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Heuristics on pairing-friendly abelian varieties

John Boxall and David Gruenewald

Abstract

We discuss heuristic asymptotic formulae for the number of isogeny classes of pairing-friendly
abelian varieties of fixed dimension g > 2 over prime finite fields. In each formula, the embedding
degree k > 2 is fixed and the rho-value is bounded above by a fixed real ρ0 > 1. The first formula
involves families of ordinary abelian varieties whose endomorphism ring contains an order in a
fixed CM-field K of degree g and generalizes previous work of the first author when g = 1. It
suggests that, when ρ0 < g, there are only finitely many such isogeny classes. On the other hand,
there should be infinitely many such isogeny classes when ρ0 > g. The second formula involves
families whose endomorphism ring contains an order in a fixed totally real field K+

0 of degree g. It
suggests that, when ρ0 > 2g/(g + 2) (and in particular when ρ0 > 1 if g = 2), there are infinitely
many isogeny classes of g-dimensional abelian varieties over prime fields whose endomorphism
ring contains an order of K+

0 . We also discuss the impact that polynomial families of pairing-
friendly abelian varieties has on our heuristics, and review the known cases where they are
expected to provide more isogeny classes than predicted by our heuristic formulae.

1. Introduction

Pairing-based cryptography uses non-degenerate pairings defined on a product G1×G2 of two
abelian groups and taking values in a third abelian group G3. Typically, G1, G2 and G3 are
cyclic groups of the same prime order r. An important source of suitable groups is elliptic
curves over finite fields, and in recent years generalizations using higher-dimensional abelian
varieties have been proposed.

As we shall recall briefly below, elliptic curves or abelian varieties possessing suitable
subgroups for pairing-based cryptography satisfy very strong conditions, and are loosely
referred to as pairing-friendly. These conditions suggest that they are very rare, and various
estimates concerning their number (either unconditional or depending on certain hypotheses)
have been discussed, both for elliptic curves [1, 15, 19] and also for Jacobians of genus two
curves [13, 18]. In [5], one of the authors investigated a heuristic asymptotic formula for the
number of pairing-friendly elliptic curves over prime fields; the purpose of the present paper is
to present and provide computational evidence for generalizations of this to higher-dimensional
abelian varieties.

1.1. Background

Let q be a power of a prime p and let Fq denote a finite field with q elements. Let A be an
abelian variety over Fq of dimension g > 1. Let π be the Frobenius endomorphism of A over Fq,
let ` 6= p be a prime and let Cπ be the characteristic polynomial of the action π on the `-adic
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Tate module of A. Then Weil [27] showed that Cπ is a monic polynomial of degree 2g with
integer coefficients that is independent of `. Furthermore, he proved that the complex roots of
Cπ are q-Weil numbers, in other words algebraic integers of which any complex conjugate π
satisfies ππ̄ = q. In general, by a q-Weil polynomial we mean a monic polynomial with integer
coefficients all of whose roots are q-Weil numbers. Thus, Cπ is a q-Weil polynomial of degree
2g, and Tate [24] showed that Cπ depends only on the isogeny class of A. Furthermore, the
order of the group A(Fq) is equal to C(1), so that the order of A(Fq) is invariant under isogeny.

A classification result was proved by Honda and Tate [14, 25]. They proved that there is
a bijection between the set of Fq-isogeny classes of simple abelian varieties and the set of
irreducible Weil polynomials. Explicitly, the bijection associates to the isogeny class of the
simple abelian variety A the minimal polynomial Mπ of the Frobenius endomorphism π of A.
The characteristic polynomial Cπ is then a suitable power of Mπ, so that 2 dimA is an even
multiple of the degree of Mπ. For a detailed study of this and related questions, we refer to
[26]. We simply mention the following result, which is part of [12, Lemma 2.2] and is proved
using results in [26].

Proposition 1.1. Let g > 1 be an integer, let p be a prime and let C be an irreducible
p-Weil polynomial of degree 2g. Then the simple abelian varieties over Fp whose Frobenius
endomorphism has minimal polynomial C have dimension g.

In what follows, if g0 > 1 is an integer, we understand by a triple of degree g0 (or simply a
triple if the reference to g0 is clear) a triple (r, C, q), where r is a prime, q a power of a prime,
C a q-Weil polynomial of degree 2g0 and r divides C(1). By our previous remarks, we can
associate to (the isogeny class of) any pairing-friendly g-dimensional abelian variety A over
Fq a triple (r, C, q) of degree g, where r is a prime such that A(Fq) contains a subgroup G1 of
order r and C is the characteristic polynomial of the Frobenius endomorphism of A over Fq.
Conversely, if q = p is prime and C is irreducible of degree 2g, Proposition 1.1 implies that if
r is any prime dividing C(1), then (r, C, p) corresponds to an isogeny class of simple abelian
varieties A over Fp such that A(Fp) contains a subgroup G1 of order r.

We now describe the conditions that a triple (r, C, q) as above must satisfy assuming that
it is associated to an isogeny class of abelian varieties A that are pairing-friendly. We refer to
[11] (in the case of elliptic curves) and [10] (in any dimension) for background and motivation.

By definition, the rho-value of the triple is ρ = ρ(A) = ρ(r, C, q) = g log q/log r, where A is
any member of the corresponding isogeny class and g is the dimension of A.

(1) Since #A(Fq) = Cπ(1), it follows from the fact that the roots of Cπ are q-Weil numbers
that (

√
q − 1)2g 6 #A(Fq) 6 (

√
q + 1)2g. We deduce that, assuming that g is fixed and given

any ρ0 < 1, we must have ρ > ρ0 whenever q is sufficiently large. In cryptographic applications,
we want ρ to be as close to 1 as possible, since, for fixed r, computations in the field Fq will
be faster.

(2) There exists an integer k > 2 such that r divides Φk(q). Here, Φk is the kth cyclotomic
polynomial. (Some authors allow k = 1, but we shall exclude this case. See Remark 3.4.) Under
some further mild restrictions, A(Fqk) contains a subgroup G2 of order r different from G1 and
there is a computable non-degenerate pairing on G1 × G2 that takes values in the rth roots
of unity in Fqk (see for example [1] when g = 1 and [21, Theorem 3.1]). We need to choose
k in such a way that the discrete logarithm problem in the field generated over the prime
field Fp by the rth roots of unity is unfeasible, but not so large that the computations in
the field Fqk become unwieldy. We call k the embedding degree and k/g the security ratio of the
triple (or of any abelian variety in the corresponding isogeny class). At present, the security
ratio is in practice bounded by about 50 when g = 1 (see [11]). Although larger values of k
will be needed to maintain the same security level when g-dimensional abelian varieties are
used, it is natural to consider k as constant.
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Thus, when searching for abelian varieties of dimension g for use in pairing-based
cryptography, we seek triples (r, C, q) with small embedding degree k and rho-value as close
to 1 as possible. Once a suitable triple (r, C, q) has been found, it is necessary to compute
equations for some member of the corresponding isogeny class, the groups G1 and G2 and
to be able to compute the pairing. The only known method of constructing such abelian
varieties is the CM-method, which is based on the reduction at primes above p of abelian
varieties over number fields having complex multiplication, these being in turn constructed
using theta functions or modular invariants. It is possible at present to construct elliptic
curves with complex multiplication by the maximal order of an imaginary quadratic field
whose discriminant is as large as about 1015 (see [9]). On the other hand, only a few thousand
explicit equations of genus two curves whose Jacobians have complex multiplication are known
at present (see [16]). Since this is computationally very heavy, it seems reasonable to consider
triples that can be obtained from the reduction of a fixed abelian variety, at least up to twist.

1.2. Presentation of the paper

Until now, when g > 1, no examples of triples (r, C, q) of cryptographic interest with rho-value
less than or equal to g have been found. When g = 2 and k = 5 or k = 10, a method discussed
in [13] (see also Remark 7.8 below) does give rise to triples with rho-value close to 1, but the
corresponding abelian varieties cannot be constructed using the CM-method. The motivation
that led to the present paper was an attempt to understand the reasons for this, and our
main purpose is to discuss two heuristic estimates (see Estimates 3.2 and 5.1) related to the
asymptotic growth as x→∞ for the number of triples (r, C, p) of given degree g with r 6 x,
under certain conditions on the rho-value g(log p/log r) and the polynomial C.

In order to state these estimates formally, we need to consider triples of the form (r, π, q),
where r is a prime and π is a q-Weil number such that, if K is any number field containing π,
r divides the K/Q-norm NK/Q(π− 1) of π− 1. This is because our heuristic arguments will be
based mostly on the geometry of number fields. See Remarks 3.3 and 5.2 for how to interpret
heuristics for triples (r, π, q) in terms of triples (r, C, q). We say that (r, π, q) has embedding
degree k if r divides Φk(q). If 2g is an even multiple of the degree of the number field Q(π),
we define the degree g rho-value of (r, π, q) to be g(log q/log r). If 2g is equal to the degree of
Q(π), we simply call this the rho-value.

From now on, we mostly restrict attention to triples (r, π, p) with p a prime. By
Proposition 1.1, such triples do correspond to isogeny classes of abelian varieties over prime
fields. We write a triple as (r, π, q) when we discuss matters in relation to arbitrary finite fields,
it being understood that q is a power of the prime p.

To avoid repetition, we restrict attention to g 6= 1, referring the reader to [5, 22] for
discussions of the elliptic curves case.

In both estimates we fix integers g > 2, k > 2 and a real number ρ0 > 1 and suppose that
the rho-value g(log p/log r) is bounded above by ρ0. For a simple reason that will become clear
in Lemma 3.1, we in fact need to suppose ρ0 > g/ϕ(k), where ϕ is Euler’s totient function.

Estimate 1.2. Let g > 2, k > 2 be integers and let ρ0 > max(1, g/ϕ(k)) be a real number
such that ρ0 6= g. Fix a CM-field K of degree 2g and a CM-type Φ on K. Assume that we
are not in the situation considered in Remark 7.7. Let N(k,K,Φ, ρ0, x) denote the number of
triples (r, π, p) with embedding degree k, with π ∈ K, with r 6 x and with p 6 rρ0/g that
come from Φ. Then there is an explicit constant α > 0 depending only on k and K such that
we have

N(k,K,Φ, ρ0, x) ∼ α

ρ0

∫x
2

u(ρ0/g)−2 du

(log u)2
(1.1)

as x→∞.
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Here and elsewhere in the paper, ∼ denotes asymptotic equivalence, in the sense that the
ratio of the two terms tends to 1 as x→∞. A more precise statement giving the value of α is
to be found in Estimate 3.2. We refer to § 2 for the definition of the notion that (r, π, p) comes
from Φ. In addition, we have excluded the possibility ρ0 = g since this is a borderline case, the
integral being bounded as x→∞ when ρ0 6 g and unbounded when ρ0 > g. This observation
together with Proposition 1.1 and the fact that there are only finitely many CM-types on a
given CM-field K implies the following corollary.

Corollary 1.3. Let notation and hypotheses be as in Estimate 1.2 and assume that (1.1)
is correct. If ρ0 < g, then there are only finitely many isogeny classes of g-dimensional abelian
varieties over prime finite fields whose endomorphism ring contains an order of K that have
embedding degree k and rho-value bounded above by ρ0. If ρ0 > g and if at least one of the
CM-types on K is primitive, then there are infinitely many such isogeny classes.

The proof of the final sentence also uses Proposition 2.3 below. In fact, the conclusion of
Corollary 1.3 also holds in the situation considered in Remark 7.7, as we shall explain there.

Since our initial motivation was the search for abelian varieties with rho-value close to 1, we
were led by the corollary to study asymptotics for triples (r, π, q) where the Weil numbers π
were allowed to vary over larger sets.

Estimate 1.4. Let g > 1 be an integer, let K+
0 be a totally real field of degree g, let k > 2

be an integer and let ρ0 > max(1, g/ϕ(k)) be a real number with ρ0 6= 2g/(g + 2). Assume that
we are not in the situation considered in Remark 7.8 below. Let R(k,K+

0 , ρ0, x) denote the
number of triples (r, π, p) with embedding degree k, with π a root of an equation of the form
x2 − τx+ p, where τ is an algebraic integer of K+

0 all of whose conjugates satisfy |τ | 6 2
√
p,

and r 6 x. Then there is a constant β > 0 such that, as x → ∞, we have the asymptotic
equivalence

R(k,K+
0 , ρ0, x) ∼ β

ρ0

∫x
2

uρ0(1/2+1/g)−2 du

(log u)2
. (1.2)

The precise value of β will be given in Estimate 5.1. The integral in (1.2) remains bounded
as x → ∞ if and only if ρ0 6 2g/(g + 2), which explains why we exclude the boundary case
ρ0 = 2g/(g + 2). A glance at formulae (1.1) and (1.2) shows that the contribution from all
the quadratic CM-extensions of K+

0 is greater than that of one such extension K, as would be
expected.

Corollary 1.5. Let notation and hypotheses be as in Estimate 1.4 and suppose that (1.2)
is correct. If ρ0 < 2g/(g + 2), then there are only finitely many isogeny classes of g-dimensional
abelian varieties over prime finite fields whose endomorphism ring contains an order of K+

0

that have embedding degree k and rho-value bounded above by ρ0. If ρ0 > 2g/(g + 2), then
there are infinitely many such isogeny classes provided that there is an infinite subset of the
triples (r, π, p) of Estimate 1.4 for which π is of degree 2g over Q and the extension Q(π)/Q
is unramified at p.

Again, the last sentence follows from Proposition 2.3 and Corollary 2.2. The hypothesis that
there are infinitely many triples with π of degree 2g over Q and Q(π)/Q unramified at p is a
reasonable one; in fact it is reasonable to suppose that the proportion of triples with r 6 x
which do not satisfy this property tends to 0 as x→∞.

By definition, polynomial families parametrize the primes r and p appearing in triples
(r, π, p) using values at integers of polynomials r0 and p0 of degrees deg r0 and deg p0 with
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rational coefficients. A well-known example is the Barreto–Naehrig family that parametrizes a
family of elliptic curves (see [2] and Remark 7.7 below). The generic rho-value is by definition
g(deg p0/deg r0) and, as the parameter w tends to infinity, the rho-values of the triples in
the family tend to the generic rho-value. Detailed definitions are given in § 7, the discussion
there being similar to that of [5, § 3]. As in the case of elliptic curves, polynomial families of
dimension g having generic rho-value less than g(1 + (1/deg r0)) can be expected to contain
more triples (r, π, p) than predicted by the heuristics of § 3 and those with generic rho-value less
than (2g/(g + 2))(1+(1/deg r0)) should contain more triples than predicted by the heuristics of
§ 5. These statements are made precise in § 7 and Remarks 7.7 and 7.8 contain a discussion
of the only known cases where this occurs.

1.3. Contents of the paper and outline of the methods involved

We now outline briefly the contents of the paper. In § 2, we recall some basic properties of
CM-fields, CM-types and Weil numbers, and define the notion of a Weil number that comes
from a given CM-type. In particular, we prove Theorem 2.4 on the asymptotic growth of the
number of Weil numbers in a CM-field. In § 3, we state Estimate 3.2 and give a heuristic
argument in favour of it. Numerical computations in relation to Estimate 3.2 are discussed
in § 4. In § 5, we state Estimate 5.1 and present a heuristic argument that leads to it. The
following § 6 presents numerical computations in relation to the heuristics of § 5. In the final
§ 7, we discuss the effect of polynomial families on the asymptotic formulae discussed in §§ 3
and 5.

We end the introduction with a few brief remarks on the nature of the heuristic arguments
used. The argument leading to Estimate 3.2 is inspired by well-known generalizations to
number fields of Dirichlet’s theorem on arithmetic progressions and the prime number theorem
(see for example [20, Chapter VII, § 2]). In particular, we use Theorem 2.4. In addition to
methods from analytic number theory, the heuristic leading to Estimate 5.1 is based on simple
properties of K+

0 coming from the geometry of numbers. Also, implicit in both estimates are
very strong uniformity hypotheses on the distribution of the roots of cyclotomic polynomials
modulo primes that go far beyond what is currently known at least when ρ0 is small.

Similarly, the arguments in § 7 on the asymptotic growth of the number of triples belonging
to a polynomial family are heuristic, since they depend on the heuristics of Bateman and Horn
[3] and Conrad [8] on the asymptotic growth of the number of integers at which a given finite
set of polynomials simultaneously takes simultaneously prime values.

2. Notation and review of CM-types and Weil numbers

2.1. Notation and review of CM-types

We begin by fixing some notation and reviewing some simple properties of CM-types. Let ζk
denote a primitive kth root of unity. If F is a number field, we denote by e(k, F ) the degree
of the number field F ∩Q(ζk). This is well defined since Q(ζk) is a Galois extension of Q. Let
wF denote the number of roots of unity in F and hF the class number of F . We write NF/Q
for the absolute norm from F to Q, applied to elements or to ideals. If α ∈ F and if σ is an
embedding of F in another field or an automorphism of F , we write ασ for the image of α
under σ. If F is a CM-field, we denote by F+ the maximal real subfield of F and by c the
non-trivial automorphism of F that fixes F+. We often write α for the image of α ∈ F under c.

We briefly review the notion of CM-types, referring to [23, Chapter 2] for details. A CM-type
is a pair (K,Φ) (or simply Φ if the reference to K is clear) consisting of a CM-field K and a
set Φ of g embeddings φ : K → C such that Φ∪ cΦ is the set of all embeddings of K in C. Let
L denote a fixed Galois closure of K, so that L is also a CM-field. Then, fixing an embedding
of L in C, we can view a CM-type Φ as a set of embeddings of K in L.
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Let (K,Φ) and (M,Ψ) be two CM-types. We say that (K,Φ) and (M,Ψ) are equivalent
if there exist an isomorphism of fields δ : K → M and an automorphism ι of C such that
Ψ = {ι ◦ φ ◦ δ−1 | φ ∈ Φ}. If M is also a subfield of the Galois closure L of K and we view
CM-types on CM-subfields of L as embeddings in L as above, this definition is equivalent to
asking that Ψ = {ι ◦ φ ◦ δ−1 | φ ∈ Φ} for some automorphisms δ, ι of L.

Write G for the Galois group of L over Q and H for the subgroup of G corresponding to K.
Any embedding φ of K in L can be extended to an automorphism of L and, if we also denote
by φ one such extension, then all the extensions form a coset φH of H. Let S denote the set
of all extensions of elements of Φ to automorphisms of L. Then S is a CM-type on L and the
subgroup H ′ = {γ ∈ G | γS = S} contains H; we say that Φ is primitive if H ′ = H.

Put S∗ = {σ−1 | σ ∈ S} and let Ĥ = {γ ∈ G | γS∗ = S∗}. Then Ĥ is a subgroup of G and
the corresponding subfield K̂ of L is a CM-field, known as the reflex field of K. Furthermore,
the set Φ̂ of embeddings of K̂ in C obtained by restriction of elements of S∗ is a CM-type on
K̂, known as the reflex of Φ. Note that Φ̂ is always primitive.

By definition, the Φ-trace is the map TrΦ : K → L that sends α ∈ K to
∑
φ∈Φ α

φ. One can

show that the field K̂ is generated over Q by the set {TrΦ(α) | α ∈ K}, so that TrΦ actually
takes values in K̂. It follows that the Φ-norm NΦ, which is defined by NΦ(α) =

∏
φ∈Φ α

φ for

all α ∈ K, also takes values in K̂. We define the Φ̂-trace TrΦ̂ and Φ̂-norm NΦ̂ similarly; these

maps are defined on K̂ and take values in the subfield K ′ of K corresponding to the subgroup
H ′ of G. The norm maps extend in an obvious way to maps on ideals NΦ : IK → IK̂ and
NΦ̂ : IK̂ → IK′ , where IF denotes the group of fractional ideals of the number field F .

Let ClK̂ be the ideal class group of K̂ and denote by Cl(Φ̂) the subgroup of ClK̂ consisting
of the ideal classes γ such that NΦ̂(γ) is the principal ideal class of K and, if A ∈ γ, then the
ideal NΦ̂(A) of K has a generator α such that αα is rational. (This makes sense as a class

group since if A is a principal ideal of K̂ with generator β, then NΦ̂(β) is a generator of NΦ̂(A)

and NΦ̂(β)NΦ̂(β) = NK̂/Q(β) is rational.) Let hΦ̂ be the order of Cl(Φ̂).

2.2. Weil numbers and characteristic polynomials

Recall from the Introduction that if q is a power of a prime p, a q-Weil number is an algebraic
integer all of whose complex conjugates π satisfy ππ̄ = q.

Let π be a q-Weil number, where q = pa. If π has a real conjugate, then π2 = q and so
π = ±√q and π is totally real and belongs to Q if a is even and is real quadratic if a is odd.
On the other hand, if π has no real conjugate, then q/π is also a conjugate and π is a root of
the polynomial X2 − τX + q, where τ = π + q/π is a totally real algebraic integer. It follows
that Q(π) is a CM-field. Furthermore, every real conjugate of τ satisfies |τ | 6 2

√
q. Conversely,

if τ is a totally real algebraic integer all of whose real conjugates satisfy this inequality, then
the roots of X2 − τX + q are q-Weil numbers.

Recall that an abelian variety A over Fq of dimension g is said to be ordinary if the group
A[p](Fq) of p-torsion points over an algebraic closure Fq of Fq has p-rank g. We refer to [26,
§ 7] for the following result.

Proposition 2.1. Let A be a simple abelian variety over Fq of dimension g, let π be the
Frobenius endomorphism of A and let τ = π + q/π. Then the following are equivalent.

(i) A is ordinary.
(ii) π and q/π are coprime algebraic integers.

(iii) τ and q are coprime algebraic integers.
Furthermore, if these conditions are satisfied, End(A)⊗Q = Q(π) is a CM-field.
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The fact that Q(π) is a CM-field follows from the previous discussion. We deduce the
following Corollary to Proposition 1.1, already remarked in [12].

Corollary 2.2. Let g > 1 be an integer and let K be a CM-field of degree 2g. Let p be a
prime and let C be an irreducible p-Weil polynomial of degree 2g such that K ' Q[X]/C(X).
If p is unramified in K, then the abelian varieties over Fp belonging to the isogeny class
corresponding to C are ordinary.

Proof. Indeed, if p is such that the abelian varieties are not ordinary, then π and p/π have
a common prime ideal factor p. But then p2 divides p, so p is ramified in K.

Inspired by this result, we say that the q-Weil number π is ordinary if it satisfies the
equivalent conditions (ii) and (iii) of the proposition.

Let π be a q-Weil number belonging to the CM-field K of degree 2g. Then, by the
characteristic polynomial of π, denoted by Cπ, we mean the characteristic polynomial of the
endomorphism multiplication-by-π of the Q-vector space K. Then Cπ is a power of the minimal
polynomial of π and depends only on g and not on K. In particular, if π′ is another q-Weil
number belonging to K, then Cπ′ = Cπ if and only if π′ is a conjugate of π. Furthermore, if
K = Q(π), then Cπ is the minimal polynomial of π and, if Aut(K) denotes the automorphism
group of K, then the number of conjugates of an element of K is equal to the order of Aut(K).
Thus, # Aut(K) triples of the form (r, π, q) give rise to the same triple (r, C, q).

2.3. Weil numbers coming from a given CM-type

Let (K,Φ) be a CM-type. If π ∈ K is a Weil number, we say that π comes from Φ if there
is an ideal A ∈ IK̂ such that NΦ̂(A) is a principal ideal of K, generated by π. Similarly, we
say that the triple of one of the forms (r, C, q) and (r, π, q) as above comes from Φ if π comes
from Φ.

We next derive some unconditional results about Weil numbers coming from a given CM-
type.

Proposition 2.3. Let (K,Φ) be a CM-type, let p be a prime unramified in K and let π ∈ K
be a p-Weil number coming from Φ.

(i) There is a unique prime ideal P of K̂ such that π generates the ideal NΦ̂ P of K.

Furthermore, P is of degree one, and its ideal class belongs to Cl(Φ̂).
(ii) If (K,Φ) is primitive, then K = Q(π).

Proof. (i) By considering the factorization of p as a product of prime ideals in L and K, and
using ππ = p, one sees that there is an integral ideal P of K̂ such that NΦ̂ P is equal to the
ideal generated by π. Furthermore, one necessarily has NK̂/Q(P) = p, so that since p is prime
P is necessarily a prime ideal of degree one. It is clear from the definitions that the ideal class
of P must belong to Cl(Φ̂).

Suppose that P′ is a second prime ideal of K̂ such that NΦ̂ P′ is equal to the ideal generated
by π. Let Q and Q′ denote respectively prime ideals of L dividing P and P′. Since p divides
both Q and Q′, there is an element τ ∈ G such that Q′ = Qτ . Let GQ be the decomposition
group of Q and recall that Ĥ is the subgroup of G corresponding to K̂. Since P has degree
one, GQ is a subgroup of Ĥ. Since L is the Galois closure of K, p is unramified in L and
the ideal factorization of P in L is

∏
σ∈GQ\Ĥ Qσ. From the definition of NΦ̂, we see that

the ideal factorization of π in L is equal to
∏
σ∈GQ\S∗ Q

σ. By hypothesis, it is also equal to∏
σ∈GPτ \S∗ Q

τσ. It follows that τS∗ = S∗, so that τ ∈ Ĥ. But then Q and Q′ divide the same

prime ideal of K̂, so that P′ = P.
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(ii) It suffices to prove that if γ ∈ G is such that πγ and π have the same ideal factorization
in L, then γ ∈ H. To do this, we return to the ideal factorization

∏
σ∈GQ\S∗ Q

σ of π. The

ideal factorization of πγ is then
∏
σ∈GQ\S∗ Q

σγ , and this can only coincide with that of π if

S∗γ = S∗ or, equivalently, if γS = S. Since Φ is primitive, this implies γ ∈ H.

Despite its simple proof, we have been unable to find a reference to the following result in
the literature.

Theorem 2.4. Let Φ be a CM-type on K. Then the number πΦ(x) of p-Weil numbers
coming from Φ with p prime and p 6 x is asymptotically equal to

πΦ(x) ∼
wKhΦ̂

hK̂

∫x
2

du

log u
(2.1)

as x→∞.

Proof. Let π be a p-Weil number coming from Φ. Since only finitely many primes ramify in
K, we can suppose p unramified. By Proposition 2.3(i), there is a unique prime ideal of degree
one P of K̂ such that NΦ̂(P) is equal to the ideal of K generated by π. Now, if π′ is another
p-Weil number that generates the same ideal as π, then π′ = ζπ for some invertible element ζ
of the ring of integers of K. Since π and π′ are p-Weil numbers, all the complex conjugates of
ζ have absolute value 1. It follows from Kronecker’s lemma on roots of unity (see for example
[20, Chapter II, Theorem 2.1]) that ζ is a root of unity. Conversely, if ζ is a root of unity in K
and π is a p-Weil number in K, then ζπ is also a p-Weil number in K. We deduce that πΦ(x)
is equal to wK times the number of degree one prime ideals P of K̂ with NK̂/Q(P) 6 x. Since

the ideal class of P must belong to Cl(Φ̂), the result thus follows by applying the prime ideal
theorem in number fields (see for example [20, Chapter VII]).

3. A heuristic asymptotic formula for a fixed CM-type

In this section, we fix the embedding degree k and the CM-field K of degree 2g and we
propose an asymptotic heuristic estimate as x → ∞ for the number of triples (r, π, p) using
an approach similar to that already used for elliptic curves in [5]. See also [12, § 3]. Before
discussing Estimate 3.2, we begin with the following simple observation. As before, ϕ denotes
Euler’s totient function. Also, we allow triples (r, π, q) with q a prime power.

Lemma 3.1. Let g and k > 1 be fixed. If ρ0 < g/ϕ(k), then there are only finitely many
triples (r, π, q) of genus g with embedding degree k and g-degree rho-value 6 ρ0.

Proof. Suppose that there are infinitely many triples (r, π, q) with embedding degree k and
rho-value ρ 6 ρ0. For any fixed r, since q 6 rρ0/g, there are only finitely many possibilities
for the prime power q such that (r, π, q) is a triple whose first member is r. On the other
hand, by considering the ideal factorization of q in K and using Kronecker’s lemma on roots
of unity, we deduce that for fixed q there are only finitely many q-Weil numbers belonging
to K. Hence, the set of values r that appear as first members of triples is unbounded. Recall
that the kth cyclotomic polynomial Φk is a monic polynomial of degree ϕ(k). Since r divides
Φk(q), we have r 6 Φk(q). On the other hand, Φk(q) ∼ qϕ(k) and qϕ(k) 6 rϕ(k)ρ/g, so that

Φk(q) 6 2rϕ(k)ρ/g 6 2rϕ(k)ρ0/g if r is large enough. We deduce that r 6 2rϕ(k)ρ0/g if r is large
enough. Since ρ0 < g/ϕ(k), this is impossible.

The purpose of the rest of this section is to give a heuristic argument in support of the
following refined version of Estimate 1.2.
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Estimate 3.2. Estimate 1.2 holds with

α =
e(k,K)gwKhΦ̂

ρ0hK̂
.

Remark 3.3. It follows from Proposition 2.3(ii) and the discussion at the end of 2.2 that,
when Φ is primitive, the number of triples (r, C, p) with K ' Q[x]/C(x) is expected to be
asymptotically equivalent to

e(k,K)gwKhΦ̂

#(Aut(K))ρ0hK̂

∫x
2

du

u2−(ρ0/g)(log u)2

as x→∞. Also, when p is unramified in K, the triple is ordinary.

We now complete the heuristic argument which will lead to Estimate 3.2, in a manner similar
to [5].

Let r be given. The probability that r is prime and splits completely in Q(ζk) is equal to
the probability that r is prime and that r ≡ 1 (mod k), which is 1/(ϕ(k) log r). On the other
hand, when r ≡ 1 (mod k), Φk has ϕ(k) distinct roots (mod r). Thus, if p is any integer, the
probability that Φk(p) ≡ 0 (mod r) is roughly ϕ(k)/r. Hence, the probability that r is prime
and divides Φk(p) is roughly

1

ϕ(k) log r

ϕ(k)

r
=

1

r log r
.

On the other hand, we want p to be a prime and π ∈ K to be a p-Weil number such that
r divides NK/Q(π − 1). We assume that the probability that r divides NK/Q(π − 1) is 1/r. To
justify this, suppose first that Φ is primitive, so that K = Q(π) by Proposition 2.3(ii). Then
we can ignore the case where r2 divides NK/Q(π − 1), assuming that as r increases it occurs
with negligible frequency. This means that there is a unique degree one prime ideal r dividing
r that also divides π − 1. We assume that the Weil numbers π behave randomly with respect
to division by a non-zero ideal of K. This means that the probability that π − 1 is divisible
by r is 1/r. In any number field, the average number of primes of degree one dividing a given
rational prime is one, so that this is equivalent to the probability that r divides NK/Q(π − 1)
being equal to 1/r. A similar argument works when Φ is not primitive, replacing K by suitable
CM-subfields of K.

On the other hand, the probability that r is a prime, that it splits completely in Q(ζk) and
that there exists a degree one prime in K dividing r is equal to e(k,K)/(r2 log r).

Finally, from Theorem 2.4, we see that the expected number of p-Weil numbers coming
from Φ with prime p 6 rρ0/g is about (wKhΦ̂/hK̂)(rρ0/g/(log rρ0/g)), so that the total number
of triples (r, π, p) satisfying the hypotheses of Estimate 3.2 is expected to be asymptotically
equivalent to

∑
26r6x

e(k,K)

r2(log r)

wKhΦ̂

hK̂

rρ0/g

log rρ0/g
=
e(k,K)gwKhΦ̂

ρ0hK̂

∑
26r6x

1

r2−(ρ0/g)(log r)2
,

where the sums are over all integers r between 2 and x. Replacing the sum by an integral leads
to Estimate 3.2.

Remark 3.4. Suppose that Fq contains the rth roots of unity. Let A/Fq be a simple
ordinary abelian variety of dimension g and suppose that the prime r 6= p divides the order
of A(Fq). Then q ≡ 1 (mod r) and hence 1 (mod r) is a root of multiplicity at least two of
the characteristic polynomial of the Frobenius endomorphism π of A acting on the Fr-vector
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space A[r] of points of order dividing r of A. Suppose that r is prime to the discriminant of the
order Z[π, p/π], which is contained in End(A). Then r can be factored as a product of distinct
proper End(A)-ideals, say rEnd(A) = r1r2 . . . rh. We can then write A[r] as a direct sum

A[r] = A[r1]⊕A[r2]⊕ . . .⊕A[rh],

where, for each i, A[ri] denotes the subgroup of A[r] killed by all the elements of ri. We deduce
that the action of π on A[r] is semi-simple, so that the 1-eigenspace of π in A[r] viewed as a
Fr-vector space is of dimension at least two. It follows that r2 necessarily divides the order
of A(Fq). Thus, the assumption made in the study of Estimate 3.2 that we can ignore cases
where r2 divides the order A(Fq) is not justified when k = 1.

4. Numerical evidence in the fixed CM-field case

In this section, we report on numerical evidence for Estimate 3.2.

4.1. Examples in genus two and three

For the convenience of the reader, we summarize briefly all possible CM-types up to equivalence
for g = 2 and 3. Recall that K denotes a CM-field of degree 2g, K+ the maximal real subfield
of K, L a fixed Galois closure of K and G the Galois group of L over Q. If F is a subfield of
L, we denote by GF the subgroup of G that fixes F . We fix an embedding of L into C. When
we write a CM-type Φ on K as a set {τ1, τ2, . . . } of elements of G, we mean that Φ is the
restriction to K of these elements, and similarly for the reflex type Φ̂.
g = 2 (cf. [23, pp. 64 and 65]). There are three possibilities for K.
(i) K = L is a Galois biquadratic extension of Q. Let K0 be an imaginary quadratic subfield

of K and let τ be the non-trivial element of GK0 . Then Φ = {id, τ} is a CM-type on K
extending the CM-type {id} of K0. We have K̂ = K0 and Φ̂ = {id}. Hence, there are two
equivalence classes of CM-types on K corresponding to the two imaginary quadratic subfields.
Neither of them is primitive.

(ii) K = L is a Galois cyclic extension of Q. If τ is a generator of G, then every CM-type is
equivalent to Φ = {id, τ}. This is a primitive CM-type, K̂ = K and Φ̂ = {id, τ−1}.

(iii) K is not Galois over Q, and G is a dihedral group generated by σ and τ with σ of order
two having K as fixed field and τ of order four. Every CM-type is equivalent to Φ = {id, τ}.
Again this is a primitive CM-type, K̂ is the field fixed by τσ and Φ̂ = {id, σ}.
g = 3. There are four possibilities for K.
(iv) K = L is a degree six Galois cyclic extension of Q. Then K contains a unique imaginary

quadratic subfield K1. Every imprimitive CM-type on K is equivalent to Φ = GK1 . We have

K̂ = K1 and Φ̂ = {id}. There is a unique equivalence class of primitive CM-type. If τ is
a generator of Gal(K/Q), a representative is Φ = {id, τ, τ2}. We have K̂ = K and Φ̂ =
{id, τ−1, τ−2}.

(v) K is not Galois over Q but K = K+(
√
−D) for some square-free integer D > 0. Then

G is a dihedral group of order twelve. There is an imprimitive equivalence class as in case
(iv), taking K1 = Q(

√
−D). There are primitive CM-types all of which are equivalent to the

following one. Let τ be a generator of the unique cyclic subgroup of order six of G, and put
Φ = {id, τ, τ2}. Then K̂ = K and Φ̂ = {id, τ−1, τ−2}.

In the remaining two cases, K is not Galois over Q and does not contain an imaginary
quadratic subfield. Up to equivalence, there is a unique CM-type and it primitive. We always
have [K̂ : Q] = 8.

(vi) K+ is Galois over Q. Then [L : Q] = 24, G is the direct product of a cyclic group of
order two and an alternating group on four letters, and GK is a Klein 4-group. Furthermore, G
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has four Sylow 3-subgroups, and the restriction of the elements of any one of them to K gives
a CM-type Φ = {id, τ, τ2}. Then K̂ is the corresponding fixed field and Φ̂ is the restriction of
the elements of GK to K̂.

(vii) K+ is not Galois over Q. In this case, [L : Q] = 48 and G is the direct product of a
cyclic group of order two and a symmetric group on four letters. Now GK is a dihedral group
of order eight and we can take Φ to be the set of restrictions to K of the elements {id, τ, τ2}
of one of the four Sylow 3-subgroups of G. Then GK̂ is the unique subgroup of G containing
τ that is isomorphic to the symmetric group of degree three. Again Φ̂ is the set of restrictions
to K̂ of the elements of GK .

Since there is only one primitive CM-type up to equivalence, we can test Estimate 3.2 by
determining all possible Weil numbers in the field K without explicitly dealing with a reflex
field, and then dividing out by the order of the automorphism group of K (see Remark 3.3).

We wrote a program in Magma [4] to compute the number N(k,K, ρ0, (a, b)) of characteristic
polynomials Cπ coming from triples (r, π, p) with a 6 r 6 b and p 6 rρ0/g, and compared it
with the value

I(k,K, ρ0, (a, b)) =
e(k,K)gwKhΦ̂

#(Aut(K))ρ0hK̂

∫ b
a

du

u2−(ρ0/g)(log u)2
(4.1)

predicted by Estimate 3.2. Looping over r, for each such prime pair (r, p) satisfying r ≡ 1
(mod k) and p a primitive kth root of unity mod r, we search for p-Weil numbers in the
following way.

(1) Factorize pOK into prime ideals and make a list D(p) of all possible ideal decompositions
of the form aā = pOK which are primitive, that is, those for which there is no
decomposition of the form (a ∩K0)(ā ∩K0) = pOK0 for any proper CM-subfield K0.

(2) For each pair (a, ā) ∈ D(p), test whether a is principal and if so find a generator γ. Such
an element satisfies γγ̄ = pη for some unit η of OK . Determine whether η = γγ̄/p can be
written in the form εε̄. If so, then π = γ/ε is a p-Weil number and Γa = {ηπ : η ∈ UK}
is the complete set of p-Weil numbers corresponding to (a, ā).

For each Weil number π found, we check whether r divides NK/Q(π − 1) and store the
minimal polynomial Cπ (and its associated data (r, p, ρ = g(log p/log r))) for those π satisfying
this condition.

Since p-Weil numbers are generators of principal ideals of the form NΦ̂(P), where P has norm

p, we need only consider those p for which there is a degree one prime above p in K̂. We obtain
necessary conditions by working in the maximal abelian subfield M of the Galois closure L of
K. We require that the decomposition field of a prime of M above p contains F = K̂∩M . The
Kronecker–Weber theorem tells us that F is contained in Q(ζf ), where f is the conductor of
F and the decomposition group Gal(Q(ζf )/F )/Gal(Q(ζf )/Q) ∼= (Z/fZ)∗ gives us congruence
conditions on p (mod f) for such a decomposition to occur. For non-Galois CM-fields in genus
two or three, F is a quadratic field and hence we need only compute ideal decompositions for
half the congruence classes modulo f . For Galois CM-fields of degree 2g 6 6, the Galois group
is abelian and K̂ = K = F , so the proportion of primes we deal with is even smaller, namely
1/2g. In a similar manner, since we require that r splits completely in K, we obtain further
congruence restrictions on r when the maximal abelian subextension of K is not contained in
Q(ζk).

We ran this program on a selection of quartic and sextic CM-fields for several values of k.
The field invariants making up the constant term in the heuristic formula of Estimate 3.2 are
varied in our sample.

For Galois CM-fields of degrees four and six, we computed the type norm map explicitly
to determine the unique decomposition (up to the Galois action). This approach of using the
type norm map, while possible for other non-Galois fields, was slower than computing the ideal
decompositions due to requiring us to perform calculations in the larger Galois closure.
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The tables have been placed together near the end of the paper for ease of use.
Table 1 gives the values of N(k,K, ρ0, (104, 5 × 105)) with rho-values ρ0 6 3.5 and with

several values of k, for the class number one CM-field K = Q[X]/(X4 + 4X4 + 2), which is a
cyclic Galois extension of Q. Table 2 presents a similar table for the field Q(ζ5), which is
another Galois cyclic CM-field of class number one. Table 3 presents a table in the same
format, this time for a non-Galois quartic CM-field. The cyclic examples took between 5000
and 10 000 s to compute, whereas the non-Galois example took 20 000–30 000 s.

Tables 4–6 give the values of N(k,K, ρ0, (104, 5× 105)) with ρ0 6 5.1 for several values of k
for some sextic CM-fields belonging to cases (iv), (v) and (vi) above. It proved computationally
too challenging to compute the heuristic value for a generic sextic field having Galois group of
order 48, so we did not produce any data for such a field.

Table 1. Values of N(k,K, ρ0, (104, 5× 105)) for K = Q[X]/(X4 + 4X2 + 2). Invariants: wK = 2,
hΦ̂ = hK̂ = 1, G cyclic.

ρ0 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 I k = 8 k = 24 I k = 16 k = 32 I

2.8 2 3 1 0 0 0 1.02 7 1 2.03 3 4 4.07
2.9 4 3 2 0 3 1 1.74 8 1 3.48 7 5 6.97
3.0 8 3 6 1 5 2 3.00 16 3 6.00 10 11 11.99
3.1 14 5 8 2 10 3 5.18 20 5 10.36 22 17 20.73
3.2 22 9 9 6 13 5 8.99 23 15 17.98 43 33 35.96
3.3 30 14 15 12 26 14 15.66 36 30 31.31 63 58 62.62
3.4 46 27 26 23 40 31 27.37 61 55 54.73 112 104 109.46
3.5 68 51 59 38 59 49 48.00 99 110 96.00 178 187 192.00

Table 2. Values of N(k,K, ρ0, (104, 5× 105)) for K = Q(ζ5). Invariants: wK = 10, hΦ̂ = hK̂ = 1,
G cyclic.

ρ0 k = 2 k = 3 k = 4 k = 12 k = 24 k = 36 I k = 5 k = 10 k = 15 k = 20 k = 25 I

2.5 0 3 0 2 2 2 1.04 2 4 9 2 4 4.15
2.6 2 3 2 3 2 6 1.75 6 10 12 3 6 7.01
2.7 2 5 2 3 4 7 2.98 10 22 17 5 6 11.91
2.8 2 6 2 6 6 10 5.08 14 26 29 14 9 20.33
2.9 6 9 8 8 9 10 8.71 26 46 45 32 22 34.84
3.0 10 15 14 18 17 18 14.99 64 70 72 49 51 59.97
3.1 16 27 20 32 24 27 25.91 106 124 125 83 93 103.63
3.2 26 44 43 52 35 50 44.95 176 168 210 150 162 179.79
3.3 70 76 72 82 72 87 78.28 302 302 335 282 319 313.12
3.4 112 142 140 143 130 141 136.83 574 560 597 534 578 547.30
3.5 212 250 241 258 235 251 240.00 1000 1000 1049 977 1006 959.99

Table 3. Values of N(k,K, ρ0, (104, 5× 105)) for K = Q[X]/(X4 + 8X2 + 13). Invariants: wK = 2,
hΦ̂ = hK̂ = 2, G dihedral.

ρ0 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 I k = 12 k = 24 k = 36 I

2.7 2 0 0 1 2 2 1.19 2 2 2 2.38
2.8 2 2 2 4 3 3 2.03 2 4 6 4.07
2.9 6 5 3 6 3 4 3.48 8 8 9 6.97
3.0 6 8 6 10 6 7 6.00 17 14 11 11.99
3.1 8 13 11 11 10 14 10.36 25 25 17 20.73
3.2 16 23 19 20 17 25 17.98 44 43 36 35.96
3.3 32 31 26 34 27 39 31.31 65 71 64 62.62
3.4 58 59 56 57 54 66 54.73 116 116 115 109.46
3.5 100 97 93 93 96 117 96.00 206 195 191 192.00
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The data for the Galois sextic CM-field examples was computed relatively quickly:
approximately 2300 s for each value of k. The sextic fields with G of order 12 took between
20 000 and 60 000 s each; the examples with G of order 24 took under 15 000 s. An explanation
for why the order 24 examples were quicker to compute than the order twelve examples is
that the latter have a proper CM-subfield (of degree two), so we must identify and discard the
non-primitive ideal decompositions.

Table 4. Values of N(k,K, ρ0, (104, 5× 105)) for K = Q(ζ9). Invariants: wK = 18, hΦ̂ = hK̂ = 1,
G cyclic.

ρ0 k = 2 k = 4 k = 5 I k = 3 k = 6 I k = 9 k = 18 I

4.0 6 3 0 2.99 2 4 5.99 22 18 17.97
4.1 8 6 2 4.27 6 8 8.54 34 24 25.62
4.2 10 6 6 6.10 10 18 12.20 46 44 36.60
4.3 14 10 8 8.73 14 22 17.46 64 54 52.38
4.4 16 11 13 12.52 20 30 25.04 82 72 75.13
4.5 24 15 23 17.99 30 38 35.98 124 116 107.94
4.6 32 24 30 25.90 50 62 51.79 180 160 155.37
4.7 44 34 42 37.34 80 80 74.68 260 236 224.05
4.8 68 51 62 53.94 114 116 107.88 390 330 323.63
4.9 90 71 82 78.04 166 162 156.09 568 454 468.27
5.0 136 104 114 113.11 250 224 226.22 812 658 678.66
5.1 224 169 159 164.19 380 328 328.38 1238 944 985.15

Table 5. Values of N(k,K, ρ0, (104, 5× 105)) for K = Q[X]/(X6 + 24X4 + 144X2 + 27). Invariants:
wK = 6, hΦ̂ = 1, hK̂ = 2, G of order 12.

ρ0 k = 2 k = 4 k = 5 k = 32 I k = 3 k = 6 k = 24 I

3.9 0 3 0 0 1.05 2 4 3 2.10
4.0 0 3 0 0 1.50 2 4 5 2.99
4.1 0 3 0 1 2.13 4 6 7 4.27
4.2 2 3 0 2 3.05 6 6 10 6.10
4.3 4 5 0 4 4.37 8 6 15 8.73
4.4 6 5 2 6 6.26 14 8 21 12.52
4.5 12 8 6 9 9.00 20 14 32 17.99
4.6 16 12 9 13 12.95 22 24 53 25.90
4.7 22 15 13 20 18.67 32 34 67 37.34
4.8 40 23 24 30 26.97 44 50 84 53.94
4.9 50 35 32 42 39.02 62 80 119 78.04
5.0 64 52 57 58 56.55 110 118 160 113.11
5.1 88 74 96 84 82.10 164 170 214 164.19

Table 6. Values of N(k,K, ρ0, (104, 5× 105)) for K = Q[X]/(X6 + 35X4 + 364X2 + 1183).
Invariants: wK = 2, hΦ̂ = 4, hK̂ = 16, G of order 24.

ρ0 k = 2 k = 3 k = 4 k = 5 k = 6 I k = 7 k = 14 k = 35 I

4.4 0 2 0 2 3 1.04 5 2 4 3.13
4.5 0 2 0 2 4 1.50 10 4 4 4.50
4.6 2 2 0 3 5 2.16 11 5 6 6.47
4.7 2 3 0 4 6 3.11 15 7 10 9.34
4.8 2 6 3 6 8 4.49 16 14 11 13.48
4.9 2 8 4 8 8 6.50 23 23 17 19.51
5.0 8 13 6 15 10 9.43 37 37 25 28.28
5.1 12 14 9 18 14 13.68 48 49 40 41.05
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We would have liked to have extended the range of r, but the unavoidable large number of
ideal factorizations in number fields prevented us from taking an interval for r too large or
high up.

In almost all the cases we computed, there is good agreement between the computed value
of N(k,K, ρ0, (a, b)) and the expected value I(k,K, ρ0, (a, b)). Noticeable exceptions occur in
Table 1 when k = 2 and k = 8 and in Table 5 when k = 24, when the integral seems to seriously
underestimate the actual number of triples found. To check whether the phenomenon persisted,
we extended the computation to larger r (up to 2×107 in the cases k = 2 and k = 8 of Table 1)
and found that the computed values were in much closer agreement with the expected ones.

4.2. An example in genus four

We also computed pairing-friendly Weil polynomials for the non-Galois octic CM-field

K = Q[X]/(X8 + 78X6 + 1323X4 + 7401X2 + 9801).

Let L be a Galois closure of K. Then [L : Q] = 24 and L contains a non-Galois sextic CM-field
K6 with Galois closure L. Thus, the Galois group G = Gal(L/Q) is that of case (vi) above. It
follows that the primitive CM-type on K6 is a reflex CM-type for K. Up to equivalence, there
are two primitive CM-types on K: Φ6 with reflex field K6 and Φ8 with reflex field K8

∼= K.
There is also an imprimitive class of CM-types corresponding to extending the CM-type Φ2 of
the imaginary quadratic field K2

∼= Q(ζ3) contained in K.
Using the same method as described earlier, we computed pairing-friendly primitive Weil

polynomials of K. We sorted them by CM-type Φi in order to compare the number
NΦi(k,K, ρ0, (a, b)) of pairing-friendly examples coming from Φi with the heuristic from
Estimate 3.2:

IΦi(k,K, ρ0, (a, b)) =
e(k,K)gwKhΦ̂i

#(Aut(K))ρ0hKi

∫ b
a

du

u2−(ρ0/g)(log u)2

(similar notation to before, now with Φi as a subscript).
Table 7 gives the values of NΦi(k,K, ρ0, (104, 5 × 105)) with ρ0 6 7.0 for several values of

k. It turns out that hΦ̂6
/hK6

= hΦ̂8
/hK8

in this example, so in fact IΦi(k,K, ρ0, (a, b)) is the
same for both primitive CM-types.

Remark 4.1. Since wK = wK2 , all imprimitive Weil numbers of K are in K2, and so an
imprimitive Weil polynomial of K with rho-value ρ is a fourth power of a Weil polynomial of

Table 7. Values of NΦi(k,K, ρ0, (104, 5× 105)) for the field K = Q[X]/(X8 + 78X6 + 1323X4 +
7401X2 + 9801). Invariants: wK = 6, hΦ̂6

= 4, hK̂6
= 8, hΦ̂8

= 2, hK̂8
= 4.

k = 4 k = 5 Heuristic k = 3 k = 6 Heuristic

ρ0 NΦ6 NΦ8 NΦ6 NΦ8 IΦ6 = IΦ8 NΦ6 NΦ8 NΦ6 NΦ8 IΦ6 = IΦ8

6.0 5 9 16 12 9.00 16 20 18 14 18.00
6.1 6 11 18 19 11.82 20 24 26 20 23.64
6.2 12 14 21 26 15.54 30 28 36 28 31.09
6.3 21 25 27 32 20.47 42 38 56 38 40.93
6.4 31 39 32 37 26.97 56 62 74 50 53.94
6.5 40 51 41 46 35.57 68 74 94 62 71.15
6.6 49 64 53 55 46.96 90 96 128 82 93.94
6.7 62 81 74 72 62.07 136 130 152 116 124.14
6.8 85 104 89 94 82.10 176 176 196 152 164.19
6.9 117 133 118 131 108.68 240 216 236 222 217.36
7.0 157 167 159 171 144.00 300 286 300 314 288.00
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K2 with rho-value ρ/4. As one would hope, the genus one heuristic integral I(k,K2, ρ0/4, (a, b))
equals IΦ2(k,K, ρ0, (a, b)). We confirmed that the imprimitive counts agree well with the
heuristic estimates for k = 4, 5. No pairing-friendly examples were found when k = 3 or
6. These are two of the three ‘exceptional’ cases, where the independence hypotheses are not
satisfied and hence the heuristics do not apply. See [5] for details.

5. Asymptotics for a fixed maximal real subfield

When ρ0 < g, the integral ∫∞
2

du

u2−(ρ0/g)(log u)2

converges. Thus, Estimate 3.2 suggests that, if K is any CM-field of degree 2g and if ρ0 < g,
there are only finitely many triples (r, π, p) with rho-value less than ρ0.

In order to try to understand where triples with rho-value less than g might be located,
we now develop a heuristic formula for the asymptotic growth of the number of triples with
rho-value bounded above by ρ0 and the CM-field K varies but with a fixed maximal real
subfield K+

0 . Thus, we fix k, ρ0 and a totally real field K+
0 of degree g and seek an estimate

for the number of triples (r, π, p) with r 6 x, p 6 rρ0/g and π is a p-Weil number lying in some
CM-field whose maximal real subfield is K+

0 . We denote by O+
0 the ring of integers of K+

0 .
Furthermore, if α ∈ K+

0 , we denote by {αi | 1 6 i 6 g} the set of real embeddings of α.
Let (r, π, p) be such a triple and write τ = π+p/π. Then τ ∈ O+

0 and (X denoting a variable)

(X − π)(X − p/π) = X2 − τX + p ∈ O+
0 [X] and |τi| 6 2

√
p for all i ∈ {1, 2, . . . , g},

the last inequalities being a consequence of the Weil bounds. Furthermore, the characteristic
polynomial Cπ(X) of π factors over R[X] as

Cπ(X) =

g∏
i=1

(X2 − τiX + p). (5.1)

Conversely, if τ ∈ O+
0 is such that |τi| 6 2

√
p for all i, then X2 − τX + p has two roots π and

p/π which are p-Weil numbers such that, if τ 6= ±2
√
p, K+

0 (π) is a CM-field with maximal
real subfield K+

0 .

Estimate 5.1. Estimate 1.4 holds with

β =
g4g+1e(k,K+

0 )

ρ0(g + 2)d
1/2
0

.

Here d0 denotes the discriminant of K+
0 and e(k,K+

0 ) the degree of K+
0 ∩Q(ζk) over Q.

Remark 5.2. Let (r, π, p) be a triple as above, and let τ = π + p/π. If π is real, then
π = ±√p and π must belong to K+

0 . This can occur for only finitely many p. Otherwise,
K+

0 (π) is uniquely determined by π, and τ arises from the two p-Weil numbers π and p/π.
It follows that the number of triples (r, π, p) that correspond to the same triple (r, C, p) with
C a characteristic polynomial is equal to twice the number of conjugates of τ ; in particular,
if K+

0 = Q(τ), it is equal to 2#(Aut(K+
0 )). The triples are ordinary when p is unramified in

K+
0 (π).

We now indicate a heuristic argument that leads to Estimate 5.1. From elementary results
about the geometry of algebraic number fields, we know that as T →∞, the number R(K+

0 , T )
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of τ ∈ O+
0 such that |τi| 6 T for all i satisfies

R0(K+
0 , T ) ∼ (2T )gd

−1/2
0 .

As before, the probability that r divides Φk(p) with r prime is 1/(r log r). On the other hand,
by the prime ideal theorem, in number fields the expected number of degree one prime ideals
of K+

0 dividing r given that r splits in Q(ζk) is equal to e(k,K+
0 ). In view of this, we assume

that the probability that an integer r is prime and divides both Φk(p) and NK+
0 (π)/Q(π− 1) is

equal to e(k,K+
0 )/(r2 log r).

Thus, we expect the number R(k,K+
0 , ρ0, x) of triples (r, π, p) with r 6 x and p 6 rρ0/g to

be asymptotically equivalent to

∑
r6x

e(k,K+
0 )

r2 log r

∑
p6rρ0/g

2R0(K+
0 , 2
√
p), (5.2)

where the sum over r is over integers and that over p is over primes, and the 2 appears before
the R0(K+

0 , 2
√
p) because we distinguish between π and p/π. Hence,

R(k,K+
0 , ρ0, x) ∼ 2 · 4ge(k,K+

0 )

d
1/2
0

∑
r6x

1

r2 log r

∑
p6rρ0/g

pg/2. (5.3)

Now, it follows from the prime number theorem by an easy argument using Abel summation
that, if α > 0, then the sum over primes

∑
p6U p

α is asymptotically equivalent to

Uα+1/((α+ 1) logU) as U → ∞ (see for example [17, pp. 203–205] for a more general
statement). Applying this with α = g/2 and U = rρ0/g, (5.3) becomes

R(k,K+
0 , ρ0, x) ∼ g4g+1e(k,K+

0 )

ρ0(g + 2)d
1/2
0

∑
r6x

rρ0(1/2+1/g)−2

(log r)2
. (5.4)

Replacing the sum by an integral and rearranging slightly leads to Estimate 5.1.

Remark 5.3. Suppose that there are C prime ideals of norm r in K+
0 (where 0 6 C 6 g).

Then the number of τ ∈ O+
0 with |τ |i 6 2

√
p for all embeddings i of τ in R is asymptotically

equivalent to

4gpg/2d
−1/2
0 .

On the other hand, if r+ is a prime ideal of norm r in K+
0 , the probability that τ ≡ p + 1

(mod r+) is 1/r. Hence, the number of elements τ in this range and r+ a degree one prime
ideal of K+

0 dividing r such that τ ≡ p+ 1 (mod r+) should be roughly

4gpg/2Cr−1d
−1/2
0 .

In particular, if p is close to rρ0/g, this is close to

4grρ0/2−1Cd
−1/2
0 . (5.5)

Thus, if ρ0 > 2, we expect that when r is large and p is a prime close to rρ0/g, the number
of p-Weil numbers π with π + p/π ∈ K+

0 is close to (5.5), which tends to infinity with r.
For a numerical illustration, see Remark 6.2.
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6. Numerical evidence in the fixed maximal real subfield case

We continue to use the notation introduced in the previous section. For small x and ρ0, we can
compute R(k,K+

0 , ρ0, x) as follows. Since r 6 x, we know that |τi| 6 2
√
p 6 2rρ0/2g 6 2xρ0/2g.

Hence, we need to carry out the following steps.
(1) Make a list L of all τ ∈ O+

0 such that |τi| 6 2xρ0/2g for all i.
(2) For each τ ∈ L, factor Φk(τ − 1) into prime ideals in K+

0 and make a list M(τ) of all
degree one primes r+ dividing Φk(τ − 1) of norm r such that x > r > (|τi|/2)2g/ρ0 for
all i.

(3) For each r+ ∈ M(τ), search for primes p 6 xρ0/g such that p ≡ τ − 1 (mod r+) and
|τi| 6 2

√
p for all i.

The condition p ≡ τ − 1 (mod r+) of (3) ensures that r divides Φk(p). Thus, for any τ ∈ L,
r+ ∈M(τ) and prime p as in (3), the triples (r, π, p) and (r, p/π, p) with π and p/π the roots
of X2 − τX + p contribute towards the total R(k,K+

0 , ρ0, x).
Conversely, if (r, π, p) is a triple with r 6 x and p 6 rρ0/g, and if τ = π + p/π, then τ ∈ L.

Since r divides NK/Q(π − 1), some prime ideal r+ of K+ above r must divide p+ 1− τ . Then
r+ ∈M(τ) and p satisfies (3), so that (r, π, p) will be detected by the above search.

Of course, the major drawback of this approach is the need to factor Φk(τ − 1). Since the
size of Φk(τ − 1) depends on the degree of Φk, it is necessary to choose k with ϕ(k) small. On
the other hand, decreasing ρ reduces the size of the list L of step (1). In any case, in practice
it is only possible to make meaningful computations when ϕ(k) and x are small.

Using this method, we computed a few tables with ρ0 at most equal to g.
Let Rc(k,K

+
0 , ρ0, (a, b)) be the number of distinct irreducible characteristic polynomials (5.1)

associated to Weil numbers π belonging to triples (r, π, p) with a 6 r 6 b, π + p/π ∈ K+
0 and

p 6 rρ0/g. Tables 8–10 compare the values of Rc(k,K
+
0 , ρ0, (a, b)) with the heuristic estimate

J = J(k,K+
0 , ρ0, (a, b)) =

g4g+1e(k,K+
0 )

2#(Aut(K+
0 ))ρ0(g + 2)d

1/2
0

∫ b
a

uρ0(1/2+1/g)−2 du

(log u)2
. (6.1)

Table 8 shows the values of Rc(k,Q(
√

2), ρ0, (103, 105)) for k ∈ {3, 4, 5, 6, 7, 8, 12} and
values of ρ0 between 1 and 2. On the other hand, Table 9 presents the values of
Rc(k,Q(

√
d), 2.0, (103, 105)) for k ∈ {3, 4, 5, 6, 12} and for square-free d 6 50. The entries

for which e(k,Q(
√
d)) = 2 are marked with an asterisk; the predicted value for these entries is

2J . In all other cases, e(k,Q(
√
d)) = 1 and the predicted value is J . Finally, Table 10 shows

the values of Rc(k,Q(ζ7 + ζ−1
7 ), ρ0, (103, 104)) for k ∈ {3, 4, 5, 6, 7} and values of ρ0 between

1.5 and 3.

Table 8. Values of Rc(k,K
+
0 , ρ0, (103, 105)) for K+

0 = Q(
√

2).

ρ0 k = 3 k = 4 k = 5 k = 6 k = 7 k = 12 J k = 8 J

1.0 1 0 0 0 0 1 0.16 0 0.33
1.1 1 0 0 1 0 1 0.36 0 0.73
1.2 2 0 0 1 2 2 0.83 1 1.65
1.3 4 1 0 1 3 3 1.92 1 3.85
1.4 7 2 5 5 4 6 4.59 7 9.18
1.5 15 11 14 15 12 17 11.21 22 22.42
1.6 36 22 28 34 25 37 27.95 62 55.90
1.7 81 68 62 88 62 80 71.04 157 142.09
1.8 200 194 192 219 161 210 183.80 384 367.60
1.9 493 518 467 496 534 543 483.16 940 966.33
2.0 1346 1418 1267 1331 1295 1321 1288.45 2572 2576.91
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The running times in Table 9 were dependent on the size of ϕ(k), the degree of the kth
cyclotomic polynomial. For k 6= 5, 12, each table entry took under 10 min to compute. The
value which took the most time to compute was k = 5 for the field Q(

√
5), which took just

under 3 1
2 hours. The computations in Table 10 took under three hours when k ∈ {3, 4, 6} but

over ten times longer when k = 5 and k = 7.

Remark 6.1. In almost all cases in Tables 8–10, the CM-field K+
0 (π) has Galois closure of

maximal size. For instance, over 104 examples are listed in Table 8, but in only 58 of them is
the field Q(

√
2, π) Galois; in 54 cases the field is biquadratic and in the other four it is cyclic.

Remark 6.2. We can also use Table 10 to illustrate Remark 5.3. When K+
0 = Q(ζ7 + ζ−1

7 )
and k = 5, the table shows that there are no triples with rho-value between 2.3 and 2.4, and
183 with rho-value between 2.4 and 2.5. However, only three values of (r, p) account for all

Table 9. Values of Rc(k,Q(
√
d), 2.0, (103, 105)) for k ∈ {3, 4, 5, 6, 12} and d 6 50 square-free.

Asterisks indicate the cases where e(k,Q(
√
d) = 2.

d k = 3 k = 4 k = 5 k = 6 k = 12 J d k = 3 k = 4 k = 5 k = 6 k = 12 J

2 1346 1418 1267 1331 1321 1288.45 26 365 408 368 374 358 357.35
3 1144 1093 1049 1103 2199∗ 1052.02 29 675 718 688 662 660 676.73
5 1650 1808 3306∗ 1670 1703 1629.78 30 356 338 322 346 354 332.68
6 789 794 774 753 751 743.89 31 351 351 333 345 328 327.27
7 755 718 634 667 708 688.71 33 643 687 621 664 640 634.39

10 659 635 573 599 616 576.21 34 325 324 336 287 291 312.50
11 574 580 534 553 567 549.40 35 319 341 285 311 349 308.00
13 1090 1043 1064 975 1084 1010.75 37 634 596 654 614 609 599.12
14 521 526 494 491 432 486.99 38 309 320 299 313 302 295.59
15 486 460 487 443 475 470.48 39 325 334 280 307 306 291.78
17 967 954 952 880 902 883.87 41 609 651 580 537 602 569.14
19 422 480 450 395 412 418.03 42 320 280 316 303 255 281.16
21 883 753 799 798 810 795.25 43 302 300 296 274 300 277.88
22 396 415 405 379 414 388.48 46 307 289 258 300 253 268.66
23 377 393 418 378 396 379.94 47 273 258 311 257 252 265.79

Table 10. Values of Rc(k,K
+
0 , ρ0, (103, 104)) for K+

0 = Q(ζ7 + ζ−1
7 ).

ρ0 k = 3 k = 4 k = 5 k = 6 J k = 7 J

1.5 3 0 1 0 0.65 2 1.96
1.6 3 0 1 1 1.20 2 3.60
1.7 10 11 1 3 2.22 6 6.66
1.8 10 11 1 5 4.14 9 12.41
1.9 10 28 1 9 7.75 24 23.26
2.0 18 42 1 15 14.61 30 43.84
2.1 32 53 12 35 27.70 77 83.10
2.2 144 82 40 68 52.78 230 158.33
2.3 197 82 97 160 101.05 324 303.15
2.4 244 232 97 236 194.37 716 583.11
2.5 354 519 280 362 375.53 1 028 1 126.60
2.6 557 1 048 714 865 728.59 1 647 2 185.76
2.7 1211 1 654 1314 1 132 1 419.19 3 267 4 257.58
2.8 2474 3 050 2640 1 598 2 774.87 9 820 8 324.62
2.9 5136 5 527 5330 3 993 5 445.06 19 124 16 335.18
3.0 9378 10 116 8179 11 699 10 721.16 35 287 32 163.49
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these triples: (1051, 307), (5741, 1229) and (6091, 1321), which give rise respectively to 46, 66
and 74 triples with corresponding rho-values 2.469, 2.466 and 2.474. If we substitute r = 1051,
5741 or 6091 in (5.5) with g = 3, C = 3 and divide by # Aut(Q(ζ7 + ζ−1

7 )) = 3, we find that
the predicted number of triples is respectively 46.9, 68.7 and 72.1.

7. The influence of polynomial families

As was already noted in [5, § 3] in the genus one case, polynomial families with small generic
rho-value can be expected to produce more triples than predicted by Estimate 3.2. For elliptic
curves over prime fields, the only case where this is known to happen occurs when k = 12,
where the family involved is the well-known Barreto–Naehrig family, which is recalled below.
In this section, we investigate under what circumstances polynomial families might produce
counterexamples to Estimates 3.2 and 5.1 in higher genus, and list all the known examples. In
defining polynomial families, it is more convenient to consider triples involving characteristic
polynomials rather than Weil numbers.

Definition 7.1. Let g > 1, k > 2 be integers with k > 3 if g = 1. By a polynomial
family of dimension g with embedding degree k of triples, we mean a collection of polynomials
P = {r0(w), p0(w), ai(w) | 0 6 i 6 2g} with rational coefficients with the following properties:

(i) the polynomials r0 and p0 are irreducible. In addition, we suppose that there exists
an infinite set W0 of integers such that r0(w0) and p0(w0) are prime numbers for all
w0 ∈ W0;

(ii) we have a2g(w) = 1 and ai(w) = a2g−i(w)p0(w)i for all i ∈ {0, 1, . . . , g − 1}. We further
suppose ai(w0) ∈ Z for all i and for all w0 ∈ W0;

(iii) define Cw(X) =
∑2g
i=0 ai(w)Xi, an element of Q[X,w]. We suppose that, for all w0 ∈ W0

with |w0| sufficiently large, the roots of Cw0(X) are p0(w0)-Weil numbers;
(iv) we have that r0(w) divides both Cw(1) and Φk(p0(w)).

The generic rho-value of P is g(deg p0/deg r0).

By removing a finite number of integers from W0, we can suppose that all w0 ∈ W0 satisfy
(iii). Similarly, if w0 is such that r0(w0) does not divide the denominators of any of the
coefficients of r0, p0 and the ai, then condition (iv) implies that r0(w0) divides Cw0(1) and
Φk(p0(w0)), so that (r0(w0), Cw0(X), p0(w0)) is a triple as in the Introduction. We therefore
suppose from now on that all the elements of W0 satisfy (iii). Similarly, in the case of an
ordinary family, we can suppose that when w0 ∈ W0, p0(w0) does not divide ag(w0). Clearly,
we can suppose that the leading coefficients of r0 and w0 are positive, so that W0 contains
arbitrarily large positive integers. We usually tacitly assume thatW0 consists of all the integers
with the prescribed properties.

Fix a polynomial family P. If x > 0, denote by ν(x) = ν(P, x) the cardinality of the set of
triples (r0(w0), Cw0

(1), p0(w0)) with w0 ∈ W0 and r0(w0) 6 x. We want a simple asymptotic
equivalent for ν(x) as x → ∞, which can then be compared with Estimates 3.2 and 5.1.
This can only be done heuristically, using the formulae of Bateman and Horn [3] and Conrad
[8] for the asymptotic growth of the number of integers at which a finite set of polynomials
simultaneously take prime values, and we recall the special case we need. Let µ(x) denote the
cardinality of the set of w0 ∈ W0 with |w0| 6 x. Then there exists a strictly positive constant
A0 such that

µ(x) ∼ A0

∫x
2

du

(log u)2
∼ A0

x

(log x)2
(7.1)

as x→∞. (The papers [3, 8] only consider the case when r0(Z) ⊆ Z and p0(Z) ⊆ Z, but one
can reduce to this case using an affine change of variables. We refer to [3, 8] for the value of A0.)
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Here the expression on the right is obtained from the one in the middle by integrating by parts.
In what follows, A1, A2 and A3 denote strictly positive constants.

Lemma 7.2. Let P be a polynomial family of triples. Then, assuming the heuristics in [3, 8],
there exists a constant A1 > 0 such that

ν(x) ∼ A1
x1/deg r0

(log x)2
as x→∞. (7.2)

Proof. Let r1 > 0 denote the leading coefficient of r0 and put d = deg r0. Then r0(y) ∼ r1y
d

as y →∞ and, from this, one sees using (7.1) that ν(r1y
d) ∼ µ(y) ∼ A0y/(log y)2. To conclude,

it suffices to substitute x = r1y
d.

Now let ρ0 > 1. If g(deg p0/deg r0) > ρ0, then there are only finitely many w0 ∈ W0

and the triple (r0(w0), Cw0
(w0), p0(w0)) has rho-value at most ρ0. On the other hand, if

g(deg p0/deg r0) < ρ0, then for all sufficiently large w0 ∈ W0, (r0(w0), Cw0
(w0), p0(w0)) always

has rho-value at most ρ0, so if the exponent 1/deg r0 in (7.2) is sufficiently large, ν(x) might
grow faster than the total number of triples predicted by Estimates 3.2 or 5.1. The following
lemma makes this precise.

Lemma 7.3. Let P be a polynomial family of triples. Let I(k,K, ρ0, (a, b)) be as in (4.1) and
J(k,K+

0 , ρ0, (a, b)) be as in (6.1). Then, assuming the heuristics in [3, 8], we have

lim
x→∞

ν(x)

I(k,K, ρ0, (2, x))
=


∞ if ρ0 < g(1 + (1/deg r0)),

A2 if ρ0 = g(1 + (1/deg r0)),

0 if ρ0 > g(1 + (1/deg r0))

(7.3)

and

lim
x→∞

ν(x)

J(k,K+
0 , ρ0, (2, x))

=


∞ if ρ0 < (2g/(g + 2))(1 + (1/deg r0)),

A3 if ρ0 = (2g/(g + 2))(1 + (1/deg r0)),

0 if ρ0 > (2g/(g + 2))(1 + (1/deg r0)).

(7.4)

Proof. The first statement is clear when ρ0 6 g, since then I(k,K, ρ0, (2, x)) remains
bounded, ρ0 < g(1 + (1/deg r0)) and ν(x)→∞ by (7.2). If ρ0 > g, we have

I(k,K, ρ0, (2, x)) =
e(k,K)gwKhΦ̂

#(Aut(K))ρ0hK̂

∫x
2

u(ρ0/g)−2 du

(log u)2
∼

e(k,K)g2wKhΦ̂

#(Aut(K))ρ0(ρ0 − g)hK̂

x(ρ0/g)−1

(log x)2
,

as one sees by integrating by parts. The first statement in the lemma then follows by comparing
the exponent (ρ0/g)−1 with the exponent 1/deg r0 appearing in (7.2). The proof of the second
statement is similar.

Definition 7.4. Let P be a polynomial family of triples of dimension g. If K is a CM-
field of degree 2g, we say that P has constant CM-field K if, for all w0 ∈ W0, Q[X]/Cw0(X)
is isomorphic to K. Similarly, if K+

0 is a totally real field of degree g, we say that P has
a constant maximal totally real subfield K+

0 if, for all w0 ∈ W0, Q[X]/Cw0
(X) contains a

subfield isomorphic to K+
0 .

Theorem 7.5. Let g, k and ρ0 > 1 be fixed.
(i) Let K be a CM-field of degree 2g. Suppose that there exists a polynomial family of triples

with fixed CM-field K such that g(deg p0/deg r0) < ρ0 and ρ0 < g(1+(1/deg r0)). Then,
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assuming the Bateman–Horn–Conrad heuristics [3, 8], Estimate 3.2 is incorrect for at
least one CM-type on K.

(ii) Let K+
0 be a totally real field of degree g. Suppose that there exists a polynomial family

of triples with constant maximal totally real subfield K+
0 such that g(deg p0/deg r0) < ρ0

and either
(a) ρ0 < (2g/(g + 2))(1 + (1/deg r0)) or
(b) ρ0 = (2g/(g + 2))(1+(1/deg r0)) and the constant A3 of Lemma 7.3 satisfies A3 > 1.
Then, assuming the Bateman–Horn–Conrad heuristics, Estimate 5.1 is incorrect.

(iii) No other polynomial family is incompatible with Estimate 3.2 or 5.1, with the following
possible exceptions:

in (i), families with either g(deg p0/deg r0) = ρ0 and ρ0 6 g(1 + (1/deg r0)) or
g(deg p0/deg r0) < ρ0 and ρ0 = g(1 + (1/deg r0));

in (ii), families with g(deg p0/deg r0) = ρ0 and ρ0 6 (2g/(g + 2))(1 + (1/deg r0)).

Proof. (i) This follows from the first case of (7.3). (ii) Similarly, this follows using the
first two cases of (7.4). (iii) If g(deg p0/deg r0) > ρ0, then there can be only finitely many
triples (r0(w0), Cw0 , p0(w0)) that have rho-value at most ρ0, so the family cannot affect the
asymptotics of Estimates 3.2 and 5.1. Similarly, if ρ0 > g(1 + (1/deg r0)), the third case of
(7.3) shows that ν(x) grows too slowly to affect Estimate 3.2 and a similar argument works for
Estimate 5.1 when ρ0 > (2g/(g + 2))(1 + (1/deg r0)). We are left with the exceptional cases
indicated.

Remark 7.6. The exceptional cases seem difficult to handle. If g(deg p0/deg r0) = ρ0,
it seems difficult to determine whether there are infinitely many triples in the family with
rho-value at most ρ0. In the fixed CM-field case (i), we cannot argue as in (ii) when ρ0 =
g(1 + (1/deg r0)), since there is no reason for all the triples in a family to belong to the same
CM-type.

Remark 7.7. When g = 1 and k = 12, Theorem 7.5 predicts that the well-known Barreto–
Naehrig family is inconsistent with Estimate 3.2 (or, rather, with its analogue for g = 1). The
Barreto–Naehrig family [2] has r0(w) = 36w4 + 36w3 + 18w2 + 6w+ 1, p0(w) = 36w4 + 36w3 +
24w2+6w+1 and a1(w) = −(6w2+1). The field K is Q(

√
−3), as one checks by computing the

discriminant of Cw(X), which is −3 times the square of a polynomial with rational coefficients.
The generic rho-value is 1, and this is inconsistent with Estimate 3.2 when 1 < ρ0 <

5
4 . We

obtain families inconsistent with Estimate 3.2 for any g by taking the isogeny classes of the gth
powers of Barreto–Naehrig curves, with K being a CM-field containing Q(

√
−3) and Φ being

any CM-type on K whose restriction to Q(
√
−3) is the identity. The inconsistency occurs when

g < ρ0 <
5
4g, so that Corollary 1.3 holds in this case as well.

Remark 7.8. The only cases where there are known to exist families of the form described
in Theorem 7.5 and inconsistent with Estimate 5.1 occur when g = 2 and k = 5 or k = 10.
Four of the families listed in [13, Table 4] have this property. These are listed on Table 11.

See [13] for details of why these are polynomial families, and in particular how to check that
the roots of Cw0

(X) are Weil numbers when w0 ∈ W0. If w0 ∈ W0, the real quadratic subfield

Table 11. Polynomial families inconsistent with Estimate 5.1.

k r0(w) a3(w) a2(w) p0(w)

5 2525w4 + 2575w3 + 990w2 + 170w + 11 −20w − 6 1515w2 + 780w + 102 1010w2 + 525w + 69
10 25w4 + 25w3 + 15w2 + 5w + 1 −2 15w2 + 10w + 5 10w2 + 5w + 2
10 11w4 + 21w3 + 16w2 + 6w + 1 w − 1 11w2 + 12w + 5 11w2 + 10w + 3
10 275w4 + 475w3 + 315w2 + 95w + 11 15w + 4 165w2 + 110w + 20 55w2 + 40w + 8
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of Cw0
(X) is generated by a root of X2 + a3(w0)X + a2(w0) − 2p0(w0). In each of the four

families in the table, one sees that the discriminant of this polynomial in X has the form five
times a square. This shows that the real quadratic subfield is always Q(

√
5). In each case, the

generic rho-value is 1, and again this is inconsistent with Estimate 5.1 when 1 < ρ0 <
5
4 .

The fact that polynomial families might provide sufficiently many triples to contradict the
fixed maximal real subfield heuristics was only noticed as a result of a remark by the referee
on the first version of this paper. When the above examples were found, a search was made
for other families for other values of g and k. Let P be a polynomial family. Since the generic
rho-value is at least 1, one has deg r0 6 g deg p0. Since r0(w) divides Φk(p0(w)), we also
have deg r0 6 ϕ(k)deg p0. Also, the image of p0(w) under the canonical map Q[w]/r0(w)
is a primitive kth root of unity, which implies that ϕ(k) divides deg r0. When g = 1, one
deduces that no family can contradict Estimate 5.1. Suppose from now on that g > 2 and that
the generic rho-value is 1. We shall see in Lemma 7.12 below that deg p0 > 2. A search
was run when g = 2 and g = 3 for prime-representing polynomials p0 with deg p0 > 2
and Φk(p0(w)) reducible, using both systematic searching by varying the coefficients of p0 and
using a method similar to that of [13], but, up to affine transformation, none were found
except those appearing on the table. In conclusion, although the existence of other families
that contradict Estimates 3.2 or 5.1 cannot be excluded, we believe that they are few and far
between.

When the data in support of Estimate 5.1 was prepared, computations were made with
K+

0 = Q(
√

5), k = 5 and k = 10, with r in the range 103 6 r 6 105 (see Table 9 for the case
k = 5). There are no members of the family with k = 5 in this range, one member of the first
family with k = 10, no members of the second and two members of the third. The numerical
rho-values are 1.17475, 1.26640 and 1.31191. On the other hand, when the complete lists of all
triples with ρ0 6 1.3, fixed maximal real subfield Q(

√
5) and 103 6 r 6 105 are examined, we

find four triples when k = 5 and three triples when k = 10, while Estimate 5.1 predicts that
in both cases there should be 4.866 triples. So, when the data was examined we were not led
to suspect the existence of families such as those in Table 11.

Finally, we recall that, since the CM-field is variable, we cannot construct the abelian
varieties corresponding to triples belonging to the families in Table 11 using the CM-method.

We end the paper with a brief discussion of the relationship between our Definition 7.1 of
polynomial families and the definitions appearing in the work of other people. We also prove
Lemma 7.12. For simplicity, we restrict our attention, as in Definition 7.1, to the case where
p0(w) represents primes and not more general prime powers, although many other authors allow
prime powers in their definitions in order to take account of families over non-prime fields.

Suppose first that g = 1. Then the most important polynomial families are the Brezing–
Weng or complete families, first studied in a special case in [6] and discussed in detail in [11];
see in particular [11, Theorem 6.1]. The Barreto–Naehrig family mentioned in Remark 7.7 is
an example. We have Cw(X) = X2 +a1(w)X+p0(w) and the family defines curves having CM
by the same imaginary quadratic field Q(

√
−D), D > 1 a square-free integer, if and only if the

discriminant a2
1(w) − 4p0(w) of Cw(X) is of the form −Dy(w)2, with y(w) ∈ Q[w]. If this is

the case, and if we write t(w) = −a1(w), q(w) = p0(w) and r0(w) = r(w), it is not hard to see
that our family becomes a family in the notation of [11, Theorem 6.1]. Note also that families
defining curves with CM by varying fields give rise to sparse families as discussed in [11, § 5].

To handle the case g > 2, we use the following proposition, which is a consequence of a
suitable explicit form of Hilbert’s irreducibility theorem.

Proposition 7.9. Let F be a number field, let f(X,w) ∈ F [X,w] be irreducible and let
ω(x) denote the cardinality of the set of w0 ∈ Z with |w0| 6 x and f(X,w0) reducible in F [X].
Then ω(x) = O(x1/2 log x) as x→∞.
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Proof. This is just part of the special case r = s = 1, k = Q and K = F of [7, Theorem 2.5].

Using Proposition 7.9 with f(X,w) = Cw(X) and (7.1), we see that the number of x0 ∈ W0

with |x0| 6 x and Cw0
(X) reducible is o(µ(x)), where µ is defined just before (7.1). Hence,

we can suppose that Cw0
(X) is irreducible for all w0 ∈ W0 without affecting the heuristic

estimates leading to Theorem 7.5.

Lemma 7.10. Let F be a finite extension of Q and let e be the degree of F over Q. Suppose
that f(X,w) is an irreducible element of Q[X,w] of degree d > 1 in X. Then the following
conditions are equivalent.

(i) There is a subset W of Z such that:
(a) there exist α > 1

2 and C > 0 such that # (W ∩ [−x, x]) > Cxα for all sufficiently
large x; and
(b) for all w0 ∈ W, f(X,w0) is irreducible and Q[X]/f(X,w0) contains a subfield
isomorphic to F .

(ii) e divides d and f(X,w) has an irreducible factor in F [X,w] of degree d/e in X.

Proof. Suppose that (i) holds. Since F is a subfield of Q[X]/f(X,w0) which is of degree d
over Q, we see that e divides d. On the other hand, comparing Proposition 7.9 and the growth
condition (a) of (i) shows that f(X,w) must be reducible in F [X,w]. Since f(X,w) has only
finitely many irreducible factors, it follows that at least one of them (call it g(X,w)) has
the property that the fields F [X]/g(X,w0) and Q[X]/f(X,w0) are isomorphic for a positive
proportion of w0 ∈ W. It follows that g(X,w0) is of degree d/e in X, as claimed. This proves
that (i) implies (ii). To prove the converse, note that if g(X,w) is an irreducible factor of
f(X,w) in F [X,w] of degree d/e in X, then f(X,w) is just the image of g(X,w) under the
norm map from F to Q extended in the usual way to a map from F [X,w] to Q[X,w].

Remark 7.11. Let K be a CM-field of degree 2g, let π0(w) ∈ K[w], r0(w) ∈ Q[w] and let
k > 2 be an integer. We say that (π0, r0) represents a family of g-dimensional varieties with
embedding degree k and complex multiplication by K if:

(i) p0(w) = π0(w)π0(w) lies in Q[w];
(ii) there is an infinite set W0 of integers such that p0(w0) and r0(w0) are prime numbers

for all w0 ∈ W0;
(iii) NK/Q(π0(w)−1) and Φk(p0(w)) are both divisible by r0(w). Here NK/Q denotes the map

K[w]→ Q[w] induced by the norm map from K to Q.
Assuming a weak form of the Bateman–Horn–Conrad heuristics, this definition is essentially

equivalent to Definition 3.6 in Freeman’s paper [10]. Let Cw(X) = NK/Q(X − π0(w)) and
suppose that Cw(X) is irreducible. If w0 ∈ W0, then Cw0(X) is the characteristic polynomial
of the corresponding abelian variety, and we obtain a polynomial family in the sense of
Definition 7.1 with fixed CM-field K.

Conversely, let P be a polynomial family in the sense of Definition 7.1 with fixed CM-field
K. Then, assuming the Bateman–Horn–Conrad heuristics, we can suppose that W0 satisfies
the condition onW in (i) of Lemma 7.10. We deduce that Cw(X) has a factor of degree one in
X in K[X,w], which we can write as X−π0(w) with π0(w) ∈ K[w]. Using the fact that, when
w0 ∈ W0, the roots of Cw0

(X) are p0(w0)-Weil numbers, we conclude that π0(w)π0(w) = p0(w).
Thus, Freeman’s definition is essentially equivalent to our Definition 7.1 of families P having
fixed CM-field K.

Finally, we use Lemma 7.10 to prove Lemma 7.12, which was used in Remark 7.8.
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Lemma 7.12. When g > 2, there are no polynomial families with constant maximal real
subfield, generic rho-value equal to 1 and deg p0 = 1.

Proof. When g > 2, one finds that if deg p0 = 1, then deg r0 = ϕ(k). Furthermore, g = ϕ(k)
since the generic rho-value is 1. Let K+

0 denote the fixed maximal real subfield, which is
of degree g. Using Lemma 7.10 and the fact that the roots of the Cw0

(X) are p0(w0)-Weil
numbers, we see that Cw(X) has a factor of the form X2 − τ0(w)X + p0(w) in K+

0 [X,w]. Up
to affine transformation, we can suppose that p0(w) = w and r0(w) = Φk(w). Now the roots of
X2− τ0(w0)X +w0 generate a quadratic CM-extension of K+

0 ; by looking at the discriminant
τ0(w)2 − 4w of X2 − τ0(w)X + w, we deduce that τ0(w) is a constant polynomial, equal to
β ∈ K+

0 , say. It follows that Cw(1) is divisible by w−β+1 in K+
0 [w]. But r0(w) divides Cw(1)

in Q[w], and both polynomials are of degree g. It follows that Cw(1) is a constant multiple of
r0(w), so that r0(w) has a factor of degree one in K+

0 [w]. But r0(w) = Φk(w), and this implies
that K+

0 contains a primitive kth root of unity ζk. Since g = ϕ(k) > 2, ζk is imaginary, so
cannot belong to the totally real field K+

0 . This contradiction concludes the proof.

Acknowledgements. We would like to thank the referee for his/her comments which have
helped us to much improve the paper, and in particular make us realize that suitable polynomial
families could provide counterexamples to our heuristics for a fixed maximal totally real
subfield.
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Université de Caen Basse-Normandie
Esplanade de la Paix
14032 Caen cedex 5
France

john.boxall@unicaen.fr

David Gruenewald
School of Mathematics and Statistics
University of Sydney, NSW 2006
Australia

davidg@maths.usyd.edu.au

https://doi.org/10.1112/S1461157015000091 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000091

	1 Introduction
	1.1 Background
	1.2 Presentation of the paper
	1.3 Contents of the paper and outline of the methods involved

	2 Notation and review of CM-types and Weil numbers
	2.1 Notation and review of CM-types
	2.2 Weil numbers and characteristic polynomials
	2.3 Weil numbers coming from a given CM-type

	3 A heuristic asymptotic formula for a fixed CM-type
	4 Numerical evidence in the fixed CM-field case
	4.1 Examples in genus two and three
	4.2 An example in genus four

	5 Asymptotics for a fixed maximal real subfield
	6 Numerical evidence in the fixed maximal real subfield case
	7 The influence of polynomial families
	References

