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Moore’s conjecture for connected sums
Stephen Theriault

Abstract. We show that under mild conditions, the connected sum M#N of simply connected, closed,
orientable n-dimensional Poincaré Duality complexes M and N is hyperbolic and has no homotopy
exponent at all but finitely many primes, verifying a weak version of Moore’s conjecture. This is derived
from an elementary framework involving CW-complexes satisfying certain conditions.

1 Introduction

Let X be a pointed, simply connected finite CW-complex. It is said to be elliptic if
the rank of π∗(X) ⊗Q is finite and is otherwise hyperbolic. The rational dichotomy
of Félix, Halperin, and Thomas [FHT, Chapter 33] says that, remarkably, if X is
hyperbolic, then the rank of⊕m

k=2(πk(X) ⊗Q) grows exponentially with m. In partic-
ular, there is no hyperbolic space whose rational homotopy groups have polynomial
growth. Classifying those spaces that are elliptic or hyperbolic is a major problem in
rational homotopy theory.

Turning to torsion homotopy groups, for a fixed prime p, the homotopy exponent
of X is the least power of p that annihilates the p-torsion in π∗(X). If this least power
is pr , write expp(X) = pr . If no such power exists, that is, if π∗(X) has p-torsion of
arbitrarily high order, then write expp(X) = ∞. Determining precise exponents, or at
least good exponent bounds, is a major problem in unstable homotopy theory.

Moore’s conjecture posits a deep relationship between the rational and torsion
homotopy groups.

Conjecture 1.1 (Moore) Let X be a simply connected finite dimensional CW-complex.
Then the following are equivalent:
(a) X is elliptic.
(b) expp(X) < ∞ for some prime p.
(c) expp(X) < ∞ for all primes p.

As prototypes, a sphere is rationally elliptic and has finite exponent at 2 by James
[J2] and at odd primes by Toda [To]. A wedge of two or more spheres is hyperbolic by
the Hilton–Milnor theorem and has no exponent at any prime p by [NS]. Moore’s
conjecture is known to hold for several families of spaces, including torsion-free
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suspensions [Se2], odd primary Moore spaces [N], finite H-spaces [L], H-spaces
with finitely generated homology [CPSS], most spaces with two or three cells [NS],
moment-angle complexes and generalized moment-angle complexes [HST], real
moment-angle complexes [K], and certain families of Poincaré Duality complexes
[BB, BT, Th] such as those that are (n − 1)-connected and 2n-dimensional. There are
also some partial results: a hyperbolic loop space with p-torsion-free homology has no
exponent at p [St], an elliptic space has a finite exponent at all but finitely many primes
[MW], and a 2-cone satisfies Moore’s conjecture at all but finitely many primes [A].

In this paper, we consider Moore’s conjecture in the context of connected sums of
Poincaré Duality complexes. Our main result is of the “all but finitely many primes”
form, although there is an integral result in a special case. The statement of the result
depends on Hurewicz images and localization. Let h∗(X;Q) be the submodule of
H∗(X;Q) that consists of Hurewicz images.

Theorem 1.2 Let M and N be simply connected, closed, orientable n-dimensional
Poincaré Duality complexes. Suppose that M and N are not rationally homotopy
equivalent to Sn and one of h∗(M;Q) or h∗(N ;Q) has either a generator in odd degree
or rank≥ 2. Then M#N is hyperbolic and has no exponent at all but finitely many primes.

The hypotheses on M and N are rational. To tease out what they are saying, observe
that the condition that M and N are not rationally homotopy equivalent to Sn implies
that the (n − 1)-skeletons of M and N are not rationally contractible. Rationally, there
is a Hurewicz image in the (n − 1)-skeleton in each case coming from the inclusion of
the bottom cell. So the ranks of h∗(M;Q) and h∗(N ;Q) are both ≥ 1. If one of these
Hurewicz images is in odd degree, then the hypotheses of Theorem 1.2 are fulfilled.
Otherwise, all Hurewicz images are concentrated in even degrees and the additional
hypothesis that the rank one of h∗(M;Q) or h∗(N ;Q) is ≥ 2 is invoked. In general,
this additional hypothesis is needed: an example follows the statement of Theorem 1.3.

The exact set of primes that are inverted is identified in the proof. There are two
types. First, a rational Hurewicz image corresponds to a map whose integral Hurewicz
image may be divisible by a finite number. We localize away from the primes dividing
that number, and do so for the two or three Hurewicz images needed depending on
the rank conditions on h∗(M;Q) and h∗(N ;Q). Second, these Hurewicz images
have cohomological duals that correspond to maps to Eilenberg–MacLane spaces.
We invert sufficient primes to approximate these Eilenberg–MacLane spaces through
dimension n by spaces Y with the property that ΣΩY is homotopy equivalent to a
wedge of spheres.

The strategy of proof is to show that after localizing at a prime p not in the finite
set of excluded primes, there is a wedge W of at least two simply connected spheres
with the property that ΩW retracts off Ω(M#N). Then, as W is hyperbolic and has
no exponent at p, it follows that M#N is hyperbolic and has no exponent at p. In fact,
the proof works in the more general context of a certain family of CW-complexes, as
described in Section 3.

There is a special case for which no localization is necessary. If M and N are simply
connected and both H2(M;Z) and H2(N ;Z) have integral summands, these are
Hurewicz images, so we may dispense with the first type of prime to invert. We may
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518 S. Theriault

dispense with the second type of prime as, in this case, ΩK(Z, 2) ≃ S1 is already a
sphere.

Theorem 1.3 Let M and N be simply connected, closed, orientable n-dimensional
Poincaré Duality complexes where n ≥ 3. Suppose that H2(M;Z) has a Z-module
summand and H2(N ;Z) has a Z⊕Z-module summand. Then M#N is hyperbolic and
has no exponent at any prime p.

For example, let N be a Poincaré Duality complex of dimension 2n with
rank H2(N ;Z) ≥ 2. Then CPn#N is hyperbolic and has no exponent at any prime p.

The condition on the rank of H2(N ;Z) is best possible in the sense that CPn#CPn

is known to be elliptic. Further, by [HT], if n = 2m, then there is a homotopy
equivalence Ω(CP2m#CP2m) ≃ S1 × S1 ×ΩS3 ×ΩS4m−1 and if n = 2m + 1, then, after
localizing away from 2, there is a homotopy equivalence Ω(CP2m+1#CP2m+1) ≃ S1 ×
S1 ×ΩS3 ×ΩS4m+1. Thus, if n is even, thenCPn#CPn has a finite homotopy exponent
at every prime p, and if n is odd, then CPn#CPn has a finite homotopy exponent at
every odd prime.

In the last section of the paper, a generalization is made to bundles over connected
sums.

2 Some properties of the James construction

Let X be a pointed, path-connected space. For n ≥ 1, let X×n and X∧n , respectively, be
the n-fold product and smash product of X with itself. Define Jn(X) as the quotient
space

Jn(X) = X×n/ ∼,

where (x1 , . . . , x i−1 , ∗, x i+1 , x i+2 , . . . , xn) ∼ (x1 , . . . , x i−1 , x i+1 , ∗, x i+2 , . . . , xn). Obse-
rve that there is an inclusion

Jn(X) 
→ Jn+1(X)

given by sending (x1 , . . . , xn) to (x1 , . . . , xn , ∗). Let

J(X) = colim Jn(X).

The space J(X) is called the James construction on X.
Concatenation of sequences gives J(X) the structure of an associative monoid.

James [J] showed that there is a homotopy equivalence of H-spaces

J(X) ≃ ΩΣX .

He used this to give a homotopy decomposition of ΣΩΣX.

Lemma 2.1 Let X be a pointed, path-connected space. Then there is a homotopy
equivalence

ΣΩΣX ≃
∞

⋁
n=1

ΣX∧n .

https://doi.org/10.4153/S0008439523000930 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000930


Moore’s conjecture for connected sums 519

Now, specialize to the case where X = S2m and localize at a prime p. There is a
homotopy fibration (the EHP fibration)

Jp−1(S2m)
E

→ ΩS2m+1 H


→ ΩS2m p+1 ,

where E is the inclusion of Jp−1(S2m) into J(S2m) ≃ ΩS2m+1 and H is the pth-James-
Hopf invariant. The space Jp−1(S2m)will play an important role in what follows. Three
properties are needed.

First, if p = 2, then Jp−1(S2m) = S2m and ΣΩS2m decomposes as a wedge of spheres
by Lemma 2.1. Moore (a proof appears in [Se1]) proved an analogous result for odd
primes. Let

ε2m ∶ S2m−1 
→ ΩJp−1(S2m)

be the inclusion of the bottom cell.

Lemma 2.2 If p is odd and m ≥ 1, the space ΣΩJp−1(S2m) is homotopy equivalent to
a wedge of spheres. In particular, Σε2m has a left homotopy inverse.

Corollary 2.3 If p is odd and m, n ≥ 1, then the map

ΣS2m−1 ∧ S2n−1 Σε2m∧ε2n





→ ΣΩJp−1(S2m) ∧ΩJp−1(S2n)

has a left homotopy inverse.

Proof By Lemma 2.2, Σε2m has a right homotopy inverse δ2m ∶ΣΩJp−1(S2m) 
→
ΣS2m−1. The composite

ΣΩJp−1(S2m) ∧ΩJp−1(S2n)
Σδ2m∧1




→ ΣS2m−1 ∧ΩJp−1(S2m)

≃




→ S2m−1

∧ ΣΩJp−1(S2n)
1∧δ2n



→ S2m−1 ∧ ΣS2n−1 ≃





→ ΣS2m−1 ∧ S2n−1

is therefore a left homotopy inverse for Σε2m ∧ ε2n . ∎

The second property needed is a certain factorization. Let

ε2m ∶ S2m 
→ Jp−1(S2m)

be the inclusion of the bottom cell, and let

E∶ Sn 
→ ΩSn+1

be the suspension, which is adjoint to the identity map on Sn+1. (This is the same
as the map E in the EHP sequence if n = 2m and p = 2; the duplication of notation
is not ideal, but the context will make clear which is meant.) Note that localized
at an odd prime p, the sphere S2m−1 is an H-space, implying that the suspension
S2m−1 E


→ ΩS2m has a left homotopy inverse.
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Lemma 2.4 If p is odd and m ≥ 1, then there is a homotopy commutative diagram

ΩS2m Ωε2m ��

r
��

ΩJp−1(S2m)

S2m−1 ε2m �� ΩJp−1(S2m)

where r is a left homotopy inverse for E.

Proof Let w∶ S4m−1 
→ S2m be the Whitehead product of the identity map on S2m

with itself. At odd primes, the homotopy fiber of w is S2m−1, resulting in a homotopy
fibration

ΩS2m−1 Ωw

→ ΩS2m ∂


→ S2m−1 .

Notice that ∂ ○ E is degree one in homology and so is homotopic to the identity map.
Therefore, the composite

e∶ S2m−1 ×ΩS4m−1 E×Ωw




→ ΩS2m ×ΩS2m μ





→ ΩS2m

is a homotopy equivalence, where μ is the standard loop multiplication. Consider the
diagram

S2m−1 ×ΩS4m−1 E×Ωw ��

π1

��

ΩS2m ×ΩS2m μ ��

Ωε2m×Ωε2m
��

ΩS2m

Ωε2m
��

S2m−1 j1×ε2m �� ΩJp−1(S2m) × Jp−1(S2m)
μ �� ΩJp−1(S2m)

where π1 is the projection onto the first factor and j1 is the inclusion of the first
factor. The left square homotopy commutes since ε2m ○w is null homotopic (as
J2(S2m) is the homotopy cofiber of w and p odd implies p − 1 ≥ 2). The right square
homotopy commutes since Ωε2m is an H-map. The upper row is the homotopy
equivalence e, and the bottom row is homotopic to ε2m . The homotopy commutativity
of the diagram therefore implies that Ωε2m ○ e ≃ ε2m ○ π1. Now, precompose this

diagram with the map ΩS2m e−1


→ S2m−1 ×ΩS4m−1 to obtain Ωε2m ≃ ε2m ○ π1 ○ e−1.
Define r∶ΩS2m 
→ S2m−1 by r = π1 ○ e−1. Then Ωε ≃ ε2m ○ r, giving the homotopy
commutative square in the statement of the lemma. Also, observe that r is degree one
in H2m−1( ), so r ○ E is the identity map in homology and therefore is homotopic to
the identity map. ∎

Let Z(p) be the integers localized at p. The third property needed is an
approximation of the Eilenberg–MacLane space K(Z(p) , 2m) by Jp−1(S2m). Let
S2m+1 
→ K(Z(p) , 2m + 1) be the inclusion of the bottom cell. Loop to obtain a
map ΩS2m+1 
→ K(Z(p) , 2m). Let φ be the composite

φ∶ Jp−1(S2m)
E

→ ΩS2m+1 
→ K(Z(p) , 2m).(2.1)
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As the homotopy fiber of E is Ω2S2m p+1, the map E induces an isomorphism on
πn for n ≤ 2mp − 2. On the other hand, the first nontrivial torsion homotopy group
of ΩS2m+1 occurs in dimension 2p − 3 + 2m, so the right map in (2.1) induces an
isomorphism on πn for n < 2p − 3 + 2m. It is straightforward to see that 2mp −
2 ≥ 2p − 3 + 2m for all m ≥ 2. Therefore, φ induces an isomorphism on πn for all
n < 2p − 3 + 2m. Consequently, we obtain the following.

Lemma 2.5 Let X be a CW-complex of dimension n, and suppose that there is a map
X r

→ K(Z(p) , 2m). If n < 2p − 3 + 2m, then there is a lift

Jp−1(S2m)

φ
��

X r ��

r
������������

K(Z(p) , 2m)

for some map r.

This completes the preliminaries needed for the James construction, but it is
useful to record here the companion approximation of the Eilenberg–MacLane space
K(Z(p) , 2m + 1) by S2m+1. Rationally, the inclusion S2m+1 
→ K(Q, 2m + 1) of the
bottom cell is a homotopy equivalence. Localized at a prime p, the least nonvanishing
torsion homotopy group of S2m+1 occurs in dimension 2p − 2 + 2m. Therefore, if
2p − 2 + 2m > n, then the inclusion S2m+1 
→ K(Z(p) , 2m + 1) of the bottom cell
induces an isomorphism on πm for m ≤ n. Consequently, we obtain the following.

Lemma 2.6 Let X be a CW-complex of dimension n, and suppose that there is a map
X r

→ K(Z(p) , 2m + 1). If n < 2p − 2 + 2m, then there is a lift

S2m+1

��
X r ��

r
�������������� K(Z(p) , 2m + 1)

for some map r.

3 Conditions for the non-existence of an exponent at p

In this section, an elementary approach involving Hurewicz images and localization
is described that leads to conditions implying that a space has no exponent at a given
prime p. Specific application to connected sums of Poincaré Duality complexes will
be in the next section.

We begin with a preliminary result proved by Ganea [G].

Lemma 3.1 Let X and Y be path-connected spaces. Including the wedge into the
product, there is a homotopy fibration

ΣΩX ∧ΩY 
→ X ∨ Y 
→ X × Y
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522 S. Theriault

that splits after looping to give a homotopy equivalence

Ω(X ∨ Y) ≃ ΩX ×ΩY ×Ω(ΣΩX ∧ΩY).

Further, the fibration and the homotopy equivalence are natural for maps X 
→ X′ and
Y 
→ Y ′.

Let X be a simply connected CW-complex of dimension m ≥ 2. If X has dimen-
sion 2, then it is homotopy equivalent to ⋁d

i=1 S2 for some d ≥ 1 (assuming that X is
not trivial). If d = 1, then X = S2 is elliptic and has an exponent at every prime p. If
d > 1, then X is a wedge of at least two simply connected spheres, implying that it is
hyperbolic and has no exponent at any prime p. So, from here on, assume that n ≥ 3.

Localize at a prime p. Suppose that there are maps

i∶ Sk 
→ X j∶ S� 
→ X

whose Hurewicz images a and b, respectively, generate distinct Z(p) summands in
Hk(X;Z(p)) and H�(X;Z(p)). The universal coefficient theorem implies that a and
b have dual classes ā ∈ Hk(X;Z(p)) and b̄ ∈ H�(X;Z(p)). The cohomology classes ā
and b̄ are represented by maps

r∶X 
→ K(Z(p) , k) s∶X 
→ K(Z(p) , �).

Thus, the composites

α∶ Sk i

→ X r


→ K(Z(p) , k) β∶ S� j

→ X s


→ K(Z(p) , �)(3.1)

are homotopic to the inclusions of the bottom cells.
Now, an adjustment is made. Let L(k) = Sk if k is odd, and let L(k) = Jp−1(Sk) if

k is even; let L(�) = S� if � is odd, and let L(�) = Jp−1(S�) if � is even. Suppose that
p >max{ n−k+3

2 , n−�+3
2 }. Then, as X has dimension n, Lemmas 2.5 and 2.6 imply that

there are lifts

L(k)

��

L(�)

��
X r ��

r
������������

K(Z(p) , k) X s ��

s
������������

K(Z(p) , �)

for some maps r and s. Observe that the composites

α∶ Sk i

→ X r


→ L(k) β∶ S� j

→ X s


→ L(�)

are homotopic to the identity map when k or � is odd and homotopic to the inclusion
of the bottom cell when k or � is even.

Since r and s represent cohomology classes dual to the Hurewicz images generated
by i and j, we have r ○ j and s ○ i null homotopic. Therefore, r ○ j and s ○ i are also
null homotopic since the approximations L(k) and L(�) to the Eilenberg–MacLane
spaces K(Z(p) , k) and K(Z(p) , �) induce isomorphisms on πm for m ≤ n. Suppose
that there is a lift
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L(k) ∨ L(�)

��
X r×s ��

������������
L(k) × L(�).

(3.2)

In general, given maps f ∶A
→ Z and g∶B 
→ Z, let f ⊥ g∶A∨ B 
→ Z be the map
uniquely determined by having its restrictions to A and B being f and g, respectively.
Then, from (3.2), we obtain a composite

Sk ∨ S� i⊥ j

→ X 
→ L(k) ∨ L(�)(3.3)

that is homotopic to α ∨ β.
Composing each map in (3.3) with the inclusion L(k) ∨ L(�) 
→ L(k) × L(�) and

taking homotopy fibers gives a homotopy fibration diagram

Z ��

��

Y ��

��

ΣΩL(k) ∧ΩL(�)

��
Sk ∨ S�

i⊥ j ��

��

X ��

��

L(k) ∨ L(�)

��
L(k) × L(�) L(k) × L(�) L(k) × L(�) ,

(3.4)

where the homotopy fibration in the right column is from Lemma 3.1 and the fibration
diagram defines the spaces Y and Z.

Lemma 3.2 There is a homotopy commutative diagram

Ω(ΣΩSk ∧ΩS�)

��

Ω(ΣΩα∧Ωβ)

�����
����

����
����

ΩX �� Ω(ΣΩL(k) ∧ΩL(�)).

Proof Observe that the middle row of (3.4) is homotopic to α ∨ β. Thus, Z is the
homotopy pullback of α ∨ β and ΣΩL(k) ∧ΩL(�) 
→ L(k) ∨ L(�). On the other
hand, the naturality of Lemma 3.1 implies that there is a homotopy fibration diagram

ΣΩSk ∧ΩS�
ΣΩα∧Ωβ ��

��

ΣΩL(k) ∧ΩL(�)

��
Sk ∨ S�

α∨β ��

��

L(k) ∨ L(�)

��
Sk × S�

α×β �� L(k) × L(�).
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The homotopy commutativity of the upper square therefore implies that there is a
pullback map ΣΩSk ∧ΩS� 
→ Z such that the composite ΣΩSk ∧ΩS� 
→ Z 
→
Y 
→ ΣΩL(k) ∧ΩL(�) is homotopic to ΣΩα ∧Ωβ.

Next, consider the diagram

Ω(ΣΩSk ∧ΩS�)

��

Ω(ΣΩα∧Ωβ)

�����
����

����
����

ΩY ��

��

Ω(ΣΩL(k) ∧ΩL(�))

�� ����
����

����
����

����
����

����
����

ΩX �� Ω(L(k) ∨ L(�)) �� Ω(ΣΩL(k) ∧ΩL(�)).

The upper-left triangle homotopy commutes by the preceding paragraph. The lower-
left square homotopy commutes by (3.4). By Lemma 3.1, the map ΣΩL(k) ∧ΩL(�)

→ L(k) ∨ L(�) has a left homotopy inverse after looping. Using this left homotopy
inverse, the lower-right triangle homotopy commutes. The outer perimeter of this
diagram then gives the homotopy commutative diagram asserted by the lemma. ∎

Next, a full or partial left homotopy inverse of ΣΩα ∧Ωβ is considered.

Lemma 3.3 The following hold:
(a) If k and � are both odd, then ΣΩα ∧Ωβ has a left homotopy inverse.
(b) If k is odd and � is even, then the composite

ΣΩSk ∧ S�−1 Σ1∧E






→ ΣΩSk ∧ΩS� ΣΩα∧Ωβ







→ ΣΩL(k) ∧ΩL(�)

has a left homotopy inverse.
(c) If k is even and � is odd, then the composite

ΣSk−1 ∧ΩS�−1 ΣE∧1






→ ΣΩSk ∧ΩS� ΣΩα∧Ωβ







→ ΣΩL(k) ∧ΩL(�)

has a left homotopy inverse.

Proof If k and � are both odd, then, by definition, L(k) = Sk and L(�) = S� and
both α and β are homotopic to the identity maps. This proves part (a).

If k is odd and � is even, then, by definition, L(k) = Sk , L(�) = J(S�), α is
homotopic to the identity map, and β is homotopic to the inclusion ε� of the bottom
cell. Thus, the composite

ΣΩSk ∧ S�−1 Σ1∧E






→ ΣΩSk ∧ΩS� ΣΩα∧Ωβ







→ ΣΩL(k) ∧ΩL(�)

is homotopic to

ΣΩSk ∧ S�−1 Σ1∧ε�



→ ΣΩSk ∧ΩJ(S�).

By Lemma 2.2, Σε� has a left homotopy inverse. Therefore, so does Σ1 ∧ ε�. This proves
part (b).
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The argument for part (c) is the same as for part (b) but with the roles of k and �
exchanged. ∎

Collecting what has been done so far gives the following.

Proposition 3.4 Let X be a finite simply connected CW-complex of dimension
n ≥ 3. Localize at a prime p. Suppose that there are maps Sk i


→ X and S� j

→ X

whose Hurewicz images generate distinct Z(p) summands of H∗(X;Z(p)) and there is
a lift as in (3.2). If p >max{ n−k+3

2 , n−�+3
2 } and one of k or � is odd, then X is hyperbolic

and has no homotopy exponent at p.

Proof Since one of k or � is odd, each of the three cases in Lemma 3.3 implies that
there is a countable wedge W of simply connected spheres with the property that the
composite W 



→ ΣΩSk ∧ΩS� ΣΩα∧Ωβ





→ ΣΩL(k) ∧ΩL(�) has a left homotopy
inverse. Thus, the homotopy commutativity of the diagram in the statement of
Lemma 3.3 implies that ΩW retracts off ΩX. Therefore, as W is hyperbolic and has
no exponent at p, the same is true of X. ∎

The case when both k and � are even is different. In Lemma 3.3, the map
ΣΩα ∧Ωβ now takes the form ΣΩSk ∧ΩS� ΣΩεk∧Ωε�





→ ΣΩJp−1(Sk) ∧ΩJp−1(S�).
By Lemma 2.4 applied to both Ωεk and Ωε�, the map ΣΩεk ∧Ωε� factors
through ΣSk−1 ∧ S�−1. Thus, only one of the spheres in ΣΩSk ∧ΩS� retracts off
ΣΩJp−1(Sk) ∧ΩJp−1(S�), whereas at least two are needed for hyperbolicity and no
exponent. To go forward in this case, an extra initial hypothesis is necessary.

Assume that there is another map

j′∶ S�′ 
→ X

whose Hurewicz image b′ generates a Z(p) summand in H�′(X;Z(p)) that is distinct
from those generated by a and b. The dual class b′ ∈ H�′(X;Z(p)) is represented by a
map

s′∶X 
→ K(Z(p) , �′).

If �′ is odd, then we may replace � by �′ in Proposition 3.4 and we are done.
So assume that �′ is even. If p > n−�′+3

2 , then Lemma 2.5 implies that s′ factors

as a composite X s′

→ Jp−1(S�′) 
→ K(Z(p) , �′) for some map s′. Observe that the

composite S�′ 
→ X s′

→ Jp−1(S�′) is homotopic to the inclusion of the bottom cell.

Define γ by the composite

γ∶ S� ∨ S�′ i⊥i′

→ X s×s′


→ Jp−1(S�) × Jp−1(S�′).

Observe that γ is homotopic to ( j1 ○ ε�) ⊥ ( j2 ○ ε�′), where j1 and j2 are the inclusions
of the first and second factors into Jp−1(S�) × Jp−1(S�′).
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In place of (3.2), suppose that there is a lift

L(k) ∨ (L(�) × L(�′))

��
X

r×(s×s′) ��

�������������������� L(k) × (L(�) × L(�′)).

(3.5)

Then the composite

Sk ∨ (S� ∨ S�′)
i⊥( j⊥ j′)






→ X 





→ L(k) ∨ (L(�) × L(�′))

is homotopic to α ∨ γ. Now, replace j and L(�) in (3.4) with j ⊥ j′ and L(�) × L(�′)
and argue as in Lemma 3.2 to obtain the following.

Lemma 3.5 There is a homotopy commutative diagram

Ω(ΣΩSk ∧Ω(S� ∨ S�′))

��

Ω(ΣΩα∧Ωγ)

						
				

				
				

			

ΩX �� Ω(ΣΩL(k) ∧ (ΩL(�) ×ΩL(�′)).

Lemma 3.6 The composite

ΣSk−1 ∧ (S�−1 ∨ S�′−1)
ΣE∧E







→ ΣΩSk ∧Ω(S� ∨ S�′)
ΣΩα∧Ωγ






→ ΣΩJp−1(Sk) ∧ (ΩJp−1(S�) ×ΩJp−1(S�′))

has a left homotopy inverse.

Proof By their definitions, α is homotopic to εk and γ is homotopic to ( j1 ○ ε�) ⊥
( j2 ○ ε�′). Thus, Ωα ○ E ≃ εk and Ωγ ○ E ≃ (Ω j1 ○ ε�) ⊥ (Ω j1 ○ ε�′). By Lemma 2.2,
each of Σεk , Σε�, and Σε�′ has a left homotopy inverse, denoted by δk , δ�, and δ�′
respectively. A left homotopy inverse of (ΣΩα ∧Ωβ) ○ (ΣE ∧ E) is then given by the
composite

ΣΩJp−1(Sk) ∧ (ΩJp−1(S�) ×ΩJp−1(S�′))
δk×1

������→ ΣSk−1 ∧ (ΩJp−1(S�) ×ΩJp−1(S�′))

≃
������→ Sk−1 ∧ Σ(ΩJp−1(S�) ×ΩJp−1(S�′))

1∧t
������→ Sk−1 ∧ (ΣΩJp−1(S�) ∨ ΣΩJp−1(S�′))

1∧(δ�∨δ�′)
������→ Sk−1 ∧ (ΣS�−1 ∨ ΣS�′−1),

where t comes from the splitting of Σ(A× B) as ΣA∨ ΣB ∨ (ΣA∧ B). ∎

The analogue of Proposition 3.4 in this case is the following.

Proposition 3.7 Let X be a finite simply connected CW-complex of dimension n ≥ 3.

Localize at a prime p. Suppose that there are maps Sk i

→ X, S� j


→ X and S�′ j′

→ X

whose Hurewicz images generate distinct Z(p) summands of H∗(X;Z(p)) and there is
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a lift as in (3.5). If p >max{ n−k+3
2 , n−�+3

2 , n−�′+3
2 } and each of k, �, and �′ is even, then

X is hyperbolic and has no homotopy exponent at p.

Proof Argue as for Proposition 3.4, replacing Lemmas 3.2 and 3.3 with Lemmas
3.5 and 3.6. Note that the wedge W of spheres in this case has two summands. ∎

4 Moore’s conjecture for connected sums

Let M and N be simply connected, closed, orientable n-dimensional Poincaré duality
spaces. If M and N are the (n − 1)-skeletons of M and N, respectively, there are
homotopy cofibrations

Sn−1 f

→ M 
→ M Sn−1 g


→ N 
→ N ,

where f and g attach the n-cell to M and N. Geometrically, the connected sum M#N
is obtained by cutting a small n-disk from each of M and N and then gluing together
along the boundary of the disk. Topologically, this implies that the (n − 1)-skeleton
of M#N is M ∨ N and there is a homotopy cofibration

Sn−1 f+g

→ M ∨ N 
→ M#N ,

where f + g is the composite Sn−1 σ

→ Sn−1 ∨ Sn−1 f∨g


→ M ∨ N , with σ being the stan-
dard comultiplication. Collapsing the “collar” of the connected sum – the boundary
of the n-disk along which the two were glued – gives a quotient map

q∶M#N 
→ M ∨ N .

Proof of Theorem 1.2 By hypothesis, M and N are simply connected and not
rationally homotopy equivalent to Sn . This implies that if the rational connectivities of
M and N are k − 1 and � − 1, respectively, then 2 ≤ k, � < n. Therefore, both Hk(M;Q)
and H�(N ;Q) have a Q-summand in the image of the rational Hurewicz homomor-
phism. This implies that there are maps

i∶ Sk 
→ M j∶ S� 
→ N

with Hurewicz images m1 ⋅ a ∈ Hk(M;Z) and m2 ⋅ b ∈ H�(M;Z) where a and b
generateZ-summands and m1 , m2 ∈ Z. LetP1 be the set of all primes that divide either
m1 or m2, let P2 be the set of all primes p ≤max{ n−k+3

2 , n−�+3
2 }, and let P = P1 ∪P2.

Note that P is finite, and possibly empty.

Case 1: one of k or� is odd. Localize at a prime p ∉ P. As p ∉ P1, the Hurewicz
images of both i and j generate Z(p)-summands of Hk(M;Z(p)) and H�(N ;Z(p)).
If the dual classes in Z(p) cohomology are represented by maps r∶M 
→ K(Z(p) , k)
and s∶N 
→ K(Z(p) , �), respectively, then as we are localized at p ∉ P2, Lemmas
2.6 and 2.5 imply the maps r and s lift to maps r∶M 
→ L(k) and s∶N 
→ L(�).
The composite

M#N
q

→ M ∨ N r∨s


→ L(k) ∨ L(�)
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is then a lift of r × s as in (3.2). Proposition 3.4 now implies that M#N is hyperbolic
and has no exponent at p.

Case 2: both k and � are even. By hypothesis, there is a second rational Hurewicz
image in H�′(N ;Q) that generates a Q-summand independent from the Hurewicz
image of j. This implies that there is a map j′∶ S�′ 
→ N with Hurewicz image m′2b′ ∈
H�′(N ;Z), where b′ generates a Z-summand and m′2 ∈ Z. Let P′1 be the set of all
primes that divide any one of m1 , m2, or m′2. Note that P1 ⊆ P′1. Also, as N is rationally
(� − 1)-connected, we have �′ ≥ �, implying that n−�′+3

2 ≤ n−�+3
2 , so no adjustment is

needed to P2. Let P′ = P′1 ∪P2. Localize at p ∉ P′. As p ∉ P′1, the Hurewicz images of
i, j, and j′ generateZ(p)-summands in Hk(M;Z(p)), H�(N ;Z(p)), and H�′(N ;Z(p)),
respectively. If the dual classes in Z(p)-cohomology are represented by maps
r∶M 
→ K(Z(p) , k), s∶N 
→ K(Z(p) , �), and s′∶N 
→ K(Z(p) , �′), respectively,
then as we are localized at p ∉ P2 and each of k, �, and �′ is even, Lemma 2.5
implies that r, s, and s′ lift to maps r∶M 
→ Jp−1(Sk), s∶N 
→ Jp−1(S�), and
s′∶N 
→ Jp−1(S�′). The composite

M#N
q







→ M ∨ N
r∨(s×s′)






→ Jp−1(Sk) ∨ (Jp−1(S�) × Jp−1(S�′))

is then a lift of r × (s × s′) as in (3.5). Proposition 3.7 now implies that M#N is
hyperbolic and has no exponent at p. ∎

5 An integral case

An integral statement holds in the context of Proposition 3.7 when k = � = �′ = 2.

Proof of Theorem 1.3 Since M and N are simply connected, the hypotheses on
H2(M;Z) and H2(N ;Z) imply that there are maps

i∶ S2 
→ M j, j′∶ S2 
→ N

whose Hurewicz images generate a Z summand in H2(M;Z) and distinct
Z-summands H2(N ;Z). The dual cohomology classes are represented by maps

r∶M 
→ CP∞ s, s′∶N 
→ CP∞,

respectively. Observe that each of r ○ i, s ○ j, and s′ ○ j′ is the inclusion of the bottom
cell and the composite

M#N
q







→ M ∨ N
r∨(s×s′)






→ CP∞ ∨ (CP∞ ×CP∞)

is a lift of r × (s × s′) in the manner of (3.5).
Define α and γ by the composites

α∶ S2 i

→ M r


→ CP∞ γ∶ S2 ∨ S2 j⊥ j′

→ N s×s′


→ CP∞ ×CP∞.

Then the analogue of Lemma 3.5 is a factorization of

Ω(ΣΩS2 ∧Ω(S2 ∨ S2))
Ω(ΣΩα∧Ωγ)






→ Ω(ΣΩCP∞ ∨ (ΩCP∞ ×ΩCP∞))
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through Ω(M#N). As ΩCP∞ ≃ S1, the composite

ΣS1 ∧ (S1 ∨ S1)
ΣE∧E







→ ΣΩS2 ∧Ω(S2 ∨ S2)
ΣΩα∧Ωγ






→ S1 ∧ (S1 × S1)

has a left homotopy inverse. Therefore, there is a wedge W of two simply connected
spheres retracting off Ω(M#N), implying that it is hyperbolic and has no exponent
at any prime p. ∎

6 A generalization to certain pullbacks

This section generalizes the result for connected sums. Let M and N be simply con-
nected, closed, orientable n-dimensional manifolds. There is a map π∶M#N 
→ M
that collapses N to a point. (Equivalently, π is the composite M#N

q

→ M ∨ N

p1

→ M

where p1 pinches onto the first wedge summand.) Suppose that there is a fibration
F 
→ E 
→ M. Define the space EN as the pullback of π and α, giving a homotopy
fibration diagram

F �� EN ��

��

M#N

π
��

F �� E �� M .

(6.1)

The homotopy type of EN has attracted attention recently. In [JS], examples were
given to show that EN is sometimes a connected sum and sometimes not; in [C],
conditions were given for when ΩEN has the homotopy type of a looped connected
sum (even if EN may not be homotopy equivalent to a connected sum itself); and in
[HT], conditions were given for when EN is a connected sum. In this paper, we study
EN from the point of view of Moore’s conjecture.

Proposition 6.1 Define the space EN as in (6.1). If M#N satisfies the hypotheses of
Theorem 1.2 and some multiple of the map Sk 
→ M realizing the rational Hurewicz
image for M lifts to E, then EN is rationally hyperbolic and has no exponent at all but
finitely many primes.

Proof By hypothesis, there is a map i∶ Sk 
→ M which, rationally, generates a
Q-summand in Hk(M;Q). By hypothesis, t ⋅ i lifts to a map î∶ Sk 
→ E. Note that
as M is not rationally homotopy equivalent to Sn , its (n − 1)-skeleton M is not
contractible. Therefore, we may assume k < n, implying that i factors through M. Also,
denoting the factorization by i, consider the diagram

Sk ∨ N t⋅i∨1 ��

p1

��















θ

M ∨ N

��
EN ��

��

M#N

π
��

Sk î �� E �� M ,
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where p1 is the pinch map onto the first wedge summand and θ will be defined
momentarily. The inner square homotopy commutes by the definition of EN as a
pullback. Observe that the composite along the left column is homotopic to the
composite M ∨ N

p1

→ M 
→ M, where again p1 is the pinch map onto the first wedge

summand. Thus, the composite along the outer perimeter in the clockwise direction
is homotopic to Sk−1 ∨ N

p1

→ Sk−1 t⋅i


→ M. Since t̂ is a lift of t ⋅ i, the outer perimeter
of the diagram homotopy commutes. This implies that there is a homotopy pullback
map θ that makes both the left and upper quadrilaterals homotopy commute.

Now, argue as in the proof of Theorem 1.2 with the composite M#N
q

→

M ∨ N 
→ L(k) ∨ L(�) replaced by EN 
→ M#N
q

→ M ∨ N 
→ L(k) ∨ L(�)

(and similarly for the L(k) ∨ (L(�) × L(�′)) variant) to show that EN is hyperbolic
and has no exponent at all but finitely many primes. (In fact, the primes inverted are
those for the M#N case and any additional primes dividing t.) ∎
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