Unsolvability of the knot problem for surface complexes

John C. Stillwell

It is shown that the problem of deciding whether a polygonal curve c in a finite surface complex K is knotted in K is complete recursively enumerable, and hence unsolvable.

We refer to [6] for the definition of a finite surface complex, introductory remarks, and general references. In [6] it was shown that the problem of deciding whether an edge path c in a 2-dimensional simplicial complex K bounds a disc in K is NP-complete. Generalizing to an arbitrary polygonal path c in K gives an equivalent problem, since K may be simplicially subdivided to make c an edge path in polynomial time. Bounding a disc is equivalent to the existence of an isotopy which contracts c to a point without pulling it over any point twice.

In the present paper we discuss the equivalence of simple curves under more general isotopies in K, namely simplicial isotopies in an arbitrary simplicial decomposition of K. Curves c_{1}, c_{2} are called simplicially isotopic with respect to a simplicial decomposition Σ of K, if there is a finite sequence of simple edge paths of Σ,

$$
c_{1}=c^{(1)}, c^{(2)}, \ldots, c^{(k)}=c_{2}
$$

such that $c^{(m+1)}$ is the result of pulling $c^{(m)}$ from one side to the other of a triangle in Σ. A curve c is called simplicially unknotted with respect to Σ if it is simplicially isotopic to a curve which bounds a disc, and unknotted in K if it is simplicially unknotted with respect

Received 13 December 1978.
to some simplicial decomposition Σ of K. By the Hauptvermutung for surface complexes, [7], c is unknotted if it is simplicially unknotted in a sufficiently fine simplicial decomposition, for example the nth barycentric subdivision for sufficiently large n.

The reason we do not use general isotopies in K to define knotting was pointed out by Alexander [1] in the case of classical knots in R^{3}. Alexander's example may be adapted to surface complexes using a "book with three leaves" K (see page 133).

The curve c is a trefoil knot when K is embedded in R^{3}; nevertheless the isotopy $(1) \rightarrow(2) \rightarrow(3)$ reduces it to a curve bounding a disc.

It is clear that we can decide whether a curve is unknotted with respect to a given Σ by enumerating the finitely many possible simplicial isotopies. (In fact this can be done by a non-deterministic linear bounded Turing machine, or using Savitch's Theorem [4], by a deterministic Turing machine on quadratically bounded tape.) By applying this decision process in successive barycentric subdivisions of K we see that the set of pairs (K, c) for which c is an unknotted polygonal curve in K is recursively enumerable.

We now show that the set is complete recursively enumerable by reducing the word problem for finitely presented groups to it.

THEOREM 1. Given a finite presentation G of a group, and a word w in G, we con effectively construct a finite surface complex $K(G)$ and a simple polygonal curve $c(w)$ such that
$1 .:$

$$
c(\omega) \text { is unknotted in } K(G) \Longleftrightarrow w=1 \text { in } G .
$$

Proof. $K(G)$ is a slight modification of the complex used by Dehn [2] to realize an arbitrary finitely presented group

$$
G=\left\langle a_{1}, \ldots, a_{n} ; r_{1}, \ldots, r_{m}\right\rangle
$$

Dehn takes a bouquet B of circles a_{1}, \ldots, a_{n} to realize the generators, and realizes each relation $r_{j}=1$ by attaching a disc D_{j} along its boundary to the path r_{j} (spelled as a product of $a_{i} ' s$) in B.

(2)

(3)

We realize each a_{i} by an annulus A_{i} which has a_{i} as its centre-- line, and let the different A_{i} meet along a common transverse segment [0,1$]$ (and nowhere else). Given a word

$$
w=a_{i_{1}}^{\varepsilon_{1}} a_{i_{2}}^{\varepsilon_{2}} \ldots a_{i_{k}}^{\varepsilon_{k}}, \quad \varepsilon_{2}= \pm 1
$$

we construct a simple arc $\alpha(w)$ in $\int_{i} A_{i}$ by taking points
$0<P_{1}<P_{2}<\ldots<P_{k+1}<1$ on $[0,1]$ and connecting each $P_{\mathcal{l}}$ to $P_{\mathcal{Z}+1}$ by the "geodesic" (in a natural sense) in $A_{i_{2}}$ with orientation implied by $\varepsilon_{\mathcal{Z}}$. For example if

$$
w=a_{1} a_{2} a_{2}^{-1} a_{1} a_{2}
$$

then $a(w)$ will resemble the curve in the figure on page 135. (It is not unique because of the arbitrariness in the choice of P_{1}, \ldots, P_{k+1}; however, different $a(w)$'s will be isotopic - a fact which is exploited below.)

It is clear that any word w is representable by a simple arc in this way, and hence if we attach $[0,1]$ to the top side of a square S which is otherwise disjoint from $\bigcup_{i} A_{i}$ we can close $a(w)$ to a simple curve $c(w)$ by running round the other three sides of the square. Furthermore, the fundamental group of $A=\bigcup_{i} A_{i} \cup S$ is the free group generated by a_{1}, \ldots, a_{n}, since there is a deformation retraction of A onto the bouquet of circles $\underset{i}{ } a_{i}$, and $c(w)$ represents the element w.

We now attach a disc D_{j} which will allow us to insert or remove a subarc $a\left(r_{j}\right)$ of a $c(\omega)$ by an isotopy. Namely, take any points $Q, \cdot R$ with $0<Q<R<1$ and let $\bar{a}\left(r_{j}\right)$ be any fixed $a\left(r_{j}\right)$ which runs from Q to R. Then $b\left(r_{j}\right)=\bar{a}\left(r_{j}\right) \cup R Q$ is taken as the boundary of D_{j}. Notice that the simple arc $\bar{a}\left(r_{j}\right)$ may be deformed isotopically into the

line segment $Q R$ by pulling it across D_{j}. We let $K(G)=A \cup \cup D_{j}$.
Then to remove a subare $a\left(r_{j}\right)$ of $c(w)$ we first deform $c(w)$ isotopically so that $a\left(r_{j}\right)$ is carried onto $\bar{a}\left(r_{j}\right)$, then pull $\bar{a}\left(r_{j}\right)$ across D_{j} to the position $Q R$. A further isotopy contracts $Q R$ to a point and gives a curve $c\left(w^{\prime}\right)$ where w^{\prime} is the result of removing r_{j} from w. The reverse process simulates the insertion of r_{j} in w^{\prime} to produce w. Insertion or removal of trivial relators $a_{i} a_{i}^{-1}$ or $a_{i}^{-1} a_{i}$ can obviously be accomplished by isotopies in A itself.

Since any word w which equals 1 in G can be converted to the
empty word by a finite sequence of insertions or removals of relators, the corresponding curve $c(w)$ will be convertible to the boundary of the square S by a finite sequence of isotopies of the above type (which can be realized in a sufficiently fine simplicial decomposition of $K(G)$) and hence unknotted. On the other hand, it is clear from the Seifert-Van Kampen Theorem [5] that the fundamental group of $K(G)$ is precisely G; hence when $w \neq 1$ in G the curve $c(w)$ will not even be homotopic, let alone isotopic, to the boundary of a disc.

COROLLARY. The set of pairs (K, c) for which c is a knotted polygonal curve in a finite 2 -dimensional simplicial complex K is not recursively enumerable.

Proof. If it were, the set $\{(K, c) \mid c$ is unknotted in $K\}$ would be recursive, and the construction of Theorem 1 would yield an algorithm for the word problem for groups.

Another obvious corollary to this theorem is that the problem of deciding whether a polygonal curve in a surface complex is isotopic (in the general sense) to a point is unsolvable. Furthermore, we obtain unsolvability of both problems in a fixed $K(G)$ by choosing a G with unsolvable word problem. This shows that surface complexes constitute an exception to the remark of Haken [3] that isotopy problems are easier to solve than homotopy problems.

References

[1] J.W. Alexander, "Some problems in topology", Verhandlungen des Internationalen Mathematiker-Kongresses, Zürich, 1932. Band I. Bericht und Allgemeine Vorträge, 249-257 (Orell Füssli, Zürich, Leipzig, ND[1933]; Kraus Reprint Limited, Nendeln, 1967).
[2] M. Dehn, "Über die Topologie des dreidimensionalen Raumes", Math. Ann. 69 (1910), 137-168.
[3] Wolfgang Haken, "Connections between topological and group theoretical decision problems", Word problems, decision problems and the Burnside problem in group theory, 427-441 (Studies in Logic and the Foundations of Mathematics, . North-Holland, Amsterdam, London, 1973).
[4] Walter J. Savitch, "Relationship between nondeterministic and deterministic tape complexities", J. Computer System Sci. 4 (1970), 177-192.
[5] H. Seifert und W. Threlfall, Lehrbuch der Topologie (B.G. Teubner, Leipzig, Berlin, 1934. Reprinted Chelsea, New York, 1947).
[6] John C. Stillwell, "Isotopy in surface complexes from the computational viewpoint", Bull. Austral. Math. Soc. 20 (1979), 1-6.
[7] E.F. Whittlesey, "Classification of finite 2-complexes", Proc. Amer. Math. Soc. 9 (1958), 841-845.

Department of Mathematics, Monash University,
Clayton,
victoria.

