The Statistics and Galactic Properties of the Methanol Multibeam Survey J. A. Green^{1,*}, J. L. Caswell¹, G. A. Fuller², A. Avison², S. L. Breen^{1,3}, K. Brooks¹, M. G. Burton⁴, A. Chrysostomou⁵, J. Cox⁶, P. J. Diamond², S. P. Ellingsen³, M. D. Gray², M. G. Hoare⁷, M. R. W. Masheder⁸, N. M. McClure-Griffiths¹, M. Pestalozzi^{5,11}, C. Phillips¹, L. Quinn², M. A. Thompson⁵, M. A. Voronkov¹, A. Walsh⁹, D. Ward-Thompson⁶, D. Wong-McSweeney², J. A. Yates¹⁰ and R. J. Cohen^{2,*} **Abstract.** The methanol multi-beam (MMB) survey has produced the largest and most complete catalogue of Galactic 6.7-GHz methanol masers to date. 6.7-GHz methanol masers are exclusively associated with high-mass star formation, and as such provide invaluable insight into the Galactic distribution and properties of high-mass star formation regions. I present the statistical properties of the MMB catalogue and, through the calculation of kinematic distances, investigate the resolution of distance ambiguities and explore the Galactic distribution. **Keywords.** stars: formation, Masers, Surveys 6.7-GHz methanol masers provide an incredible tool to study both the properties of high-mass star formation regions and the structure of our Galaxy. The Methanol Multibeam (MMB) survey has recently completed its southern hemisphere observing with the Parkes Radio Telescope, covering over 60% of the Galactic plane and detecting in excess of 900 sources throughout the Galaxy. Factoring for the completeness of the survey gives a total population estimate of ~ 1200 masers, in line with modelling of previous inhomogeneous surveys. The MMB sources have a narrow latitude distribution, peaking in longitude around ± 20 -30°, and have a flux density distribution peaking at around 1-2 Jy. Analysis of the distribution in longitude-velocity space shows 45 sources associated with the near and far 3-kpc arms. Kinematic distances to the MMB sources have been determined and the Galactic distribution analysed. Preliminary results suggest an overall galactocentric peak at 5-6 kpc with individual peaks at the positions tangential to the spiral arms. ¹ Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australia, E-mail:james.green@csiro.au; ² Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester, M13 9PL, UK; ³ School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001, Australia; ⁴ School of Physics, University of New South Wales, Sydney, NSW 2052, Australia; ⁵ Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK; ⁶ Department of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3YB, UK; ⁷ School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK; ⁸ Astrophysics Group, Department of Physics, Bristol University, Tyndall Avenue, Bristol, BS8 1TL, UK; ⁹ School of Maths, Physics and IT, James Cook University, Townsville, QLD 4811, Australia; ¹⁰ University College London, Department of Physics and Astronomy, Gower Street, London, WC1E 6BT, UK; ¹¹ Göteborgs Universitet Inkvissitutionen för Fysik, Göteborg, ^{*} Deceased 2006 November 1.