HIPPARCOS EXTRAGALACTIC LINK

Preliminary Bonn, Potsdam and Kiev solutions

P. BROSCHE ${ }^{1}$, M. GEFFERT ${ }^{1}$, S. HIRTE ${ }^{2}$, N. KHARCHENKO ${ }^{3}$,
V. KISLYUK ${ }^{3}$, M. ODENKIRCHEN ${ }^{1}$, S. RYBKA ${ }^{3}$, E. SCHILBACH ${ }^{2}$, R.-D. SCHOLZ ${ }^{2}$, H.-J. TUCHOLKE ${ }^{1}$ AND A. YATSENKO ${ }^{3}$
${ }^{1}$ Sternwarte der Universität Bonn, Germany
${ }^{2}$ WIP Astronomie, Universität Potsdam, Germany
${ }^{3}$ Main Astronomical Observatory, Kiev, Ukraine

Hipparcos proper motions contain an unknown angular velocity ω relative to a non-rotating system. The basic equations for its derivation are:

$$
\begin{align*}
\Delta \mu_{\alpha} \cos \delta & =-\omega_{1} \cos \alpha \sin \delta \\
\Delta \mu_{\delta} & =+\omega_{1} \sin \alpha \sin \delta \tag{1}
\end{align*} \quad-\omega_{2} \cos \alpha, \omega_{3} \cos \delta
$$

where $\Delta \mu_{\alpha}$ and $\Delta \mu_{\delta}$ are absolute minus Hipparcos proper motions.

	Bonn	Potsdam	Kiev
photographic plates	astrograph	Schmidt	astrograph
m link fields	8	10	183
n link stars	33	104	1015
galaxies per field	1 to 5	300 to 2000	3 to 5
base line [years]	70 to 90	20 to 40	20 to 40
random p.m. error per star [mas/yr]	0.5 to 1.5	3 to 5	5 to 12
syst. abs. p.m. error per field [mas/yr]	1.0 to 1.5	~ 2	~ 4
$r m s$ of solution of (1) [mas/yr]	5	8	14
$\omega_{1} \pm \sigma\left(\omega_{1}\right)$ [mas/yr]	$+1.2 \pm 1.0$	$+0.8 \pm 1.0$	-1.5 ± 0.7
$\omega_{2} \pm \sigma\left(\omega_{2}\right)$ [mas/yr]	$+3.2 \pm 0.7$	-0.7 ± 1.0	-2.0 ± 0.5
$\omega_{3} \pm \sigma\left(\omega_{3}\right)$ [mas/yr]	$+0.0 \pm 1.1$	$+0.5 \pm 1.0$	$+1.2 \pm 0.5$

The Table describes three different absolute proper motion programmes and shows preliminary link results with H 30 data. The number of Bonn and Potsdam link fields will be increased (to 15 and 50 , respectively) so that the influence of possible systematic effects - not represented by the formal errors $\sigma\left(\omega_{i}\right)$ - can be further reduced. We expect to provide an accuracy of the final link of the Hipparcos proper motions of better than $1 \mathrm{mas} / \mathrm{yr}$, competitive with other link programmes (Lick/Yale, VLBI, HST).

