcing function is varying rapidly.

Three results, two from Alfv6n [1], [2], and the polarization drift that
occurs in plasma physics, Chandrasekhar [4] or Thompson [6], each derived
in a different way in these references, are obtained as particular cases of a
general result.

A simple example, f(t) = jK cos uj, is used to illustrate the use of
various forms of the solution. This driving force is used in a precision ion
selector known as an omegatron described by Hippie et al. [5] and analyzed
by Berry [3].

2. The basic solution

In this section we derive the basic solution of the equation of motion
(1.1) and in later sections rearrange it into more convenient forms.

Following Westfold [7] we express equation (1.1) in terms of com-
ponents in the directions of the eigenvectors of the operator {kx), viz.,
the solutions of the equation

(2.1)

Referred to a real orthogonal Cartesian base such that k = (0, 0, 1),
and with * = -\/—1, the unit eigenvectors are

(2.2) ex = (1, i, 0)/V2, e2 = (1, -i, 0)/V2, e3 = *

The corresponding eigenvalues are

(2.3) h = ~i> h = i. -*3 = 0.

With these eigenvectors we may express any vector V in the form
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[3] Forced motion of a charged particle 387

(2.4) V = F 1

in which the vector components parallel and perpendicular to k are,
respectively,

(2.5) F, = F3e3,

In particular, denoting the components of r and /by xf and fjt j — 1, 2, 3,
equation (2.1) becomes

(2.6) (x1—ioox1)e1+ (x2+icox2)e2+x3e3 = /1e1+/2e2+/3e3 •

The component equations of (2.6) will be solved assuming the initial
conditions

(2.7) r(0) = a, r(0) = a.

The 2-component equation

£2+icox2 = f2(i)

is an elementary differential equation for which, after successive integration,
we have, with initial conditions (2.7),

(2.8) * . =

and

(2.9) x2 = a2+ 1 L + f'/2(T)rfr] - 1 L + Ce^

The corresponding results for Xj, xx are obtained by substituting the sub-
script 1 for 2 and replacing co by — o> wherever it occurs.

With these results we may write down the components perpendicular
to k,

(2.10) r± = x1e1+i2e2, rx = x1e1+x2e2,

but delay doing this until section 4.
The parallel components

are obtained directly by integration of the 3-component equation from
(2.6). We obtain

(2-11) f

x3 = «3+«3i!+ j*df Jo* /3(T)^T,

the usual results for rectilinear accelerated motion in the direction of k.
It is of no further interest here.
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3. Interpreting combinations of complex number components

The functions rx(t) and f±(t) are obtained by substituting from the
expressions (2.8) and (2.9) for x2 and x2 and the corresponding ones for
xx, xx into equations (2.10). Since the 1-component solutions are obtained
from the 2-component solutions by the changes

subscript 2 -+ subscript 1, co ->• — a>,

certain characteristic combinations of terms appear in Vx and F2, the 1
and 2-component expressions. The combinations that appear are examined
below and expressed in a form suitable for physical interpretation. These
results are used in section 4 when giving explicit expressions for r x and f±.

When dealing with a physical problem / will be real and r(t) and
f(t) will be real vectors even though the eigenvector components may
not be.

For our discussion we assume we have 1 and 2-components Ax and A2

with the corresponding vector

(3.1) A± = A1e1+A2ei

and examine components Vx and V2 related to these.

Case (i) Vx = cAx, V2 = cA2. Substitution into

(3.2) V± = Viei+V2ez

gives immediately the correspondence

(3.3) (cAlt cA2)<-+cAx.

Case (ii) V1 = —iA1, V2 = iA2. Substitution into (3.2) gives

V± = —iA^+iA^i.

But from equations (2.1), (2.2) and (2.3) we have

(3.4) — iex = kxelt ie2 = k x e2.

Hence

V± = lex (A

and we have the correspondence

(3.5) (—iA1,

Case (Hi) Vx = Axe~i6', V2 = A2e'e, 6 real. Here we have

Vx = (cos 6—i sin 6)A1e1-\- (cos d-\-i sin 0)A2e2

= cos 6(A1e1+A2e2)+sind(—iA1e1-\-iA2e2).
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[5] Forced motion of a charged particle 389

Thus by equations (3.3) and (3.5)

(3.5a) Vx = cos 9 A±+sin 9(kxA±)

a vector obtained by rotating Ax through the angle 9 in the positiye sense
about k.

It is convenient to introduce the following notation, which exhibits
the property of rotation noted above,

(3.6) [A±, 0] = cos 9 A±+sin 9(kxA±).

We shall always use brackets, [ ], with this meaning in this paper. Then
for the correspondence we have

(3.7) (Aler*

Cases (i) and (ii) are in fact special cases of case (iii) obtained by
putting 9 — 0 and 9 = n/2.

It follows immediately from the definition (3.6) that

(3.8) kx [A±, 6] = [kxA±, 9] = [A±, 0+*/2].

Putting V1 = A1e-i{B+a), V2 = A2e
ii8+<*> and using (3.7) we readily

establish that

(3.9) [A±, 0+a] = [[A±, 9], a] = [[A±, a], 9].

4. The basic solution in vector form

Using the results of section 3 we now express the solutions obtained in
section 2 in vector form independent of the base vectors.

Substituting the expressions for x% and ±x obtained from* (2.8) into
(2.10) and using the result (3.7), we obtain

(4.1) fx(t) = [a± + f* [tjj). a>T]dr, -cot] .

Similarly from (2.10) and (2.9) and using the results (3.5) and (3.7)
ve obtain

r±(t)=a±--kx\ux+
CO {

[4.2)
ri / c* \ i

+ — kX\u±+ [f±(r), corjdrl,—cot\.
L<o \ Jo / J

It is convenient to write this expression in the form

4.3) rx(t) = S(t) + [A(t), — cot],

vith
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(4.4) S(t) = a x - - i k X {Uj.

and

(4.5) A(t) = -kx[u±+( [f±(r), cor]dx)
CO I Jo J

If S(t) a.ndA(t) are constant, the transverse motion consists of uniform
rotation with radius A and angular velocity -co about a fixed centre S.
This situation occurs when the forcing term f±(t) remains zero.

Suppose the driving-force terminates at time tt, i.e., if f(t) = 0 for
t 2: tx. Then S(t) and A(t) are constant for t ^ tx with the values
and A (^) respectively. The motion is a uniform rotation with radius
about the centre S(^).

When A (t) alone is sensibly constant the motion consists of a uniform
rotation superimposed on a moving centre S(t). The form (4.3) is then a
readily visualized specification of the motion, and later we shall see how
it may be approximately brought about in some cases.

Beginning with the expressions (4.1) and (4.5) we readily deduce a
general relation between the rotation term and the transverse velocity

(4.6) [A(t), —erf] = (l/co)*Xrx

and with this the expression, (4.3) for r x becomes

(4.7) rAt)

The term (l/to)&xrx equals the transverse radius vector in the case
of uniform circular motion with an angular velocity — a>.

In the form (4.7) a comparison with AlfveVs definitions, equation
(14)[2] and equation (9) p. 17[1], shows that S(t) is identical with the
function he terms the guiding centre. I prefer to use this term for cases in
which A (t) remains substantially constant over several periods as only then
can the term [A(t), —<ot] be properly regarded as a uniform rotation.

Taking the vector product of each side of the equality (4.6) with k
and using the result (3.8) we have immediately the alternative form

(4.8) r x = co[A(t), _arf-w/2]

which specifies the transverse velocity in terms of co and A(t).

5. Some alternative forms of the solution

We have observed that the term [A(t), —cut] in the expression for r x ,
(4.3), cannot be regarded as a pure rotation unless /x(i) remains sensibly
zero. However, by repeated integration by parts, we are able to find alter-
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[7] Forced motion of a charged particle 391

native series forms of the solution (4.3) consisting of a pure rotation
\An, —cot], superimposed on a moving (guiding) centre, Sn(t), and a residual
term [Rn(t), —<ot]. In any particular application we would attempt to
select a form in which Rn(t) is small and negligible.

Two forms arise corresponding to the alternative ways of expanding
the second integral in (4.2). The residual term Rn[t) depends correspondingly
on {Djco)nf±{t), n > 0, and {Djoi)-]n]f±{t), w < 0. It becomes negligible
in the first form or the second form depending on whether f±(t) varies
slowly or rapidly during a period of the free motion 2njca.

Case (a) The form for f±(t) varying slowly.
The expansions of fx(t) are most readily carried out in terms of the

components x1 and x2. Partial integration of the second integral in the
expression (2.9) for x2 gives

-*«* f' (1\ I1

J« \i(o/ \i(o
(5.1)

o>

If the typical values of £)/2(T)/W are small in magnitude compared with
hose of /2(T) in the range 0 ^ T 5S t, the integral on the right side will
lsually be small compared with that on the left side and may be neglected.
This condition implies that f2(t) remains substantially constant over each.
>eriod of the free motion 1n\a>. We describe this as varying slowly.

Repeated integration in this manner gives
f • i n-i /iDy i n-i /ij)\r

e-i»t *«"/ (T)rft== __ J - ft(t)-er*« - 2 ( - ) /,(0)
. Jo *«Wr-o\o>/ Wr=o\f»/

C* /iD\n

Using this in (2.9) we may write for n > 0,

5-3) x, = S2

/here

If5.4) S,Al) - « ! + - [u2

, 5 ) ^.ft)^)?)'

= - (-) f V- ' l-Yft(T)dx.
WJo \o»/
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From (5.2) and the previous discussion, R2,n(t) will usually be negligible
whenever

(5.7) \(Dlco)"f2(r)\typlcal « |/2(r)|typlcal, O^r^t.

Writing down ̂  in terms of S l n , Aln, and i?j „ and using the principles
of section 3 when combining xx and x2 to form rx(t) we obtain for n > 0,

(5.8) r±(t) = Sn(t) + [An+Rn(t), -cot],

where

j
(5 9) °

+ - li+kx - - (-) -fcx - + . . - r n _ 1 -
or I \a)/ \a)/ \w/ \<y/

( \ /D\2 /D\3

kxux--h+kx (-)-( * (
to 2 ( / \

lD\ /D\2 /D\
+kx (-)-(- -*x(-

w ( \co/ \(o/ \(o/
(5.10)

(5.11) Rn(t) = 1 1 " r(-)"/x(r)( «T+(n+l)»/2l ir.

The terms in the braces in (5.9) and (5.10) are the operators TJ>(Dj(o)1>

with

Tj-\ =

Corresponding to the inequality (5.7) Rn(t) is usually negligible when,
typically

(5.12) \(DH"f±(r)\ « \fA*)l O^r^t.

Case (b) The form for /x(<) varying rapidly.
When the second integral on the tight of the expression (2.9) is in-

tegrated by parts, in the alternative manner to that used to obtain (5.1)
we find

e~iat j eiaTf2{r)dr = — — (— J /a(*)+«"'*" — (—) /*(<>)
(5.13)

-<*t f ' ^ r ('-BY1 ft(X)dT.
Jo \ o > /

https://doi.org/10.1017/S1446788700004869 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004869


[9] Forced motion of a charged particle 393

Here we define,

(5.14) D-ifflz

and for later

(5.15) D-f(t) s f' dx,\U dr,_x • • • J TI/(T1)<*TT 1 ,

the constants a,, (t = 1, • • •, s), being chosen to make the integrals as
simple as possible, and to assist in realizing the inequalities (5.16), below,
and (5.23).

If

(5 16) I^D/co)"1/ (T)| <C 1/ (T)| 0 < T s£ /

the integral on the right side of (5.13) will usually be small compared with
that on the left side, and may be omitted.

The condition (5.16) implies that

|Z/ / 2 /a> | t yp iC a l ^> I/2Itypical'

i.e., typically, the proportional change in /2 during a period of the free
motion is large. We describe this as varying rapidly.

Repeated use of the identity (5.13) gives

(5.17) ' I'' / i ( T ) i T ~ " ^ ^ W Ut)+e S ^ U

Fhe a< implicit in (D/«U)~'/2(T) may be chosen to make this quantity as small
is possible.

Substituting from the identity (5.17) into the equation for x2, (2.9),
ve may now write for s > 0,

I5.18) x2 = S2t_,(t)+{A2>_,+Rit_,(t)}e-i'",

vith S2_,(t), A2_s, and i?2,-»(0 having definitions similar to those given
n equations (5.4) —(5.6).

Writing down xx in terms of Sh_,(t), Alt_,, Rlt_,(t), and using the
>rinciples of section 3 when combining xx and x2 to form r±(t), we obtain
or s > 0 the further form of the solution

5.19) r±(t) = S.,(t) + [A_,+R_,(t), -cot],

dth
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S-.{t) =ax-~kx \u±+ I" fA
(5.20) °

(5.21)

l r* r/D\-'
(5.22) R_,(t) = — (-) fjx),

to Jo L\CD/

The general term in the braces is the operator T_p(Dlco)~v where

(D\~p_l (— l)(p-1)/2Ax(Z)/a))-p; if p odd,
"*W ~ I -(-iy/2(Dlto)-»; if ^ even.

The residual term R^,{t) will usually be negligible when

(5 23) \(Dla>)~'f (r)\ <§; 1/ (T)| 0 ̂  x ̂  t

The solution of (1.1) has no'w been put in three forms (4.3), (5.8) and
(5.19), each useful under different conditions. For example, if fx(t) is a
polynomial in t of degree m, the use of (5.8), with n > m, will give a constant
rotation component [An, —cot] superimposed on a guiding centre Sn(t).
A second example would be

f±(t) = jK cos (ott,

with K = constant and / a constant unit vector perpendicular to k. Then

(5.24) ( - ) f±(t) = jK (—) cos {a>A+rnl2), r = 0, ± 1 , ±2, • • •.

When \cojcol < 1, (5.24) is small compared with fx(t) for r > 0 and
the form (5.8) is appropriate. Similarly when \Q}JCO\ > 1 the appropriate
form is (5.19) and when cot ~ co, it is (4.3).

We note that the expression for x2 given in (2.9) and the expanded
versions of this contained in the (5.3) and (5.18) may be obtained by
operator methods. We would begin with the differential equation for x2

written as
D{D+ia>)xt = /,(<).

Then, noting that the inverse operator {D(D+iu>)}~1 may be written in
the forms
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[11] Forced motion of a charged particle 395

1 | 1 1 \ D'1 1 I 1 \ D'1 ( o i l \

iio [D ~ D+icoj ~ ioa w"2 \l — iDja)) ~~ ~ia> ~ W [l—co/iD) '

we use the identity

1/(1—3) = l+x+ • • •xn-1+xnl(l—x)

to expand the operators

1/(1—»Z>/«o) and 1/(1— co/iD)

and interpret the expansions in the usual manner.

6. Some known results as special cases

In this section three results derived elsewhere in different ways will
be shown to follow from the forms of the solution which we have developed.

Alfven's "Guiding Centre". From the discussion following (4.5) we have,
quoting Alfve'n, "the displacement of the perpendicular component of the
point where the centre of curvature would be if f± vanished for a moment"
at the instants 0, t is

(6.1) D(t) = S(t)-S{0) = - — kx f f±{r)dr.
O) Jo

This result is given by Alfve'n [1] and in velocity form by Alfve'n and
Falthammar [2]. They derive their result by considering the continuous
force to be equivalent to a series of impulsive forces.

Alfven's Series. According to (5.12) the residual term Rn(t) in the
expression (5.8) may be neglected when (Z)/co)n/x(<) is sufficiently small.
The motion is then uniform motion about a moving centre whose per-
pendicular component is Sn(t), given by (5.9). The corresponding velocity
component of this centre is then

(6-2) S»(0 = -(lla>)kx{fx+
n2TP{Dlco)^f±(t)}.

5=0

The components of this vector expression are the series expressions (27)
and (28) on p. 18 of Alfve'n [1], and mentioned in the introduction. The
development presented here also gives a series for the rotation component
An, (5.10), and an expression for the residual term Rn{t), (5.11).

The Polarization Drift. The polarization drift given in texts on plasma
physics, Chandrasekhar [4], Thompson [6], is obtained by putting n = 1
in the expression, (5.8), for r±(t).

If the characteristic frequency of f±(t) is v, with |j>/<w| <c 1, the inequality
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(5.12) is satisfied and the residual term may be neglected. This leaves a
uniform rotation term [Alt —cot] and a centre term S^t).

The perpendicular component of the velocity of the centre is then

(6.3) Sx(<) = - -kxf±(t) + - 2 Dfx{t).

If f± is due to an electric field E{t) then f±(t) = (ejm)Bx(t) and (6.3) may
be written

(6.4) SiW = (ExB)IB*+(mleB*)EAt)-

The terms on the right-hand side are the familiar electric field drift
and polarization drift. The constant rotation component is specified by
A^t), and R^t) gives a specific expression for the neglected terms.

7. Application to the Omegatron

To illustrate the usefulness of the various forms of the solution we
analyze the transverse motion produced by a transverse periodic forcing-
function

(7.1) f±(t) = jK cos (Oft.

We take / to be a unit vector perpendicular to k and define a third unit
vector i = jxk. K and mi are constants with 0 5S eo, ^ oo. Each of the
three forms of the solution is used in an appropriate range of co(.

A resonance occurs at eo,- = a> and this has been used in a precision
ion-selector known as an omegatron, Hippie et al. [5]. The particle orbits
have been analyzed by Berry [3].

When f±(t) from (7.1) is substituted into (4.5) we obtain two different
results for A(t) according as eo # eo,or eo — co,. They are, respectively,

A(t) = ± k x u ± l C +
co x 2 \ \ (co+o,,.) T (a>-wt)

(7 .Z)

(sin (co+cojt sin (<u—ca{)t\ \
(ft) + <U,) (o> — CO,) / J '

and
.„ „, At. 1 , KI 1 . cos 2cot , sin 2cot \
7.3 A{t) = - kxux- - — i-t — - / - — i\.

a) 2 [2m 2oi 2w )

Since, by equation (4.8), \rx(t)\ = \coA\, we deduce from (7.2) and
(7.3) that, assuming K independent of eo,-, we require eo, ~ eo, to obtain
the largest transverse speeds. Then the terms containing l/(eo—coj are
dominant in (7.2), and, considering these alone we.find that \A\ and there-
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fore the transverse kinetic energy oscillates at an angular rate (co—co^.
When co( = co the transverse speed increases indefinitely.

The forcing function (7.1) was used as an example in section 5 and the
forms recommended in the paragraph following equation (5.24) apply here.

Taking co to be positive we find:

Case (a)

sn(t) =

An =

and

, cojco «; 1.

a± kx
CO

CO

«x

K

+

+

(.

- (

- (
CO2\.

1=0 \<

n

n

I o

*>/

1 — 1 sin2

U;

^ c o s M ^ -

(/>— 1)TT/2 I sin (coj)!

••(P-I)jtj2^ cos (coj).

iW.)/.

— I — [/'cos (o^T+MTr/2). coT+(«+l)7r/2]iT.
CO/ CO J o

Owing to the factor (co,/co)n the residual term decreases as n increases
and is easily rendered negligible. Here Sn(t) represents an elliptic motion
and on this is superimposed the circular motion of radius An and period
27r/<yf. The axes of the ellipse are parallel to / and / and the semi-axes are
the coefficients of / sin co.J and / cos co,£ in the expression for Sn(t).

Case (b), a>< ~ co. Using (7.2), but including only the major oscillating
terms, we have

lokXU±J J^co) I + J (co-co,) l>

together with
S(t) = a±~(llco)kxu±+{Kjcocoi) sin cotti.

The radius of the rotation component, A(t), is a periodic function of
time with period 2 /̂(co—co(). S(t) gives the centre of this rotation. It remains
relatively constant compared with the* changes in A. The particle spirals
at an angular rate co about an approximately constant centre position with
radius expanding and contracting at a rate (co—cot).

Case (c), co{ = co. A(t) is given by (7.3) and

S(t) = a±—(llco)kxu_L+(Klcoi) sin cot i.

After a few periods the particle spirals at an angular rate co, with
increasing radius, about a centre which is approximately constant.
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Case (d), co( » w. With s ;> 2.

1 K I * /aA* \
S_,(<) = a± &XUj. I 2 I— sin2 {pn\%)\ s inw^/

Oi O)2 \£z \a)t) }

K / • /coV \
- - , ( 2 ( - ) cos2 (M2) cos «.,*/,

«>2 \*=2 \<V /

CO V \l>=2

(t) = (—) — f [/
\ft),/ <W J o

cos (wfT—S^/2),C

The residual term is easily rendered negligible by choosing a sufficiently
large value of s. Here Sn(t) traces out an elliptic locus with period 2^/a),-.
The ellipse has the fixed centre a±—(kxux)l<o, axes parallel to / a n d /
and semi-axes given by the coefficients of i sin (a(t and / cos co(t. The size
of the ellipse decreases to zero as (ot tends to infinity. The motion is best
described as a uniform circular motion with an elliptic motion super-
imposed on it.
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