TWO REMARKS ON THE COMMUTATIVITY OF RINGS

I. N. HERSTEIN

In (1) and (2) we proved that under certain conditions a given ring R must be commutative. The conditions used there were "global" in the sense that they were imposed at once on the relation of a given element to all the other elements of the ring R.

In this note we replace these global conditions by "local" ones that relate only to two elements of R at a time. We show that the results of (1) and (2) carry over to this situation.

In (1) we proved that if in a ring R with centre $Z, x^{n(x)} \in Z$ for some integer $n(x) \geqslant 1$ for all $x \in R$, then either R is commutative or its commutator ideal is a nil ideal.

The condition $x^{n(x)} \in Z$, of course, means that $x^{n(x)} y=y x^{n(x)}$ for all $y \in R$. We prove here

Theorem 1. Suppose that R is a ring such that given any two elements $x, y \in R$ then for some integer $n(x, y) \geqslant 1$ which depends on both x and y

$$
x^{n(x, y)} y=y x^{n(x, y)}
$$

Then either R is commutative or its commutator ideal is a nil ideal.
Proof. Suppose that R is not commutative. Let $c \neq 0$ be a typical element in the commutator ideal of R. We want to show that c is nilpotent. Since c is in the commutator ideal of R,

$$
\begin{gathered}
c=\sum_{i=1}^{m}\left(a_{i} b_{i}-b_{i} a_{i}\right)+\sum_{i=1}^{n} r_{i}\left(d_{i} e_{i}-e_{i} d_{i}\right) \\
+\sum_{i=1}^{p}\left(f_{i} g_{i}-g_{i} f_{i}\right) s_{i}+\sum_{i=1}^{q} t_{i}\left(h_{i} k_{i}-k_{i} h_{i}\right) u_{i} .
\end{gathered}
$$

Let T be the subring of R generated by all the elements $a_{i}, b_{i}, d_{i}, e_{i}, f_{i}, g_{i}, h_{i}$, $k_{i}, r_{i}, s_{i}, t_{i}, u_{i}$ appearing in the expression for c. Clearly c is a commutator in T. Suppose $\tau \in T$. Then

$$
\tau^{n_{1}}=\tau_{1}
$$

for suitable n_{1} commutes with a_{1} by the condition imposed on R. Similarly

$$
\tau_{2}=\tau_{1}^{n_{2}}=\tau^{n_{1} n_{\mathbf{2}}}
$$

commutes with a_{2} for some integer n_{2}; of course τ_{2} also commutes with a_{1} since τ_{1} does. Continuing in this way we arrive at an integer $m \geqslant 1$ so that τ^{m} commutes with all the a 's, b 's, etc. appearing in the expression for c and which

Received January 10, 1955.
generate T. Thus τ^{m} commutes with all the elements of T since it commutes with the generators of T; that is, for every $\tau \in T, \tau^{n(\tau)}$ is in the centre of T. By (1) this means that either T is commutative or its commutator ideal is a nil ideal. Since $c \neq 0$ is in the commutator ideal of T, T is not commutative. So c is nilpotent and the theorem is established.

In (2) we proved: let R be a ring with centre Z such that for all $x \in R$ $x^{n(x)}-x \in Z$ for some integer $n(x)>1$; then R is commutative. The condition $x^{n(x)}-x \in Z$ of course means that

$$
\left(x^{n(x)}-x\right) y=y\left(x^{n(x)}-x\right)
$$

for all $y \in R$. We localize the condition in the following
Theorem 2. If in a ring R for every pair of elements x and y we can find an integer $n(x, y)>1$ which depends on x and y so that $x^{n(x, y)}-x$ commutes with y, then R is commutative.

Proof. Let T be the subring of R generated by x and y. Suppose $t \in T$. Thus for some integer $m>1, t_{1}=t^{m}-t$ commutes with x. For some other integer $n>1, t_{2}=t^{n}{ }_{1}-t_{1}$ commutes with y. Since t_{1} commutes with x, t_{2} also commutes with x. Thus t_{2} commutes with both x and y, and so with every element in the subring they generate. Thus t_{2} is in the centre of T. However

$$
t_{2}=t_{1}^{n}-t_{1}=\left(t^{m}-t\right)^{n}-\left(t^{m}-t\right)=-\left(t^{2} p(t)-t\right)
$$

where $p(t)$ is a polynomial with integer coefficients. That is, for every $t \in T$ we can find a polynomial $p(t)$ with integer coefficients so that $t^{2} p(t)-t$ is in the centre of T. By the principal result of (3) T must be commutative. Since both x and y are in $T, x y=y x$, and so R is commutative.

The main theorem of (3) can also be generalized in the same fashion as the other two theorems. We state it without proof,

Theorem 3. If for every x and y in R we can find a polynomial $p_{x, y}(t)$ with integer coefficients which depend on x and y such that $x^{2} p_{x, y}(x)-x$ commutes with y, then R is commutative.

References

1. I. N. Herstein. "A Theorem on Rings," Can. J. Math., 5 (1953), 238-241.
2. -——, "A Generalization of a Theorem of Jacobson III," Amer. J. Math., 75 (1953), 105-111.
3. ———, "The Structure of a Certain Class of Rings," Amer. J. Math., 75 (1953), 864-871.

University of Pennsylvania

