TWO DIMENSIONAL SPECTRAL CLASSIFICATION OF EARLY TYPE STARS BY LOW DISPERSION SPECTROPHOTOMETRY

A. GUTIÉRREZ-MORENO and H. MORENO
Departamento de Astronomia, Universidad de Chile

Abstract

Spectrophotometric data of early type stars (spectral intensity distributions from 3100 to $6000 \AA$ and equivalent widths of $\mathrm{H} \beta, \mathrm{H} \gamma$ and $\mathrm{H} \delta$) have been analysed, looking for the best parameters for a two dimensional spectral classification. It was found that the best correlation with MK classification is given by the equivalent width of $\mathrm{H} \beta$ and the Balmer discontinuity.

The classification scheme is well defined for stars from B0 to A1 of luminosity classes V to III. No stars of luminosity class II were observed. Luminosity class I is clearly separated from the less luminous stars, but the number of supergiants observed is too small to give a clear separation of spectral types.

The usefulness of quantitative measurements of the Balmer discontinuity and other hydrogen parameters for stellar classification is a well known fact. The photoelectric spectrum scans obtained by Gutiérrez-Moreno et al. $(1967,1968,1972)$ and Moreno (1972) extend from $3000-6000 \AA$ and thus allow the determination of the size and position of the Balmer discontinuity, and the measurement of equivalent widths of $\mathrm{H} \beta, \mathrm{H} \gamma$ and $\mathrm{H} \delta$. The observations were made at the Cerro Tololo Inter-American Observatory using a spectrum scanner with a slit $60 \AA$ wide. The parameters measured are shown in Figure 1, where D and λ_{D} are the size and position of the Balmer discontinuity as defined by Barbier and Chalonge (1939) and Chalonge and Divan (1952). Besides, ΔD is a measure of the emission in the Balmer continuum, present in some stars and already detected by Slettebak and Stock (1957) on objective prism plates; and $U D$ is an ultraviolet deficiency, which exists in some stars and which was measured for its possible physical significance. The blue-green and ultraviolet gradients, ϕ_{BG} and ϕ_{U} were also measured.

All these data were tested for a two dimensional spectral classification. The first attempt was made following Barbier and Chalonge (1939) and Chalonge and Divan (1952). A comparison of our data with those from Paris showed that the measurements of the Balmer discontinuity are in close agreement:

$$
\begin{equation*}
2.5 D_{\text {Paris }}=0.04+D_{\text {Chile }} \text {. } \tag{1}
\end{equation*}
$$

Nevertheless, a systematic dependence on the equivalent widths of the hydrogen lines was found for the relation between the Paris position of the Balmer discontinuity, λ_{1}, and ours, λ_{D}. For example:

$$
\begin{equation*}
\lambda_{D}-\lambda_{1}=7.545+0.692\left(\lambda_{D}-3700\right)-2.366 W_{\mathrm{H} \beta} . \tag{2}
\end{equation*}
$$

Similar relations hold if $W_{\mathbf{H} \gamma}$ or $W_{\mathbf{H} \delta}$ are used. Relation (2) reproduces λ_{D} with a dispersion of $\pm 5 \AA$.

Fig. 1. Schematic diagram showing the different parameters measured.

May be due to this systematic effect, a graph of D vs λ_{D} failed to give a positive result for a two dimensional spectral classification.

The analysis of all the remaining data showed that the closest agreement with the MK system is obtained by using the relation between the size $D_{1}=D+\Delta D$ of the Balmer discontinuity (spectral type indicator) and the equivalent width of $\mathrm{H} \beta$ (luminosity indicator). It was also found that D_{1} could be replaced by the color index:

$$
\begin{equation*}
c_{D}=m_{3695}-m_{3930}, \tag{3}
\end{equation*}
$$

which is, numerically, almost identical to D_{1} and has advantages from the practical point of view. The magnitudes in relation (3) have been corrected by atmospheric extinction, but not for interstellar absorption. Nevertheless, no misclassifications were detected due to this fact. On the other hand, a comparison of D, D_{1} and c_{D} with the broad-band parameter Q, which is independent of reddening (Johnson, 1958), gives the best agreement for the $\left(Q, c_{D}\right)$ relation. An attempt to make a correction for red-
dening, by using a color difference defined in a similar way to the parameter Q showed no improvement whatsoever.

Up to B7, the standard stars used to establish the system have been taken only from Lesh (1968) or from Hiltner et al. (1969). Preliminary attempts made independently with each of these authors gave coincident classification schemes and, consequently, both lists were considered to form a homogeneous classification and were used to derive the empirical diagram shown in Figure 2. From B8 on, the system is not so homogeneous, since the classifications were taken from different authors (Jaschek and Jaschek, 1966; Jaschek et al., 1964). The stars used as standards are listed in Table I. The references for this Table and for Table II are given at the end of Table II.

Since the lines separating spectral types and luminosity classes in Figure 2 have been obtained empirically, they have a certain amount of uncertainty; nevertheless, the separations between luminosity classes V, IV and III are fairly well defined, mainly for the earlier types. No stars of luminosity class II were included in the observations and, consequently, the lower limit for luminosity class III is rather arbitrary. Luminosity class I stars are well detached. The sample of these stars is small, but they show that their classification is difficult due to the effect of luminosity on the Balmer discontinuity, which produces a crowding effect of spectral types towards small c_{D} values. As an example, we show the star HD 111613, which is an A1Ia star. Figure 2 suggests the convenience of using the $\left(c_{D}, W_{H \beta}\right)$ diagram to separate the high luminosity stars, and then use for them a classification scheme based on different parameters.

A group of 75 stars, considered as program stars, was classified according to the scheme in Figure 2. In general, the discrepancies with respect to Lesh (1968) and Hiltner et al. (1969) are small as defined by Jaschek and Jaschek (1966): only 5 stars, of a total of 46 in common with these authors differ from their classification by more than one sub-class in spectral type, or more than one class in luminosity. For these 5 stars, a classification in better agreement with ours is given in the La Plata Catalogue (Jaschek et al., 1964). The average index of discrepancy, defined also by Jaschek and Jaschek (1966) is $\bar{e}=0.55$, which implies that the average uncertainty of a single classification is less than 0.55 luminosity classes and 0.55 spectral subclasses. The internal accuracy of our classification, determined by the method of Butler and Thackeray (1940) is:

$$
\sigma_{\mathrm{ST}}= \pm 0.2 \text { subclasses }, \quad \sigma_{\mathrm{L}}= \pm 0.5 \text { classes }
$$

σ_{ST} is the mean of three determinations, made by comparison with different authors.
There are, nevertheless, nine stars for which the discrepancies with respect to other authors are not small. They were not included in the previous analysis, since they also show rather large discrepancies between the classifications made by other authors. They are listed in Table II. The table also shows the broadband spectral types S_{Q}. In most of the stars listed, S_{Q} is closer to the spectrophotometric types than to the MK classifications given by other authors. This shows that these stars have some peculiarities, even though these peculiarities may not be apparent in the spectrum.

An attempt to detect peculiar stars or emission stars was made by plotting the equi-

TABLE I
Standard Stars

BS	HD	Name	c_{D}	$W_{H \beta}$	MK	Ref.
1855	36512	\checkmark Ori	0.13	4.4	B0V	[1]
6165	149438	τ Sco	0.17	4.4	B0V	[1]-[2]
1903	37128	ε Ori	0.10	2.3	B0Ia	[1]-[2]
1887	36960	$-6^{\circ} 1234$	0.17	5.3	B0.5V	[1]
5953	143275	δ Sco	0.20	4.3	B0.5IV	[1]-[2]
1756	34816	λ Lep	0.23	4.5	B0.5IV	[1]
4853	111123	β Cru	0.19	4.0	B0.5III	[2]
7446	184915	κ Aql	0.22	3.2	B0.5III	[1]
2004	38771	κ Ori	0.15	2.7	B0.5Ia	[1]-[2]
1892	37018	42 Ori	0.20	6.1	B1V	[1]
1789	35439	25 Ori	0.25	5.1	B1V	[1]
1886	36959	$-6^{\circ} 1233$	0.26	7.0	B1V	[1]
1868	36695	VV Ori	0.28	6.2	B1V	[1]
5056	116658	α Vir	0.24	4.4	B1IV	[1]
5132	118716	ε Cen	0.24	4.2	B1III	[2]
4133	91316	ϱ Leo	0.20	2.5	B1Iab	[1]
1890	37017	$-4^{\circ} 1183$	0.33	7.2	B1.5V	[1]
6527	158926	λ Sco	0.27	4.4	B1.5IV	[2]
5695	136298	δ Lup	0.28	5.1	B1.5IV	[2]
1933	37481	$-6^{\circ} 1275$	0.29	5.4	B1.5IV	[1]
6247	151890	μ^{1} Sco	0.31	5.2	B1.5IV	[2]
3468	74575	α Pyx	0.29	4.2	B1.5III	[2]
5469	129056	α Lup	0.29	4.0	B1.5III	[2]
1848	36430	$-6^{\circ} 1207$	0.43	8.4	B2V	[1]
5285	122980	χ Cen	0.45	7.0	B2V	[2]
1679	33328	$\lambda \mathrm{Eri}$	0.32	4.9	B2IV	[1]
39	886	γ Peg	0.33	5.2	B2IV	[1]
6252	151985	μ^{2} Sco	0.33	5.0	B2IV	[2]
5776	138690	γ Lup	0.34	5.8	B2IV	[2]
6508	158408	v Sco	0.34	5.3	B2IV	[2]
779	16582	δ Cet	0.35	5.9	B2IV	[1]
5395	126341	τ^{1} Lup	0.35	4.9	B2IV	[2]
5576	132200	κ Cen	0.41	5.7	B2IV	[2]
1790	35468	γ Ori	0.34	4.7	B2III	[1]
1463	29248	v Eri	0.35	4.1	B2III	[1]
1552	30836	π^{4} Ori	0.36	3.9	B2III	[1]-[2]
1567	31237	π^{5} Ori	0.39	4.6	B2III	[1]
7029	172910	$-35^{\circ} 12876$	0.46	7.7	B2.5V	[2]
1891	37016	$-4^{\circ} 1184$	0.49	- 8.4	B2.5V	[1]
6875	168905	$-44^{\circ} 12569$	0.51	7.5	B2.5V	[2]
5812	139365	$\tau \mathrm{Lib}$	0.52	7.7	B2.5V	[2]
3886	84816	$-44^{\circ} 5846$	0.46	7.0	B2.5IV	[2]
801	16908	35 Ari	0.55	9.6	B3V	[1]
4848	110956	- 55 ${ }^{\circ} 5215$	0.55	8.9	B3V	[2]
3925	85980	$-44^{\circ} 5987$	0.55	8.8	B3V	[2]

Table I (continued)

BS	HD	Name	c_{D}	$W_{\text {H } \beta}$	MK	Ref.
4573	103884	$-61^{\circ} 2829$	0.55	8.4	B3V	[2]
5035	116087	$-60^{\circ} 4627$	0.56	9.7	B3V	[2]
3415	73390	$-57^{\circ} 1590$	0.56	9.1	B3V	[2]
4638	105937	0 Cen	0.57	9.6	B3V	[2]
3539	76161	$-47^{\circ} 4460$	0.59	8.9	B3V	[2]
2159	41753	v Ori	0.54	7.1	B3IV	[1]
1320	26912	μ Tau	0.59	7.3	B3IV	[1]
3663	79447	$-61^{\circ} 1201$	0.52	6.5	B3III	[2]
2653	53138	$o^{2} \mathrm{CMa}$	0.22	1.6	B3Ia	[2]
4549	103079	$-64^{\circ} 1724$	0.60	10.1	B4V	[2]
6938	170523	$\delta^{2} \mathrm{Tel}$	0.62	7.5	B4III	[2]
4940	113703	$-47^{\circ} 8088$	0.64	9.8	B5V	[2]
1839	36267	32 Ori	0.66	9.9	B5V	[1]
5292	123335	$-58^{\circ} 5383$	0.63	8.7	B5IV	[2]
1735	34503	τ Ori	0.71	8.4	B5III	[2]
5217	120908	$-52^{\circ} 6805$	0.72	8.4	B5III	[2]
3940	86440	$\phi \mathrm{Vel}$	0.48	3.7	B5Ib	[2]
2827	58350	$\eta \mathrm{CMa}$	0.33	2.2	B5Ia	[2]
5026	115823	$-52^{\circ} 6405$	0.70	11.1	B6V	[2]
338	6882	ζ Phe	0.76	11.7	B7V	[2]
5625	133937	$-42^{\circ} 10050$	0.76	10.7	B7V	[2]
6934	170465	$\delta^{1} \mathrm{Tel}$	0.83	9.7	B7IV	[2]
	37151	$-7^{\circ} 1131$	0.82	13.5	B8V	[4]
674	14228	ϕ Eri	0.82	11.3	B8V	[3]
1038	21364	$\xi \mathrm{Tau}$	0.84	12.6	B8V	[4]
1088	22203	τ^{5} Eri	0.87	11.4	B8V	[4]
2451	47670	v Pup	0.85	8.2	B8III	[3]
8353	207971	γ Gru	0.87	9.9	B8III	[4]
4662	106625	$\gamma \mathrm{Crv}$	0.92	9.9	B8III	[4]
1806	35640	$-5^{\circ} 1247$	1.01	14.3	B9V	[4]
126	2884	β^{1} Tuc	1.02	16.9	B9V	[3]
806	16978	$\varepsilon \mathrm{Hyi}$	1.07	16.9	B9V	[4]
3665	79469	θ Hya		18.3	B9.5V	[4]
8781	218045	α Peg	1.22	15.4	B9.5V	[4]
1570	31295	π^{1} Ori	1.15	18.5	A0V	[4]
1544	30739	π^{2} Ori	1.20	16.5	A0V	[4]
191	4150	η Phe	1.21	16.1	A0V	[4]
3410	73262	δ Hya	1.24	15.0	A0V	[4]
3981	87887	α Sex	1.26	12.8	A0III	[4]
7950	198001	ع. Aqr	1.24	17.8	A1V	[3]
4359	97633	θ Leo	1.29	17.9	A1V	[4]
3685	80007	β Car	1.34	15.8	A1IV	[4]

TABLE II
Stars for which the classification disagrees

BS	HD	Name	c_{D}	$W_{\mathrm{H} \beta}$	S.T.	S_{Q}	MK	Ref.
	37061	$-5^{\circ} 1325$	0.30	4.4	B1.5III	B1	B0V	[5]
							B1V	[6]
							B1V, B8	[7]
2294	44743	$\beta \mathrm{CMa}$	0.23	5.2	B1V	B0.5	B1II-III	[1]
							B0.5II-III	[8]
							B1II	[9]
							B8V	[10]
2657	53244	$\gamma \mathrm{CMa}$	0.75	8.6	B6III	B6	B8II	[3]
							B8III	[11]
2845	58715	$\beta \mathrm{CMi}$	0.98	10.9	B8.5III	B8	B8V	[12]
3860	83979	ζ Cha	0.58	9.5	B3V	B4	B5V	[2]
							B5IV	[13]
4773	109026	γ Mus	0.58	8.3	B3V	B4	B5V	[2]
							B5IV	[14]
4823	110335	$-59^{\circ} 4393$	0.85	4.2	?	B6	B6IV	[2]
							B7IV	[13]
5528	130807	o Lup	0.53	8.7	B3V	B4		
							B6III	[15]
							B6V	[16]
							B8V	[14]
7129	175362	$-37^{\circ} 12982$	0.48	8.9	B2.5V	B3	B8IV	[17]
							B7V	[18]
							B9III	[19]

References for Tables I and II:
[1] Lesh, 1968.
[2] Hiltner et al., 1969.
[3] Jaschek and Jaschek, 1966.
[4] Jaschek et al., 1964.
[5] Divan, 1954.
[6] Strand, 1958.
[7] Wenzel, 1951.
[8] Underhill, 1947.
[9] Buscombe, 1962.
[10] Crawford, 1958.
[11] Woods, 1958.
[12] Bappu et al., 1962.
[13] Morris, 1961.
[14] Cape Mimeogram No. 12, 1961.
[15] Walraven and Walraven, 1960.
[16] Eggen, 1961.
[17] Buscombe and Morris, 1960.
[18] Hoffleit, 1956.
[19] Feast et al., 1957.
All the References from [5] on are taken from Jaschek et al., 1964.
valent width of $\mathrm{H} \beta$ vs that of $\mathrm{H} \gamma$ or $\mathrm{H} \delta$ since $\mathrm{H} \beta$ is more sensitive to emission effects than $\mathrm{H} \gamma$ or $\mathrm{H} \delta$. Figure 3 shows a graph of $W_{\mathbf{H} \hat{\beta}}$ against $W_{\mathbf{H} \delta}$. The dots represent the stars used as standards for the classification, which we consider as 'normal' stars; the crosses are stars with emission and the squares are peculiar stars. Even though peculiar stars are not discriminated in this graph, emission stars are more or less clearly separated, depending, on the amount of emission.

Fig. 3. $W_{\mathrm{H} \beta}, W_{\mathrm{H} \delta}$ relation. This diagram allows the separation of emission stars, indicated by crosses. The squares represent peculiar stars.

Future plans for this work include an attempt to segregate peculiar stars by using other parameters, as $U D$ or ΔD. We also intend to continue the observations, with special emphasis in luminosity classes I and II and late B stars, in order to fill in the gaps and obtain a more precise classification scheme. If possible, the classification will be extended to later types.

References

Barbier, D. and Chalonge, D.: 1939, Ann. Astrophys. 2, 254.
Butler, H. E. and Thackeray, A. D.: 1940, Monthly Notices Roy. Astron. Soc. 100, 450.
Chalonge, C. and Divan, L.:1952, Ann. Astrophys. 15, 201.
Gutiérrez-Moreno, A., Moreno, H., and Stock, J.: 1967, Publ. Dept. Astron. Univ. Chile 1, No. 4, 49.
Gutiérrez-Moreno, A., Moreno, H., and Stock, J.: 1968, Publ. Dept. Astron. Univ. Chile 1, No. 8, 127.
Gutiérrez-Moreno, A., Moreno, H., and Stock, J.: 1972, Publ. Dept. Astron. Univ. Chile, in press.
Hiltner, W. A., Garrison, R. F., and Schild, R. E.: 1969, Astrophys. J. 157, 313.
Jaschek, C. and Jaschek, M.: 1966, in K. Lodén, L. O. Lodén and U. Sinnerstad (eds.), 'Spectral Classification and Multicolor Photometry', IAU Symp. 24, 6 and 30.
Jaschek, C., Conde, H., and de Sierra, A. C.: 1964, Obs. Astron. Univ. La Plata, Serie Astronómica, 28, No. 2.
Johnson, H. L.: 1958, Lowell Bull. 4, No. 90, 37.
Lesh, J. R.: 1968, Astrophys. J. Suppl. 17, No. 151, 371.
Moreno, H.: 1972, in preparation.
Slettebak, A. and Stock, J.: 1957, Z. Astrophys. 42, 67.

