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Introduction. Bernstein's classical integral representation theorem for 
completely monotonie functions can be proved most elegantly, on a commuta
tive semigroup with identity, by the integral version of the Kreïn-Milman 
theorem [2]. The key to this approach is the identification (as exponentials) of 
the extremal points of the normalized completely monotonie functions. Alter
nate proofs of this identification are given in § 1. The first (Corollary 1.3) is 
based on the Kreïn-Milman theorem and the second (see remarks following 
Corollary 1.5) is derived from elementary analytic techniques. Other interest
ing facts about completely monotonie functions are mentioned in passing. 
For example, we observe that the normalized completely monotonie functions 
form a simplex (Corollary 1.4). In Corollary 1.6 we note that the product of 
completely monotonie functions corresponds to the convolution of their 
representing measures. Thus the normalized completely monotonie functions 
form an affine semigroup [3]. 

In § 2 we consider extension theorems for exponentials and completely 
monotonie functions. We motivate and introduce a notion of power closed 
semigroups (i.e., multiplicative semigroups in which each of its members can 
be raised to non-negative real powers). In Proposition 2.1 we show that if 
M is a power closed semigroup and e is a non-zero homomorphism from M into 
[0, 1] (i.e., e is an exponential), then eT(m) = e(mr). This, and a theorem of 
Ross [7] concerning the extension of exponentials, are the principal tools of 
this section. We show that if a semigroup A admits enough exponentials to 
separate points, then it is naturally embedded in the power closed semigroup 
exp2A, consisting of the exponentials on the semigroup exp A, of exponentials 
on A. In this event, every completely monotonie function f on A admits a 
completely monotonie extension to exp2A (Corollary 2.7), and a unique 
completely monotonie extension to its power closure, A C exp2A (Corol
lary 2.4). In conclusion, we obtain a rather curious extension theorem 
(Theorem 2.11) for uniquely power closed semigroups. 

1. The simplex of normalized completely monotonie functions. Let A 
be a commutative semigroup (written additively) with identity 0. For each 
real-valued function f on A define the function Anf (n ^ 0) of the n + 1 
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variables x, hi, h2, . . . , hn G A inductively by: 

AofO) =f(x), 

Anf(x; hi, . . . , hn) = An-if(x; hh . . . , hn-i) - An-if(x + hn; hlf . . . , hn-\). 

A real-valued function / on A is said to be completely monotonie if Anf ^ 0 
for all non-negative integers n. The set Cœ(A) (=Cœ) of completely mono-
tonic functions on A is a convex cone in the linear space Eœ(A) = Eœ = 
Cœ - Cœ, i.e., aCœ + /3Cœ C Cœ for a, 0 > 0 and C^n -Cœ = {0}. The 
topology of simple convergence induces a locally convex linear topology on 
Eœ such that for each a £ A, the linear functional a defined by a{f) = f(a) 
is continuous. Since Cœ is topologically closed and every completely monotonie 
function is non-negative and bounded b y / ( 0 ) , TychonofFs theorem implies 
that the normalized completely monotonie functions, namely 

Xa(A) =Xm={f£ C„| /(0) = 1}, 

form a compact base for Cœ. Thus every non-zero completely monotonie 
function can be uniquely expressed as a multiple of some/ Ç Xœ. An exponen
tial is defined to be a non-trivial homomorphism e from A into the unit 
interval [0, 1] under multiplication. Every exponential e is completely mono-
tonic; in fact, Ane(x; hi, . . . , hn) = e(x)[l — e(hi)] . . . [1 — e(hn)]. The 
class of all exponentials in A will be denoted by exp A and the extreme points 
of Xm by ext Xœ. Since the identically one function is both an extremal point 
and an exponential, we see that neither ext Xœ nor exp A is ever void. 

That ext Xœ C exp A, is easily established in [2] as follows: Let e G ext Xœ 

and define ea(x) = e(x + a). Then ea G Cœ and e — ea G Cœ. Since e is 
extremal, there exists a > 0 such that ea = ae. Evaluation at 0 implies that 
e(a) = a, and the assertion follows. For the sake of completeness we state 
the following result. 

PROPOSITION 1.1. Every extremal point of Xœ is an exponential on A. 

The converse of Proposition 1.1 is known [2]. An elementary proof of this 
fact is offered after Corollary 1.5. A quick, but non-elementary, proof follows 
as a consequence of Theorem 1.2. 

Let X be a convex subset of a locally convex space E and let E* denote 
the adjoint of E. Recall [6] that a regular probability measure \xx which is 
supported by X is said to represent x G X if j x L dfxx = L(x) for all L G E*. 
The Kreïn-Milman theorem asserts that if X is compact, then every x £ X 
admits a representing measure which is supported by the closure of the extreme 
points of X. 

THEOREM 1.2. Every normalized completely monotonie function f admits a 
unique representing measure \xf which is supported by exp A, i.e., f(z) = 
.fexpA e(z) dfif(e). 
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Proof. L e t / £ Xœ. The Kreïn-Milman theorem, along with Proposition 1.1, 
establishes the existence of a representing measure \if for / such that \xf is 
supported by cl(extXœ) C cl (exp .4) = exp A To prove uniqueness, let 
a1 denote the restriction of the continuous function a to the closed set exp A. 
Since a1 • bl = (a + b)1, it follows that the linear span S of the set {a1] a Ç A} 
is a point-separating subalgebra of the algebra C[exp^4] of all continuous 
functions on the compact Hausdorff space exp A. Moreover, 01 = 1 implies 
that S contains the constant functions. Thus S is dense in C[exp A] by the 
Stone-Weierstrass theorem. But if v is any representing measure for / which 
is supported by exp A, then we must have, 

J y^oLffii1) diif= I (J^a&ijdv 
exp A •"'exp A 

for all finite sums £] a^^ Ç S. Hence /x/ = v, since both [if and v are regular. 

COROLLARY 1.3. Every exponential on A is an extremal point. 

Proof. Suppose that e £ exp A and / i , f% 6 Xœ such that e = §/i + \fi. 
Let ixi be the representing measure for ft (i = 1, 2), guaranteed by 
Theorem 1.2. By uniqueness, \\x\ + \\xi is point mass at e so that /** is also 
point mass at e. Thus f\ = /2 = e or 6 Ç ext Xœ. 

Recall [6] that if X is a convex base for a cone C in a linear space, then X 
is said to be a simplex if C — C is lattice-ordered. In the event that C — C 
is a locally convex linear topological space and both X and its extremal points 
are compact, then it follows that X is a simplex if and only if every x Ç X 
admits a unique representing measure which is supported by ext X [6]. In 
this event X is called a resolutive simplex [1] and C is affinely equivalent to the 
cone of all non-negative regular Borel measures on ext X. Theorem 1.2 and 
Corollary 1.3 now imply the following results. 

COROLLARY 1.4. The normalized completely monotonie functions Xœ(A) on 
a commutative semigroup A with identity form a resolutive simplex. 

COROLLARY 1.5. (a) For every completely monotonie function f it is true that 
P(x) £ /(0)/(2x). 

(b) A non-trivial completely monotonie function e is an exponential if and 
only if e2(x) = e(2x). 

Proof. Assertion (a) follows from Theorem 1.2 and Schwarz's inequality 
since, 

f(x) = J e(x) dfif(e) 
•^exD A 

£A/( f l < M e ) ) / t / ( f e\x)dnf(e)) =V(f(0)f(2x)). 
' \ v e X p 4 / ' \ v e x p 4 / 
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The ''only if" part of assertion (b) is clear. For the converse, assume that 
e G Cœ and e2(x) = e(2x). From Proposition 1.1, we need only prove that 
e G ext Xœ. Since e2(0) = e(0) and e is non-trivial, we have e G Xœ . Suppose 
that e = | / x + J/2 , where / i , / 2 G ^oo- Then from (a), 

fi2M + /2
2(x) rg/i(2*) + / 2 ( 2 x ) = 2e(2x) = 2e2(x) = ^ ( x ) + / 2(x)] 2 

so that [fi(x) — /2(x)]2 ^ 0 for all x, o r / i = /2 . 
A direct proof of (a) proceeds as follows: Without loss of generality we may 

assume that jf(0) = 1. For fixed x G A, define the linear functional L on the 
vector space of real polynomials by L(tn) = f(nx) (n ^ 0). It is easy to see 
that for 0 S k S n, 

0 S &n-kf(kx; x,x,...,x)= E ( - 1 ) V ~ * W + r)x] = L[t\l - tf-% 

Hence, if c is any real number and 

then we have L(pn(t)) ^ 0. Now, using the fact that 

s(">-(«^+"r 

(or the known values of the first and second moments of the binomial dis
tribution), we find that 

n 

Hence 0 ^ L[pn(t)] = L[(t - c)2] + (l/n)L[t(l - *)]. Letting » -> 00, we 
have L[(t - c)2] è 0. Putting c = f(x), we obtain /(2*) - f2(x) = 
L[(t — f(x))2] ^ 0. Of course, pn(t) is the Bernstein polynomial of degree n 
for the function/(/) = (t - c)2. 

It should be noted that the above argument, coupled with the proof given 
of Corollary 1.5 (b), yields a direct and elementary proof of Corollary 1.3, 
namely that every exponential is extremal. 

It is clear that exp A is itself a semigroup under multiplication. It is there
fore reasonable to expect the same of Cœ and Xœ. 

COROLLARY 1.6. / / / , g G Cœ (or Xœ) and if nf and \xQ are the respective 
non-negative regular Borel measures on the compact semigroup, exp A, which 
represent f and g, then f • g G Cœ (or Xœ) and f • g is represented by the con
volution fj,f * jjLg of fxf and JJLQ. 
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Proof. Using the notation of the proof of Theorem 1.2 we have: 

ss 
exp A exp A X exp A 

= I e(a) dfxf(e) J e(a) d\xg{e) = fia)g{a) for all a £ A. 
*J exp A *J exp A 

A direct proof that the product of two completely monotonie functions is 
completely monotonie proceeds as follows. Let / , g £ Cœ and hypothesize 
inductively that 

A»(/-g) = lA,(/)A?fe) , 

where appropriate arguments are assumed, and the summation is finite. 
Clearly the inductive hypothesis is valid for n = 0. For n = 1 we have: 

Ai(fg)(x;h) =f(x)Aig(x;h) + g(x + h)Aif(x; h). 

The inductive step from n to n + 1 then follows readily from additivity of Ai 
and the case n — 1. 

In particular, we note that Corollary 1.6 implies that the normalized 
completely monotonie functions, Xœ, form an affine semigroup [3]. Moreover, 
the vector lattice Eœ is a Banach algebra. 

As applications of the above theory, two classical theorems of Bernstein 
and Hausdorff can be recovered (cf. [2]). Let R+ denote the non-negative 
reals, N the non-negative integers, and [0, 1] the closed unit interval equipped 
with its usual topology. It follows that the exponentials on R + and N are all 
functions of the form f^ (0 ^ t ^ 1, 0° = 1). Bernstein's and Hausdorff s 
theorem takes the following form. 

COROLLARY 1.8 (Bernstein (Hausdorff)). Every completely monotonie 
function f on R + (moment sequence on N) admits a unique integral representation 
of the form: 

f(a) = f tadn(t), a£R+ (at N). 
«Jo 

In particular, Corollary 1.8 implies that every completely monotonie 
function / o n N can be uniquely extended to a completely monotonie function 
on R, a well-known theorem (see [8]). 

2. Extensions of exponentials and completely monotonie functions. 
As previously observed, exp A is a commutative semigroup under pointwise 
multiplication whose identity is the identically one function. If we adopt the 
convention that 0° = 1, then e° = 1 G exp A for e G exp A. If we define 
eco(a) = 1 when either a or e is the identity and eœ(a) = 0 otherwise, then 
eœ Ç exp A for e G exp A. Observe that eœ(a) j* l im^œe'(a), although this 
function is an exponential. It follows that exp A = M is a commutative 
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semigroup (under multiplication) with identity 1, which admits a para-
metrization \p: (m, r) —> m{r) on M X [0, GO ] into M such that: 

(i) m(r+s) = m(r)m(s)^ 

(ii) m<n) = mn, m^ = 1, l(œ) = 1, 
(iii) m(œ)n = m(00) for all m j* 1. 

Any multiplicative semigroup which admits such a parametrization will be 
called power closed. If M admits only one such parametrization, then we will 
say that M is uniquely power closed. For notational convenience we will 
sometimes set m{r) = mr when M is uniquely power closed. 

An example of a semigroup which admits a non-unique parametrization \p is 
the semigroup of non-negative reals under multiplication. Let X be any 
additive homomorphism of R + onto R such that X(l) = 1. Then \f/, defined by 

(mMr) for 0 ^ r ^ oo, 
\l/(m, r) = \0 for m ^ 1, r = oo , 

11 otherwise, 

is a parametrization of R+ . It is well known that X, and hence \p, is not unique. 

PROPOSITION 2.1. If M is a power closed semigroup, then er(m) = e(mr) for 
all r G [0, co ], m G M, and e G exp M. 

Proof. If r = oo, then eco{m) = 0 for e 9^ 1 5* m. But if e 7^ 1, then there 
exists ?£ G M such that e{n) < 1. But since m ^ 1, wehavee(m°°) = e(rn°n) = 
e(mco)e(n)y so that e(m°°) = 0. Therefore eœ(m) = e{m°) if e ^ 1 ^ m. If 
either ^ = 1 or m = 1, then clearly eœ(m) = 1 = e(mœ). Thus we may 
assume that 0 ^ r < 00. Define the real-valued function F on R + by 
F(r) = e{mT). Then F G exp R+, and hence e(mr) = F(r) = -Fr(l) = er{m). 

COROLLARY 2.2. Every power closed semigroup with enough exponentials to 
separate points is uniquely power closed. 

Proof. Suppose that <j> and \[/ are two parametrizations. Then for every 
x and r, Proposition 2.1 implies that e[<j>(x, r)] — er(x) = e[\[/(x, r)] for all 
exponentials e. Thus \{/(x, r) = <j>(x, r). 

We leave the converse question open. That is, does every uniquely power 
closed semigroup have enough exponentials to separate points? Partial 
results are indicated in Corollary 2.11. 

With reference to the notation of § 1 we recall that for each a in the semi
group A, the function a1 is a|exp A; i.e., ax(e) = e(a) is a member of exp2A. 
If we assume that A admits enough exponentials to separate points, then, 
the map a —> a1 is a biunique homomorphism of A into exp2A. The range of 
this map will be denoted by A1. Corollary 2.2 implies that we may identify 
the exponential (a1)r with ar (0 ^ r ^ 00), in the event that A is power 
closed. We also make this identification if A is not power closed. When A 
admits enough exponentials to separate points, the notation A will be intro
duced to denote all of the members of exp2^4 which are of the form 
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axria2
r2 . . . a*r*, where at £ A, 0 ^ rt ^ oo, i = 1, 2, . . . , k, and k G N. 

Note that Z D ^L1; in fact, 4̂ is the smallest power closed subsemigroup of 
exp2 A in which ^t1 is embedded. For this reason we call A the power closure 
oîA. 

THEOREM 2.3. Each e± G exp^.1 has a unique extension e1 G exp ^4. Thus 
exp A1 = exp A. 

Proof. Define an extension el oi ei by 

c V ' a / ' . . . O = ein(«i1)eir2(a2
1) . . . «/'(a*1). 

Clearly, el is an extension of e\ such that e1 G exp Â. The uniqueness follows 
from Proposition 2.1, since we must have 

e / ( a i ) = ( e 1 ) ^ 1 ) = el(ar) for all a G A 

COROLLARY 2.4. £2^3/ completely monotonie function f on A has a unique 
completely monotonie extension f to A, given by 

ffa'W* . . . O = f eri(a1) . . . erk{ak) d»,(e). 
«'exp A 

Proof. It easily follows that / is a completely monotonie extension of / . 
The uniqueness of / follows from Theorem 2.3 and the uniqueness of the 
representing measure nf for/. 

In the event that A is the non-negative integers under addition, we know 
that exp A is isomorphic to [0, 1] under multiplication (zero corresponding 
to f° for t 7e 1). If 0 ^ r ^ co, then the function t —» V is an exponential on 
[0, 1]. In fact, A is precisely all exponentials of this form. exp2 A properly 
contains A, since expM contains the additional exponential \p as defined by: 
\p{t) = 1 if t 9^ 0, and ^(0) = 0. The power closure A can be identified with 
[0, 00] under addition, so that the remark following Corollary 1.8 is a special 
case of Corollary 2.3. Note that the identity exponential on N has two com
pletely monotonie extensions to exp2A, the identity, and $ as defined by: 
$(r) = 1 for all 0 S r S 00 and $ 0 ) = 0. 

We now waive the uniqueness requirement for extensions of completely 
monotonie functions. Our setting will be as follows: A0 will denote a sub-
semigroup of the additive commutative semigroup A such that A0 contains 
the identity 0 of A. An exponential e on A0 will be called monotonie if 
b = a + h for a, b G A0, h G A implies e{a) ^ e(b). The following lemma is 
a consequence of a theorem of Ross [7]. 

LEMMA 2.5. An exponential e on Ao has an extension to an exponential on 
A if and only if e is monotonie. 

THEOREM 2.6. If every exponential on A0 is monotonie, then every completely 
monotonie function on A0 has an extension to a completely monotonie function 
on A. 
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Proof. Let the map a: Xœ(A) —> Xœ(AQ) be defined by a(f) = f\M. We 
need only show that the range of a is all of Xœ(A0). The range of a is clearly 
convex. Since a is continuous, its range is also compact. From Lemma 2.5 
and the hypothesis, we see that each exponential on A 0 is a member of 
ff(Iœ(i)), and hence a(Xœ(A)) contains the closed convex hull of exp^4oœ, 
which is equal to Xœ(A0). The assertion follows. 

COROLLARY 2.7. Every completely monotonie function on Al has a completely 
monotonie extension to exp2A. 

Proof. Let e £ exp^l 1 ) . Define e0 £ exp3(^4) by e0(a) = e(a1) for all 
a G A and define e' £ exp3(^4) by er (h) = h(e0) for all h £ exp2(^4). Then 
e' is an extension of e since e'(a1) = a1(e0) = e0(a) = eÇa1). The assertion 
follows from Theorem 2.6. 

As can be seen from the following example, the requirement that A have 
enough exponentials to separate points is not sufficient to ensure that every 
exponential on a subsemigroup A0 of A can be extended to an exponential 
on ,4. Let A = R+and^40 = {m + \/2n\ m, n £ N U {0}}. Defines £ e x p ^ 0 

by e(m + V2n) = (h)m(l)n. Since e(l) < e(y/2), it follows that e cannot 
be extended to an exponential on R+ . Moreover, A1 is isomorphic to 
( N X N ) U | c o j , while A is isomorphic to (R+ X R+ ) VJ {oo }. Since A can 
also be embedded in R+ VJ {oo }, the above example also shows that the power 
closure of A is not embeddable in every power closed semigroup which con
tains a copy of A. 

In conclusion, we hereby present some lemmas which lead to an extension 
theorem for uniquely power closed semigroups. 

LEMMA 2.8. If M is uniquely power closed, then 
(a) x2 = x implies x(r) = xif0<r<ooy 

(b) [x<r)](s) = x^rs) if 0 ^r < oo andO ^ s < oo, 
(c) x<r)yW = (xy)^ if 0 ^ r g oo. 

Proof. If (b) were false, then a new power closure m [ ] on M could be defined 
by 

[t] _ im(l) Urn 5^x(r), 
m - \ x " " ifm = x ( r ); 

the proofs of (a) and (c) follow analogously. 

LEMMA 2.9. If M is a uniquely power closed semigroup such that m(s) = m 
for some s ^ 1, then m is idempotent. 

Proof. The assertion is clearly valid iî s = 0 or s = oo. If not, then 
Lemma 2.8 (b) implies that m(s) = m = m(1/s). Thus we may assume that 
5 > 1. But since m(s2) = [m(s)](s) = [w (1/s)] (s) = m and induction on n implies 
that w(s2n) = m, we may assume that s > 2. But then 

so that Lemma 2.8 (b) implies that m2 = m. 
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LEMMA 2.10. / / M is a uniquely power closed semigroup, then ym = m 
implies that ym{s) = w(s) for all 0 < s < co. That is, y acts as an identity on 
the subsemigroup {m(s)\ 0 < s < co}. 

Proof. By induction we have, ynm = m for all natural numbers n. Thus 
if (1/n) < s, then Lemma 2.8 implies that ymil/n) = m{1,n), so that 
yma/n)m(s-i/n) _ m(l/n)m(s-i/n)^ a n c [ n e n c e ym(s) = m{S). 

THEOREM 2.11. Let M be a uniquely power closed semigroup and m £ M. 
Every exponential e on the subsemigroup {mr\ 0 ^ r < oo} has an extension to 
an exponential on M. 

Proof. From Lemma 2.5 we need only show that xmr = ms implies that 
e(mr) ^ e(ms). If e(m) is either 0 or 1, the assertion follows from Proposi
tion 2.1 (without the uniqueness of the power closure). Thus we may assume 
that 0 < e(m) < 1 and r > s. Then Lemma 2.8 implies that 

[ x ( l / ( r - s ) ) m ( r / ( r - S ) - i ) ] w = m(s/(r-s)) ^ 

so that 
[ x U / ( r - a ) ) w ] w ( « / ( r - « ) ) = m(s/(r-s)) # 

Multiplying both sides of the above equation by m(1~s/<ir~s)\ setting 
z = x (1 / ( r_s ) ) and applying Lemma 2.10 we see that, 

(zm)m(t) = m ( 0 for all t > 0. 

Moreover, since (zm)m = m we must have (zm)2 = (zm), so that Lemma 2.8 
implies that (zm)l = (zm) if 0 < t < OD . 

Let / b e a normalized additive isomorphism of R onto itself which is not 
of the form /( /) = t. Define a new power closure y['] by 

y™ = yw il y 9* m, 

mM = w(/<to) ilf(u) ^ 0, 

mM = (zm)z(-Ku)) iîf(u) < 0. 

To reach a contradiction, and thereby show that r ^ s, we will show that 
yl-] is a power closure. To see this, we need only verify that m[u+v] = m[u]m[v] 

for u, v ^ 0. 

Case (i).f(u),f(v) ^ 0. T h e n / O + v) è 0 so that 

m[u^m[v] — m(/(M))w(/(w)) = w(/(w+B)) = m[u+v]. 

Case (ii). f(u),f(v) < 0. T h e n / O + v) < 0 so that 

m{u]mW = (zm)z(~m-f(v)) = m[M+c]. 

Owe ( i i i ) . / 0 ) ^ 0 , / 0 ) < 0, a n d / O + «0 > 0. Then 

mMmw = m^u))[(zm)z^-f^] 
— m(/(")+/(»))[^m](-/(»)+D = w(/(M)+/(f0)[2m] = m[u+v]. 
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Case (iv).f(u) ^ 0,f(v) < 0, and f(u + v) < 0. Then 

= m(m)z(K
u»z(-f(u+v)) (ztn) = z(-Ku+v)) (ztn) = m[u+vK 

Case (v). f{u + v) = 0. Since/ is biunique, we must have u = — v so that 
u = y = 0, and hence mlu]m[v] = m[0] = [u+v]. 

As previously mentioned, we do not know if every uniquely power closed 
semigroup has enough exponentials to separate points. However we may 
assert the following. 

COROLLARY 2.12. Let M be a uniquely power closed semigroup. 
(a) If m is a non-idempotent element of M and 0 < r, s < co stick that r 9e s, 

then there exists an exponential e such that e(mr) ^ e(ms). 
(b) If mi is an idempotent element of M and m2 G M such that m\ ^ ra2, 

then there exists an exponential e such that e(mi) ^ e(m2). 

Proof. Part (a) follows directly from Theorem 2.11 since we can extend the 
exponential e as defined on {mr\ 0 ^ r < oo} by e(mr) = (J)7*. 

If both Wi and m2 are idempotent, then part (b) follows even without the 
assumption of M being power closed. For in this event we let Mt = {x\ xy = mf 

for some y Ç M} (i = 1, 2). It follows that the characteristic function eu 

of Mi is an exponential. Thus we need only show that either Wi d M2 or 
m2 i Mi. But if mi G M2, then there exists x such that xrvii = m2, so that 
(xmi)mi = m2 or mim2 = m2. Analogously, m2 G Mi implies mim2 — mi, so 
that both mi Ç M2 and m2 6 Mi imply Wi = m2. If mi is idempotent and 
m2 is not, part (a) verifies the assertion since every exponential assumes only 
the values 0 or 1 on mi. 
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