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Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or
temperature fields in three dimensions using multiple camera BOS projections, and
is particularly useful for instantaneous flow visualizations of complex fluid dynamics
problems. We propose a new method based on physics-informed neural networks (PINNs)
to infer the full continuous three-dimensional (3-D) velocity and pressure fields from
snapshots of 3-D temperature fields obtained by Tomo-BOS imaging. The PINNs
seamlessly integrate the underlying physics of the observed fluid flow and the visualization
data, hence enabling the inference of latent quantities using limited experimental data.
In this hidden fluid mechanics paradigm, we train the neural network by minimizing
a loss function composed of a data mismatch term and residual terms associated with
the coupled Navier–Stokes and heat transfer equations. We first quantify the accuracy of
the proposed method based on a two-dimensional synthetic data set for buoyancy-driven
flow, and subsequently apply it to the Tomo-BOS data set, where we are able to infer the
instantaneous velocity and pressure fields of the flow over an espresso cup based only
on the temperature field provided by the Tomo-BOS imaging. Moreover, we conduct an
independent PIV experiment to validate the PINN inference for the unsteady velocity field
at a centre plane. To explain the observed flow physics, we also perform systematic PINN
simulations at different Reynolds and Richardson numbers and quantify the variations
in velocity and pressure fields. The results in this paper indicate that the proposed deep
learning technique can become a promising direction in experimental fluid mechanics.
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1. Introduction

Background oriented Schlieren (BOS) imaging has become an effective technique for
flow visualization and quantitative fluid measurement in recent years (Raffel, Richard &
Meier 2000; Richard & Raffel 2001; Raffel 2015). Compared to other flow visualization
technologies, such as particle image velocimetry (PIV) (Raffel et al. 2018) and laser
induced fluorescence (LIF) (Crimaldi 2008), BOS is less expensive and more flexible to
set up in different experimental environments. Schlieren photography is generally used to
visualize a flow that contains density gradients, which are caused by varying temperature,
pressure or composition in species. In principle, BOS is based on the fact that an object
inside a varying density medium will appear distorted due to the refraction of light rays.
The distortion is then evaluated by using digital image correlation methods (Pan 2018) for
the reference image (without density gradients) and the distorted images. Alternatively,
optical flow algorithms (Atcheson, Heidrich & Ihrke 2009) and dot tracking methods
(Rajendran, Bane & Vlachos 2019) can also be applied to reconstruct the displacement
field characterizing the distortion. In addition to the refractive index and the density,
temperature field or other quantities can be further inferred by analysing the BOS images
(Tokgoz et al. 2012). In the past two decades, the BOS technology has been applied to
various applications in fluid mechanics (Venkatakrishnan & Meier 2004; Goldhahn &
Seume 2007; Nicolas et al. 2017; Grauer et al. 2018). However, despite the substantial
improvements of the hardware (e.g. from two-dimensional setup to tomographic setup
Raffel et al. 2000), quantifying the entire fluid velocity and pressure fields continuously in
space–time from BOS images has remained an open problem.

The existing algorithms for BOS velocimetry are mostly developed based on the
cross-correlation method, which determines the displacement between two interrogation
windows by searching the maximum of the correlation. For example, Bühlmann et al.
(2014) performed PIV analysis on two consecutive BOS speckle displacement fields
and obtained a spatially resolved estimate of local convection velocities. However, the
correlation-based methods are mostly optimized for PIV technology (which requires tracer
particles in the flow) rather than BOS images (which usually visualize a scalar field).
Raffel et al. (2011) proposed a method called density tagging velocimetry to overcome
this problem, in which the local density variation acts as a tracer particle transported by
a fluid flow. These existing algorithms generally produce sparse velocity vectors as the
computations are based on local patterns of the BOS images. Moreover, these methods
are not able to estimate the pressure from BOS data directly. A pressure reconstruction
method, such as solving the Poisson equation, is required for pressure inference, which
is used routinely in PIV (Wang et al. 2016; Zhang, Bhattacharya & Vlachos 2020). In
addition, reconstructing the three-dimensional (3-D) velocity field from tomographic BOS
(Tomo-BOS) is still an open area in experimental fluid mechanics.

In this paper, we develop a new method for estimating the continuous velocity and
pressure fields simultaneously from Tomo-BOS data. Here, the Tomo-BOS data that we
are interested are the 3-D temperature fields at different time instants. Inspired by the
development of deep learning methods (LeCun, Bengio & Hinton 2015), we exploit the
expressivity of deep neural networks to address this problem. Recently, deep learning
techniques have become increasingly popular in both computational and experimental
fluid dynamics (Duraisamy, Iaccarino & Xiao 2019; Brunton, Noack & Koumoutsakos
2020). For example, Raissi, Perdikaris & Karniadakis (2019) proposed a framework
of physics-informed neural networks (PINNs) to solve forward and inverse problems
of nonlinear partial differential equations (PDEs); Han, Jentzen & Weinan (2018) and
Sirignano & Spiliopoulos (2018) also proposed to use deep learning methods to handle
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Figure 1. Illustration of a sequence of temperature-induced Schlieren images from one camera observing the
flow developing over an espresso cup. A video of the Schlieren images is provided in the supplementary
material.

high-dimensional PDEs. These recent advances of scientific machine learning have also
inspired innovation in fluid mechanics. The PINN framework (Raissi et al. 2019) has also
been applied to perform complex flow simulations (Sun et al. 2020; Jin et al. 2021). On
the other hand, data-driven algorithms have also been investigated for dealing with real
experimental data (Rabault, Kolaas & Jensen 2017; Cai et al. 2019; Jin et al. 2020). For
instance, a convolutional neural network (CNN) was applied to infer a dense velocity
field from PIV images by Cai et al. (2019). Moreover, Raissi, Yazdani & Karniadakis
(2020) proposed the ‘hidden fluid mechanics’ (HFM) method based on PINNs to integrate
the Navier–Stokes equations with visualization data, which enables quantification of
the velocity and pressure from 3-D concentration fields. HFM, which so far has been
applied only to synthetic data, is similar to data assimilation; however, the solutions of
the continuous flow fields are approximated by a neural network rather than solved by
computational fluid dynamics methods.

Our work is inspired by Raissi et al. (2020) as we focus on the velocity and pressure
inference of buoyancy-driven flows when the temperature is determined by Tomo-BOS
imaging. We present a Tomo-BOS experiment to observe the flow that takes place over
an espresso cup. A sequence of five Schlieren images from one of the cameras in the
experiment is illustrated in figure 1. We propose to use a PINN, which is capable of
seamlessly integrating the governing equations of the natural convection problem and the
reconstructed 3-D temperature data. To our knowledge, this is the first time that the HFM
paradigm has been applied to real experimental imaging data.

The rest of this paper is organized as follows. We introduce the methodology combining
the neural network and the physical model in § 2. The results of applying the PINN
algorithm to Tomo-BOS imaging are presented in § 3, where we quantify the 3-D velocity
and pressure of the flow over an espresso cup based on the imaged temperature field. We
also conduct a companion PIV experiment to obtain the unstable velocity field at the centre
plane for validation purposes. Finally, we present our conclusions in § 4. Note that in the
supplementary material available at https://doi.org/10.1017/jfm.2021.135, we also evaluate
the proposed method based on synthetic data (i.e. 2-D simulated flow) and investigate
the performance of the method with respect to different parameter settings, including the
hyper-parameters of the neural network, the data resolution and the signal-to-noise ratio.

2. Physics-informed neural networks (PINNs)

Physics-informed neural networks (PINNs), which are also called ‘hidden fluid mechanics’
(HFM), can infer latent quantities such as the velocity and pressure fields from auxiliary
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data, e.g. from smoke visualizations. In this work, we extend PINNs to deal with visualized
temperature data of buoyancy-driven flow from Tomo-BOS imaging experiments.
We employ the Boussinesq approximation of the incompressible Navier–Stokes (NS)
equations and the corresponding heat transfer equation into PINNs.

Let T(x, t), u(x, t) and p(x, t) denote the temperature, velocity vector and pressure,
respectively, where x ∈ R

2 or R
3 represents the spatial coordinate and t is the temporal

coordinate. The main idea of PINNs is to approximate the spatio-temporal solutions by
using a fully-connected neural network (FNN). This can be represented as

(T, u, p) = FNN(x, t, Θ), (2.1)

where (x, t) and (T, u, p) denote the inputs and outputs of the neural network, respectively,
and Θ denotes the trainable parameters. For the fully-connected network, Θ includes the
weights and biases of multiple hidden layers. For the k-th hidden layer, the relationship
between the output vector Yk and the input vector Xk can be simply expressed as

Yk = σ(W kXk + bk), (2.2)

where W k and bk are the weights and biases, and σ(·) denotes the activation function,
which is used to represent the nonlinearity of the solutions. We use the hyperbolic tangent
function, namely σ(·) = tanh(·), throughout the paper unless otherwise stated. In this
context, solving the nonlinear system of the governing equations is equivalent to learning
the weights and biases of the network. However, this is an extremely ill-posed problem as
we assume that only the temperature data T is given without any boundary conditions on
the velocity field. In order to infer the velocity and pressure fields, an additional network
with the underlying physics is encoded into PINNs. Specifically, we aim to minimize the
residuals of all the governing equations in the additional networks, which can be thought
of as enforcing strong constraints for the feed-forward neural network outputs. For x ∈ R

3,
the residuals are defined as follows:

e1 = Tt + uTx + vTy + wTz − 1/Pe(Txx + Tyy + Tzz), (2.3a)

e2 = ut + uux + vuy + wuz + px − 1/Re(uxx + uyy + uzz) + RiTex, (2.3b)

e3 = vt + uvx + vvy + wvz + py − 1/Re(vxx + vyy + vzz) + RiTey, (2.3c)

e4 = wt + uwx + vwy + wwz + pz − 1/Re(wxx + wyy + wzz) + RiTez, (2.3d)

e5 = ux + vy + wz, (2.3e)

where the subscripts represent the derivatives of the corresponding quantities, and
(ex, ey, ez) are the components of the gravity unit eg in (x, y, z) directions. Here,
the residuals e1 − e5 correspond to the dimensionless heat transfer equation and the
Boussinesq approximation of incompressible NS equations. For the buoyancy-driven flow,
it is assumed that the density variation consists of a fixed part and another part that
has a linear dependence on temperature, where the latter leads to the gravity force term
in (2.3b)–(2.3d). We also note that the pressure featured in the momentum equations
must be considered as the pressure correction representing the deviation from hydrostatic
equilibrium, which is not constant and not negligible when solving the equations. The
non-dimensional parameters, including Reynolds number, Péclet number and Richardson
number, are defined as follows:

Re = UL
ν

, Pe = UL
α

, Ri = gβ(Thot − T∞)L
U2 , (2.4a–c)

where these physical properties will be specified in the experiment.
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Figure 2. Schematic diagram of the physics-informed neural network for 3-D velocity and pressure estimation.
The neural network is composed of a fully-connected network and a residual network. The fully-connected
network is used to represent the solutions of the velocity, pressure and temperature fields, while the residual
network is considered as the physical constraints (i.e. the incompressible NS equations and the heat equation)
for the solutions. The parameters of the network are learned by minimizing a loss function including a data
term and the residuals of the equations.

A schematic illustration of the proposed PINN, composed of a FNN with multiple
hidden layers and a residual network with the physical constraints, is shown in figure 2. In
order to compute the residuals e1 − e5, the derivatives of the state variables with respect
to space and time are required, which is achieved by using automatic differentiation
(AD) in the deep learning code (Baydin et al. 2017). The AD relies on the chain rule
of derivative computation and it is well-implemented in most deep learning frameworks
such as TensorFlow and PyTorch; this allows us to avoid numerical discretization while
computing derivatives of all orders in space-time. Once the FNN and the residuals have
been formulated, the parameters Θ of the PINNs are trained by minimizing the following
loss function:

arg min
Θ

L = λLdata + Lres, (2.5)

where λ is a weighting coefficient and

Ldata =
NT∑

n=1

|T(xn, tn) − Tn
data|2, Lres =

∑

i

Ne∑

n=1

|ei(xn, tn)|2. (2.6a,b)

Here, Ldata represents the mismatch between the temperature data and the temperature
predicted by the neural network, Lres represents the residuals, and NT and Ne are the
numbers of training points corresponding to the two terms. Note that the value of NT
depends on the grid points (e.g. pixel or voxel) of the observed data, while the value
of Ne can be very large since the spatio-temporal points for residual network can be
randomly selected in the domain and the mini-batch technique can be employed. The
weighting coefficient λ is applied to adjust the contributions of two terms in the loss
function, and we choose λ = 100 for the Tomo-BOS experiment in this paper. We note that
a large weight of the data term Ldata can accelerate the convergence of training, but it may
weaken the constraint of the governing equations and result in overfitting. The sensitivity
of the hyperparameters in PINNs is quantitatively analysed on a synthetic dataset and is
presented in supplementary material. By default, the parameters of the neural networks
Θ are initialized using the Xavier scheme and then optimized until convergence via an
adaptive optimization algorithm Adam (Kingma & Ba 2014). When the minimizer of the
loss function (2.5) is obtained after training, the velocity and pressure fields can be inferred
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simultaneously with the trained parameters by feeding the spatio-temporal coordinates
to the neural network. The proposed method is summarized in the algorithm 1, where
we would like to emphasize that the only information used in the neural network is the
temperature data along with the formulation of the governing equations.

REMARK 2.1. The PINN algorithm, which can be considered as a novel data assimilation
method, estimates the velocity and pressure fields by regressing the visualization data in a
spatio-temporal domain. It is known that the efficiency of conventional data assimilation
strategies is sensitive to the choice of initial guess of the initial and boundary conditions
of velocity and pressure, which are the control variables of these methods to be optimized.
However, we should note that the trainable variables of the proposed PINN algorithm are
the neural network parameters (which need to be initialized as well), which are totally
different from those of conventional methods. Therefore, it is not necessary to provide the
initial and boundary conditions of either velocity or pressure.

Algorithm 1: Algorithm for the PINNs for velocity and pressure inference from
temperature data.

Data: Temperature data {xn, tn, Tn}NT

n=1
Result: Velocity, pressure and temperature {u(x, t), p(x, t), T(x, t)}, where (x, t)

can be any points in the computational domain
Step 1: Specify the training sets

Training data: {xn, tn, Tn}NT

n=1
Residual training points: {xn, tn}Ne

n=1.
Step 2: Construct the fully-connected network FNN with random initialization of

network parameters �.
Step 3: Formulate the residuals by substituting the outputs of FNN into the

governing equations using AD and other arithmetic operations.
Step 4: Define the loss function and find the best parameters �∗ by using the

Adam optimization method.
Step 5: Estimate the velocity, pressure and temperature fields
{u(x, t), p(x, t), T(x, t)} by feeding the coordinates (x, t) to the trained network.

3. Inference of Tomo-BOS experiment

3.1. Experimental set-up of Tomo-BOS
The experimental set-up that was used for acquiring BOS images is illustrated in
figure 3(a). Six cameras (LaVision M-lite 5M, 2056 × 2464 pixel) equipped with 35-mm
lenses (f/16) were aligned around an espresso cup equally spaced covering a total angle of
150◦ at a distance of 700 mm from the centre of the cup. The projected pixel resolution
was 60 µm pixel−1. Six aluminum sandwich panels (300 mm × 420 mm) with imprinted
random dot-patterns were placed in the background at a distance of 500 mm from the
centre of the cup. Four pulsed LEDs (LaVision High Energy LED Spotlight) were used in
combination with an exposure time of 500 µs at a recording rate of 50 Hz to acquire 400
images.
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Figure 3. Tomo-BOS experiment: (a) Experimental setup for Tomographic BOS measurements around an
espresso cup. The espresso cup is shown as an image from one of the cameras with the Schlieren image after
processing superimposed. (b) Zoomed section of a raw image showing the dots (grey) and subsets (red), where
each dot occupies roughly 5 pixels and each subset contains about 25–30 dots.

The temperature in the laboratory was 20 ◦C. When the espresso cup was filled with
boiling water, a thermocouple was used to measure the temperature of the water (2 cm into
the water at the centre of the cup) and the gas temperature (5 mm above the liquid surface
at the centre of espresso cup), which were approximately 80 ◦C and 50 ◦C, respectively.
The estimated uncertainty of these quantities is approximately ±3 ◦C. The thermocouple
measurements happened about 20 s before the Tomo-BOS data acquisition, while the
whole experiment (including the thermocouple measurements and BOS image recording)
was performed within one minute.

The image data were acquired and processed using LaVision’s Tomographic BOS
software (DaVis 10.1.1). As shown in the zoomed image in figure 3(b), each of the
subsets contains about 25–30 dots in a window with 31 × 31 pixel2, where each
dot occupies roughly 5 pixels. In order to determine the 2-D displacement fields, a
subset-based zero-mean normalized sum of squared difference (ZNSSD) algorithm with
first order shape functions (Pan 2018) was employed, resulting in a spatial resolution of
600 µm pixel−1. Outliers were not observed in the displacement fields and therefore we
did not apply any post-processing filters.

An example of the resulting Schlieren images is shown in figure 1, which demonstrates
the temperature-induced Schlieren visualized as a colour map of the 2-D displacement
field in pixel from one camera. In order to reconstruct the 3-D field, a calibration procedure
was performed, where a spatial calibration plate was additionally recorded at different
locations and at different rotation angles. Eventually, the 2-D displacement fields from
all six cameras were subjected to the tomographic reconstruction algorithm proposed by
Nicolas et al. (2016), which yielded a unique and well-behaved solution with the aids of the
Tikhonov smoothness regularization and the 3-D mask. The resolved volume of the 3-D
data is approximately [−64, 62] × [−90, 85] × [−75, 52] mm3 (width × height × depth).
A 3-D refractive index field was obtained, having 0.9 Mvoxel on a Cartesian grid with a
grid spacing of 1.5 mm. The temperature at each voxel was then calculated by neglecting
pressure variation and using T = T0ρ0G/(n − 1), where G is the Gladstone–Dale constant
of air (G = 0.2268 cm3 g−1), T0 and ρ0 are ambient temperature and density (T0 = 293.15
K and ρ0 = 1.204 kg m−3), respectively. We note that multiple tests were performed with
the Tomo-BOS experiment. While the transient components of the flow were different
between different tests (as the flow is unstable), the core features (e.g. temperature values)
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Figure 4. Tomo-BOS/PINN results: 2-D temperature profiles of Tomo-BOS data on the surface of the
espresso cup (y = −31 mm) at various time steps. (Unit: K).

remained the same. In the following, the PINN method proposed in § 2 is applied to
infer the temporal evolution of 3-D velocity and pressure from the temperature data of
one of the Tomo-BOS experiments. For clarity, these experimental results are denoted by
Tomo-BOS/PINN hereafter.

3.2. Inference results

3.2.1. Results of Tomo-BOS/PINN
We first assume that the governing equations of the problem include the Boussinesq
approximation of NS equations and the heat equation, as shown in (2.3e), where
the physical properties appearing in (2.4a–c) are the thermal diffusivity α = 2.074 ×
10−5 m2 s−1, the coefficient of thermal expansion β = 3.4 × 10−3 1 K−1, the kinematic
viscosity of the flow ν = 1.516 × 10−5 m2 s−1 and the gravity acceleration g = 9.8 m s−2.
In this experiment, we define the characteristic length (which approximates the diameter of
the espresso cup) and the characteristic velocity (which is an arbitrary velocity magnitude)
as L = 0.065 m, U = 0.1 m s−1. The environmental temperature is a constant T∞ =
293.15 K, while determining the reference hot temperature Thot is not straightforward due
to the unstable and non-uniform distribution of the surface temperature above the espresso
cup, as illustrated in figure 4. Herein, we use the time-averaged value of the maximum
surface temperatures from all snapshots, namely

Thot = 1/400
400∑

k=1

max(Tk), (3.1)

which is Thot = 338.2 K. Then, the non-dimensional parameters, namely the Reynolds
number, Péclet number and Richardson number, can be computed: Re ≈ 430, Pe ≈ 313,
Ri ≈ 9.9. In the PINN algorithm, we use a neural network with 10 hidden layers and 150
neurons per layer. The weighting coefficient in the loss function is 100. We train the neural
network with 120 epochs until the loss reaches a plateau, which takes about 10 h on a
single GPU (for processing 400 snapshots in 3-D).

In a real experiment, we cannot directly compute the errors of the reconstructed
velocity and pressure fields since the ground-truth fields are not available. Therefore,
we first examine the regression error of the temperature data, which is an indicator of
the convergence of the neural network. The iso-surfaces of the 3-D temperature fields at
t = 2.0 s are illustrated in figure 5. The Tomo-BOS data is shown in figure 5(a), while
the difference between the data and the temperature regressed by the PINN is shown in
figure 5(b). From the plots we can observe that the temperature field regressed by the PINN
is almost identical with the Tomo-BOS data, as the absolute error of temperature over the
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Figure 5. Tomo-BOS/PINN results: (a) iso-surfaces of temperature field (corresponding to values of 300,
310, 315 and 325 K) at t = 2.0 s extracted from Tomo-BOS data, (b) iso-surfaces of the difference between
Tomo-BOS data and the temperature regressed by the PINN, namely |T̂PINN − TBOS|. The L2 error of
temperature for the PINN is less than 1 %.

whole spatial domain is less than 1 ◦C; the corresponding relative L2-norm error (defined
by εT =‖ T̂PINN − TBOS ‖2 / ‖ TBOS ‖2) is less than 1 %.

The iso-surfaces of the inferred 3-D velocity field at t = 2.0 s are presented in
figure 6(a), corresponding to velocity magnitudes of 0.1, 0.15, 0.25 and 0.35 m s−1. It
can be seen that the velocity contours present an inverted cone shape, and the flow speed
above the espresso cup increases with height. Moreover, the contours of the 3-D pressure
field at t = 2.0 s are illustrated in figure 6(b). As mentioned in § 2, the pressure inferred by
the PINN is the one featured in the momentum equations, which should be considered as
the deviation from hydrostatic equilibrium. As shown, the lowest pressure can be observed
on the surface of the espresso cup, where the temperature is high and the air flow speed is
nearly zero. Then, the pressure increases suddenly above the surface and decreases slightly
toward the environment. Furthermore, the 2-D velocity vectors (at z = −21 mm and
t = 2.0 s) and the corresponding 1-D velocity profiles along various lines are presented in
figure 6(c,d), from which we can see that the air flow gathers at the surface centre of the
espresso cup and then flows upward with increasing speed. A similar phenomenon can be
observed in our 2-D simulation data in the supplementary material. Note that the velocity
field is varying both spatially and temporally. The maximum velocity (v-component) is
approximately 0.4 m s−1, while the mean value over the whole space-time domain is
about 0.063 m s−1. To further examine the velocity and pressure inferred by the PINN,
we also evaluate the residuals of the governing equations, given in (2.3e). The residuals
of the momentum equations are illustrated in figure 7. The values above the surface of
the espresso cup are relatively higher than those away from the surface. However, the
residuals are overall very small, and the average over the spatial domain is in the order of
10−4 m s−2, indicating that the velocity and pressure fields from Tomo-BOS/PINN satisfy
the governing equations.

3.2.2. An independent PIV experiment for validation
After obtaining the inferred velocity field, we also compare it with the diaplacement
determined from Schlieren-tracking. As shown in figure 1, we track distinct
Schlieren-features in sequential images, where the bottom of the structure moves from
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Figure 7. Tomo-BOS/PINN results: residuals of the momentum equations in (a) x-direction (2.3b),
(b) y-direction (2.3c), (c) z-direction (2.3d). Snapshot at t = 2.0 s is illustrated. The average residuals over
the spatial domain are in the order of 10−4 m s−2.

the second to the fifth frame by approximately 25 mm in the y-direction, corresponding to
a velocity magnitude of 0.08 m s−1. This is much smaller than the inferred velocity from
the Tomo-BOS/PINN analysis. Therefore, we set up a PIV experiment to further examine
the correctness of the PINN inference, especially the correctness of the maximal velocity.
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Figure 8. Tomo-BOS/PINN and planar PIV results: 2-D velocity vectors at various time instants. The 2-D
velocities at centre plane Z = −21 mm are demonstrated for Tomo-BOS/PINN. The colormap represents the
velocity magnitude of the vectors (unit: m s−1). The results of Tomo-BOS/PINN shown here are at the instants
t = 2.0, t = 4.0, t = 6.0 s, while those of PIV are t = 1.0, t = 7.0, t = 16.0 s. Movies that demonstrate the
time-dependent velocity fields are given in the supplementary material.

In PIV experiment, the espresso cup was placed within a glass box (25 cm × 25 cm ×
40 cm) with an open top in order to provide a calm bath of air seeded with DEHS particles
around the espresso cup. Since the PIV experiment was performed independently to the
Tomo-BOS experiment after a few months, the room temperature was 25 ◦C instead of
20 ◦C. A dual-head Nd:YAG laser (Litron NANO L 50-50, 532 nm) was used to generate a
laser sheet of 10 cm in height with an average thickness of approximately 1 mm. A camera
(LaVision Imager SX 6M, 2752 × 2200 pixels) equipped with a 50-mm lens acquired
400 double-frame images at 13 Hz with a dt = 1.5 ms. The projected pixel resolution
was 53 µm pixel−1, resulting in a field of view of 13 cm × 10 cm. Data was processed
using an interrogation window size of 48 × 48 pixels with 75 % overlap, which resulted in
234 × 189 velocity vectors with a spacing of 640 µm.

The velocity vectors in a 2-D plane of the PIV and Tomo-BOS/PINN experiments are
illustrated in figure 8, where three typical time instants of each experiment are shown.
Overall, we can observe similar flow patterns from the two experiments, and the velocity
magnitudes are consistent with each other. The main difference between the PIV and the
Tomo-BOS results is that there exist more variations right over the espresso cup in the PIV
case. In particular, there is a recirculation zone at t0 in the PIV plots, which is not clear
in the Tomo-BOS/PINN results. Moreover, there are some external disturbances from the
right side in the PIV experiment, which can be seen at t2 in figure 8. As mentioned, the PIV
and BOS experiments were performed independently, and therefore a lining up between
the PIV and Tomo-BOS/PINN results is not necessary. The comparison between the two
experiments is meant to qualitatively validate the velocity by some reference frames;
thus the movements of the entire flow structure over the espresso cup are not relevant.
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Figure 9. Tomo-BOS/PINN and planar PIV results: velocity profiles along a horizontal line at various time
instances. The profiles of Tomo-BOS/PINN results (b) are extracted from the centre plane Z = −21 mm.

The velocity profiles along a horizontal line at centre plane at various time instances
are also illustrated in figure 9, in which we can observe the similarity in magnitudes
and maximum velocities for all three profiles, and the similarity in width of the profiles
between the two experiments. The results also show that the instability of the flow does not
affect the velocity magnitude in any of the experiments. In summary, the PIV experiment
validates the Tomo-BOS/PINN in terms of the velocity range. Moreover, based on the
results of Tomo-BOS/PINN and PIV, we can also conclude that tracking of the randomly
visible Schlieren structures in 2-D images (shown in figure 1) cannot reliably determine
flow velocities at specific locations due to its line-of-sight nature and consequently the
unknown location of the Schlieren structure.

3.3. Ability to deal with sparse data
In § 3.2, the PINN is applied to analyse the whole Tomo-BOS dataset, which contains 400
snapshots with a recording rate of 50 Hz. Here, we investigate the capability of PINNs in
estimating high-resolution fields from sparse temperature data.

We first perform temporal downsampling by extracting the temperature from the
Tomo-BOS data with different time intervals, from which we infer the velocity and
pressures fields. As shown in figure 10, the velocity fields and profiles from the
different datasets are consistent, indicating that the proposed algorithm is not sensitive
to data sparsity. We note 
t = 0.2 s means that a maximum displacement between two
consecutive snapshots is about 0.08 m, which is larger than the characteristic length
L = 0.065 m. Moreover, as we leave out some temperature frames during training, we
can use them for validation. Specifically, if the training data is sampled with 
t = 0.1 s,
we can compute the temperature error for those intermediate frames, as demonstrated in
figure 11, which shows the 2-D temperature, pressure and velocity fields at t = 2.96 s.
Although this snapshot is not used in training (unseen data for PINN), the relative L2-norm
error of 3-D temperature for this testing frame is only 0.362 %.

Furthermore, we can also downsample the temperature data in space, as illustrated in
figure 12. In particular, the temperature data is downsampled along each direction with
a grid resolution of 3.0 mm, while that of the original Tomo-BOS data is 1.5 mm. By
doing so, the training data at each frame only contains 1/8 of the Tomo-BOS data. We find
from figure 12 that the PINN is able to infer the full temperature and velocity fields with
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Figure 11. Tomo-BOS/PINN result with temporal downsampling data: BOS temperature, absolute error of
temperature, inferred pressure at z = −21 mm and t = 2.96 s. The training data is sampled with time interval
t = 0.1 s. Although this snapshot is not used in training (unseen data for PINN), the relative L2-norm error of
temperature for this snapshot is 0.362 %.

good consistency. The relative L2-norm errors of temperature for the frame is 0.430 %.
The assessments in this section indicate that the PINN algorithm allows us to reconstruct
continuous and high-resolution velocity and pressure fields from relatively sparse data
(temporally and spatially) due to the introduction of the governing equations. In addition,
one can take advantage of downsampling, which can help to improve the efficiency of
the training process without reducing the accuracy significantly. A systematic study to
quantify the accuracy of PINNs against data resolution is performed on the 2-D simulated
case, which can be found in the supplementary material.

3.4. Discussion of the physical properties
The non-dimensional parameters defined in (2.4a–c) are Re = 430, Pe = 313, Ri = 9.9,
which are derived from the physical properties given in § 3.2.1. As the underlying physical
laws are encoded in the neural network, the estimation result is generally influenced
by these non-dimensional parameters. In this section, we investigate the sensitivity of
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t = 2.96 s. The training data is downsampled along each direction, which results in a grid resolution of 3.0 mm,
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of the Tomo-BOS data, the relative L2-norm errors of temperature for this snapshot is 0.430 %.
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Figure 13. Sensitivity of physical properties used in PINN: 2-D pressure fields (p − p̄) inferred by using
various parameters at z = −21 mm and at t = 2.0 s.

Tomo-BOS/PINN to the values of Re and Ri (Pe = 0.73Re). We note that these parameters,
which are sensitive to the physical properties (e.g. viscosity, conductivity) as well as the
reference temperatures, can be affected by one or more factors. Instead of tuning these
factors one by one, we select the non-dimensional parameters from an appropriate range to
cover different conditions. Specifically, we consider the Reynolds number Re = {100, 430}
and the Richardson number Ri = {1.0, 2.5, 7.5, 9.9}. The pressure fields of different
combinations are shown in figure 13. Increasing Ri, the pressure over the espresso cup
also increases, with the highest pressure generally located over the cup but not right
on the surface. In addition, larger Ri leads to larger velocity magnitude, which can be
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Figure 14. Sensitivity of physical properties used in PINN: (a) velocity profiles (v-component) along a
horizontal line with various Richardson numbers, (b) pressure profiles (p − pc) along the centre line with
various parameters. The profiles are extracted from the plane z = −21 mm and time instance t = 2.0 s. Note
that the training data for the different conditions are the same.

observed in figure 14(a). Somewhat different is the case with Re = 100 and Ri = 1, where
we find an inverse pattern of the pressure field, as shown in figure 14(b), which shows
the pressure profiles along the centre line for various parameters. Note that the velocity
and pressure fields are inferred by integrateing the temperature data and the governing
equations, where the temperature data used for different non-dimensional configurations
are the same. We conclude that the inference results of PINN are relatively sensitive to the
parameters used in the encoded governing equations, especially to the Richardson number
for the investigated buoyancy-driven flow. For future development of the proposed method,
a Bayesian framework of PINN (Yang, Meng & Karniadakis 2021) can be considered to
address the issue caused by model uncertainty.

4. Concluding remarks

In this paper, we propose a machine learning algorithm based on PINNs for estimating
velocity and pressure fields from temperature data of Tomo-BOS experiments. The
advantages of the PINN algorithm are summarized as follows. (a) The PINNs are capable
of integrating the governing equations and the temperature data, which is similar to the
variational data assimilation methods, while it is not necessary to solve the governing
equations by using any CFD solvers. (b) The PINNs can infer the velocity and pressure
simultaneously by regressing the data, without any information on initial or boundary
conditions. (c) The PINNs can provide continuous solutions of the velocity and pressure,
even if the experimental data are sparse and limited.

We first evaluate the proposed method by using a 2-D synthetic simulation of
buoyancy-driven flow, which can be found in the supplementary material, where the
temperature is generated by the CFD solver directly. The performance of PINNs against
various parameter settings (including the size of neural network, the weighting coefficient
in the loss function, the spatial and temporal resolutions and the data noise level) is
investigated systematically. This parametric study, which helps us understand how to
use the algorithm effectively, reveals that the method can provide accurate and reliable
performance on extracting flow fields from temperature against sparse data. Moreover, the
proposed PINN algorithm can also handle noisy data to some extent. It is also possible to
extend the proposed method to a Bayesian-PINN framework (Yang et al. 2021), which can
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simultaneously address high noise levels and quantify the uncertainty of the inference
result.

We then present a Tomo-BOS experiment to observe the flow over an espresso cup.
The 3-D velocity and pressure fields are successfully inferred from the reconstructed
3-D temperature data, and are qualitatively validated by a comparison with the velocity
obtained from PIV measurements. Compared to PIV, the BOS technology is capable of
straightforwardly providing enormous quantities of data on the investigated fluid flows,
and has become increasingly popular due to its simplicity. Here, we demonstrate that either
planar or tomographic BOS data is simply available to the PINN algorithm for velocity
and pressure quantification, which is novel and can open a door to BOS velocimetry for
complex fluid flows. Furthermore, the flexibility of the proposed method – PINNs – allows
us to extend the algorithm to different types of flows (in addition to the natural convection
investigated in this paper) by simply encoding the appropriate governing equations of the
fluid flows. Taken together, the results in this paper indicate that the proposed method is
accurate and flexible in dealing with data of various fluid mechanics problems, and can
thus become a promising direction in experimental fluid mechanics.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2021.135.
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