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Abstract. We investigate the combined effects of thermal conduction, compressive viscosity and
optically thin radiative losses on the period ratio, P1/2P2 , (P1 is the period of the fundamental
mode and P2 is the period of its first harmonic) of a slow mode propagating one dimensionally.
We obtain the dispersion relation and solve it to study the influence of non-ideal effects on the
period ratio. The dependence of period ratio on thermal conductivity, compressive viscosity and
radiative losses has been shown graphically. It is found that the effect of thermal conduction on
the period ratio is negligible while compressive viscosity and radiation have sufficient effects for
small loops and large loops respectively.

1. Introduction
Coronal loop oscillations have recently become a subject of considerable observational

and theoretical interest. Since the launch of SoHo and TRACE, many examples of both
standing and propagating waves have been detected in a variety of solar structures. There
are observational evidences of slow modes occurring as propagating waves (DeForest &
Gurman 1998; Ofman et al. 1997, 1999; Robbrecht et al. 2001; De Moortel et al. 2002a,b;
McEwan & De Moortel 2006). The standing slow mode oscillations in solar corona has
been detected (Kliem et al. 2002; Ofman & Wang 2002; Wang et al. 2003, 2004). We are
interested in the detection of multiperiods in loops. Multiperiods have been first reported
in standing fast waves (Verwichte et al. 2004; Van Doorsselaere et al. 2007) and now
very recently in slow modes (Srivastava & Dwivedi 2010). Since higher harmonics have
lower wavelengths, they carry more detailed information about a structure and are more
influenced by chromospheric structure or the gravitational scale height. Andries et al.
(2005a) studied the ratio P1/P2 of the fundamental oscillation period, P1 , and its first
harmonic, P2 , of a kink mode oscillation, showing that this ratio falls below 2. Srivastava
& Dwivedi (2010) reported the period ratio of slow mode P1/P2=1.54 and 1.84. The
observed tendency of period ratio, P1/2P2 , to be less than unity has led to a number
of researchers to assess the influence of various physical effects such as longitudinal and
transverse density structuring, wave dispersion and gravitational stratification on the
period ratio (Andries et al. 2005b; McEwan et al. 2006, 2008).

The effect of damping on the period ratio of slow mode has been studied recently
by Macnamara & Roberts (2010). They discussed the role of thermal conduction and
compressive viscosity but have not included optical thin radiation to study the effects
on period ratio. So in this paper, we aim at investigating the joint effects of radiation,
thermal conduction and compressive viscosity on the period ratio of non-adiabatic slow
modes.
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2. Model Equations and Dispersion Relation
We model a single coronal loop tied at footpoints located in photosphere. We suppose

that the wavelengths are much smaller than the gravitaional scale height i.e. gravitaional
effects are neglected. We take the longitudinally propagating waves as purely one di-
mensional wave. The basic linear MHD equations describing plasma motion in 1D are
(Macnamara & Roberts, 2010)
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Here ρ, p, v and T represent perturbed density, pressure, velocity and temperature re-
spectively whereas ρ0 , p0 and T0 represent equilibrium density, pressure and temperature
respectively. ν is the coefficient of compressive viscosity of the form ν = ν0T

5/2kgm−1s−1

with ν0 = 10−17 . γ is the ratio of specific heats. Equation (3) is linearized energy
equation and present form is due to non-ideal effects (radiation losses, thermal con-
duction and heating). We take thermal conduction to act purely along the z-axis set-
ting κ‖ = 10−11T 5/2Wm−1K−1 as thermal conduction is strongly suppresed across a
magnetic field (Spitzer, 1962). L(ρ, T ) is the net heat- loss function per unit mass and
the time having the form L(ρ, T ) = χρTα − h, where χ and α are piecewise contin-
uous functions depending on the temperature (Hildner 1974; Carbonell et al. 2004).
The heating term h is assumed fixed that maintains the equilibirium temperature with-
out contributing to the linearized perturbation equations. LT and Lρ are the partial
derivatives of heat-loss function with respect to temperature and density respectively i.e.
LT = (∂L/∂T )ρ , Lρ = (∂L/∂ρ)T .
Fourier analysing equations (1)–(4) as exp (iωt−kz z), we obtain the following dispersion
relation
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If we solve dispesion relation (5) for complex freequency ω = ωr + iωi with kzL = π/2
and π to obtain ω1 = real(ω) and ω2 = real(ω) respectively, the fundamental period,
P1 can be obtained as P1 = 2π/ω1 and period P2 for first overtone as P2 = 2π/ω2 . So,
P1
2P2

= ω2
2ω1

.
We now introduce the dimensionless parameters namely thermal ratio, d, radiation ratio,
r (De Moortel $ Hood, 2004) and viscosity measure ε as
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where τs is sound travel time. The ratios d and r are expressed in terms of time scales
τ because most observed waves have a prescribed period, which we take as τ rather
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than a prescribed loop length. Using standard coronal values for all the variables T0 =
106K, ρ0 = 1.67 × 10−12kg m−3, κ‖ = 10−11T5/2

0 Wm−1deg−1 , µ̃ = 0.6, R = 8.3 ×
103m2s−1deg−1 , γ = 5/3, τ = 300s. gives a value d = 0.025 for thermal ratio and r= 0.06
for radiation ratio. If we set Ω = ω/kz cs , the dispersion relation (5) in non-dimensional
parameters becomes

Ω3 − i(V + γD + αγR)Ω2 − (1 + γV D + αγV R)Ω + iD − i(2 − α)R = 0, (6)

where

V = εkzL, D = dkzL and R =
r

kzL
.

When ε = d = r = 0, then Ω = 0 or Ω = ±1. Therefore ω = kz cs is a solution of equation
(6). The period ratio P1/2P2 = ω2/2ω1 = [(πcs/L)/(2πcs/2L)] = 1.

3. Results and Discussion
We solve dispersion relation (6) to find out the period ratio P1/2P2 of non-adiabatic

slow mode in order to discuss how thermal conductivity, viscosity and radiative losses
bring about a shift in the period ratio from unity. In the absence of thermal conduction
and compressive viscosity, the variation of period ratio P1/2P2 with radiation parameter
r is shown in figure 1(a). Figure 1(a) depicts the behaviour of period ratio with radiation

Figure 1. Period ratio as a function of (a) radiation parameter r, (b) thermal conduction
parameter d for different values of radiation parameter r, and (c) compressive viscosity parameter
ε for different values of radiation parameter r.
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ratio. The period ratio is unity when r = 0 as expected and decreases uniformly to a
minimum value 0.9257 at r = 1.25. Thereafter the period ratio increases and moves
towards unity for sufficiently large values of r.

Figure 1(b) shows the variation of period ratio with thermal conduction parameter d
for three different values of radiation parameter r = 0.0, 0.03 and 0.06. The period ratio
decreases to minimum values 0.8669, 0.8832 with the increaes in d up to 0.29 for r = 0
and r = 0.03 respectively. For r = 0.06, the minimum value of peroiod ratio 0.8873 is
found at d = 0.28. After attaining minimum value, period ratio tends to increase and
returns to unity for sufficiently large d. It is interesting to note that the period ratio is
almost same at d = 0.41 for all values of radiation parameter. For radiation parameter
r = 0.06, the period ratio is less than the period ratios for r=0.0 and 0.03 upto the values
of thermal measure d from 0.0 to 0.41 whereas the period ratio is higher than those for
r = 0.0 and 0.03 for the values of d from 0.41 onwards.

Figure 1(c) depicts the departure of period ratio from unity as a function of com-
pressive viscosity for different values of radiation parameter. It is observed that when we
consider the compressive viscosity together with radiation ratio, the effect of small values
of radiation parameter does not influence the departure of period ratio from unity.
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