# FUNCTIONAL PEARLS Metamorphism in jigsaw 

KEISUKE NAKANO<br>Center for Frontier Science and Engineering, The University of Electro-Communications, Japan<br>(e-mail: ksk@cs.uec.ac.jp)


#### Abstract

A metamorphism is an unfold after a fold, consuming an input by the fold then generating an output by the unfold. It is typically useful for converting data representations, e.g., radix conversion of numbers. (Bird and Gibbons, Lecture Notes in Computer Science, vol. 2638, 2003, pp. 1-26) have shown that metamorphisms can be incrementally processed in streaming style when a certain condition holds because part of the output can be determined before the whole input is given. However, whereas radix conversion of fractions is amenable to streaming, radix conversion of natural numbers cannot satisfy the condition because it is impossible to determine part of the output before the whole input is completed. In this paper, we present a jigsaw model in which metamorphisms can be partially processed for outputs even when the streaming condition does not hold. We start with how to describe the 3 -to- 2 radix conversion of natural numbers using our model. The jigsaw model allows us to process metamorphisms in a flexible way that includes parallel computation. We also apply our model to other examples of metamorphisms.


## 1 Introduction

Consider a problem: 'Convert a given ternary (base-3) number to its binary equivalent'. To solve this, we first compute the number $\sum_{i=0}^{k-1} a_{i} 3^{i}$ from a given sequence $\left\{a_{i}\right\}_{i=0}^{k-1}$ and then obtain a sequence $\left\{b_{i}\right\}_{i=0}^{l-1}$ (for some $l$ ) through $l$-fold division by 2 .

The problem can be solved without using addition, subtraction, multiplication, and division. The solution is given by the following six jigsaw pieces:


Note that there are only three kinds of curves. Each curve represents a digit: $\qquad$ $\Omega$, and $\Omega$ correspond to 0,1 , and 2 . We assume that there are infinitely many pieces and pieces may not be rotated. The radix conversion problem is solved by placing these jigsaw pieces at proper positions.

We shall now present how to convert a ternary number to its binary representation by placing these jigsaw pieces. For instance, suppose that a ternary number 201 is given. The conversion is outlined in Figure 1(a). We start with a board that has a

(a) Conversion from $201_{3}$ to $10011_{2}$.

(b) Piece placing strategies.

Fig. 1. (Colour online) 3-to-2 radix conversion with jigsaw pieces.
straight edge on the top and an edge with curves representing 2, 0 , and 1 (from top to bottom) on the right. Initially, the only piece we can place at the top right corner is (C). Next, two pieces (A) and (B) are placed beneath and to the left of the last one respectively. By repeating the placement of pieces in this way until a straight line appears at the left, the conversion procedure is completed. Finally, the result 10011 appears as the curves of the bottom edge.

It is interesting that many orders are possible to obtain the result. Since there is precisely one piece for each combination of right and top edge, the final result does not depend on the order in which pieces are placed. Jigsaw pieces can be placed horizontally, vertically, or diagonally as shown in Figure 1(b). Of course, one may use other random or elaborated strategies. This property naturally contributes to parallelizing the computation.

We will formalize this jigsaw procedure in functional style in this paper. Our jigsaw radix conversion can be generalized to metamorphisms.

## 2 The trick revealed

We shall first reveal the trick underlying the jigsaw radix conversion by using the example in Figure 1.

Let $\boldsymbol{\nabla}$ and $\boldsymbol{b}$ beft-associative infix operators such that $x \nabla y=3 x+y$ and $x-y=2 x+y$. Using these operators, we find $201_{3}=10011_{2}=19$ by $2 \nabla 0 \nabla 1=$ $1-0-0-1-1=19$. We show that the procedure for placing jigsaw pieces achieves symbolic conversion from $2 \boldsymbol{\nabla} 1$ into $1-0>0-1-1$. Watch the change in the boundary between the placed and unplaced areas. Initially the boundary consists of straight horizontal curves $0,0,0,0,0$, and vertical curves representing 2, 0,1 . We represent the boundary by $0-0-0-0-0 \vee 2 \nabla 0 \vee 1$ using and $\nabla$. By placing the (C) piece, the boundary is changed into $0 \rightarrow 0-0$ $0 \nabla 1-0 \vee 0 \vee 1$. Piece placing corresponds in general to an update of the boundary $\ldots-T \nabla R \ldots$ into $\ldots \nabla L \nabla B \ldots$ where $T, R, L$, and $B$ correspond to curves at the top, right, left, and bottom of the piece. The key to jigsaw radix conversion is that every jigsaw piece satisfies an equation $x>T \nabla R=x \nabla L \vee B$ for any $x$, e.g., $x-1 \nabla 1=x \nabla 2-0=6 x+4$ for the (E) piece. This implies that the 'value'
of the boundary is invariant when pieces are placed. Therefore, we have

$$
0 \triangleright 0 \triangleright 0 \triangleright 0 \triangleright 0 \vee 2 \nabla 0 \vee 1=0 \vee 0 \vee 0 \vee 1 \triangleright 0 \triangleright 0 \triangleright 1 \triangleright 1
$$

where the left- and right-hand sides correspond to the boundary at the initial and final boards. Since $(0 \triangleright)$ and $(0 \nabla)$ are identity, $2 \nabla 0 \nabla 1=1 \triangleright 0>0 \triangleright 1 \triangleright 1$ holds.

While we have started with five 0 s for the top edge in the above example, we generally cannot predict how many 0 s will be needed. We may have to add ( $0 \boldsymbol{\sim}$ )s at the head of the boundary on demand and stop the procedure when (i) no occurs at the left of $\boldsymbol{\nabla}$ and (ii) only 0 s occur at the left of $\boldsymbol{\nabla}$. Condition (i) means that no piece can be placed, and condition (ii) means that a straight line appears at the left of the board. The procedure always terminates because the value of the left operand of the rightmost $\boldsymbol{\nabla}$ is reduced by boundary updating. The occurrence of $(0 \boldsymbol{\nabla})$ at the head of the boundary can be eliminated at any time because it is an identity.

## 3 Formalization of a jigsaw model

We formalize our jigsaw procedure in functional style. We will make use of a Haskell-like notation for familiarity.

Let V and H be types of curves on vertical and horizontal edges. Our jigsaw procedure specifies a function of $[\mathrm{V}] \rightarrow[\mathrm{H}]$. A jigsaw procedure is characterized by the following three factors: a set of jigsaw pieces, a sequence of curves at the top edge of the initial board, and a sequence of curves at the left edge of the final board.

First, a set of jigsaw pieces is given by a total function

$$
\text { pieces }::(\mathrm{V}, \mathrm{H}) \rightarrow(\mathrm{H}, \mathrm{~V})
$$

which determines curves on its left and bottom edges from those on its right and top edges. For example, the set of jigsaw pieces $(\mathrm{A})$ to $(\mathrm{F})$ presented in Section 1 is given by

```
data V = V | | V | | V -- 0,1 and 2 as ternary digits
data H = H0 | H H -- 0 and 1 as binary digits
pieces }(\mp@subsup{\textrm{V}}{0}{},\mp@subsup{\textrm{H}}{0}{})=(\mp@subsup{\textrm{H}}{0}{},\mp@subsup{\textrm{V}}{0}{});\mathrm{ pieces }(\mp@subsup{\textrm{V}}{1}{},\mp@subsup{\textrm{H}}{0}{})=(\mp@subsup{\textrm{H}}{1}{},\mp@subsup{\textrm{V}}{0}{});\mathrm{ pieces }(\mp@subsup{\textrm{V}}{2}{},\mp@subsup{\textrm{H}}{0}{})=(\mp@subsup{\textrm{H}}{0}{},\mp@subsup{\textrm{V}}{1}{}
pieces ( }\mp@subsup{\textrm{V}}{0}{},\mp@subsup{\textrm{H}}{1}{})=(\mp@subsup{\textrm{H}}{1}{},\mp@subsup{\textrm{V}}{1}{});\mathrm{ pieces (}\mp@subsup{\textrm{V}}{1}{},\mp@subsup{\textrm{H}}{1}{})=(\mp@subsup{\textrm{H}}{0}{},\mp@subsup{\textrm{V}}{2}{});\mathrm{ pieces }(\mp@subsup{\textrm{V}}{2}{},\mp@subsup{\textrm{H}}{1}{})=(\mp@subsup{\textrm{H}}{1}{},\mp@subsup{\textrm{V}}{2}{}
```

where $\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \mathrm{H}_{0}$, and $\mathrm{H}_{1}$ correspond to curves representing $0,1,2,0$, and 1 .
Second, a sequence of curves at the top edge of the initial board is specified by a single horizontal curve $h_{0}:: \mathrm{H}$. We assume that the top edge has an infinite repetition of the $h_{0}$ curve. In our 3-to- 2 radix conversion, the curve is given by $\mathrm{H}_{0}$ so that the top of the initial board forms an infinite straight horizontal line.

Third, a sequence of curves at the left edge of the final board is specified by a single vertical curve $v_{0}:: \mathrm{V}$. Our jigsaw procedure terminates when all the vertical curves become the $v_{0}$ curve. In our 3-to-2 radix conversion, the curve is given by $\mathrm{V}_{0}$ so that we complete the procedure when a straight vertical line appears at the left of the final board.

Therefore, our jigsaw procedure should be given by a function

$$
\text { jigsaw }::((\mathrm{V}, \mathrm{H}) \rightarrow(\mathrm{H}, \mathrm{~V})) \rightarrow \mathrm{H} \rightarrow \mathrm{~V} \rightarrow[\mathrm{~V}] \rightarrow[\mathrm{H}]
$$

which takes the above three factors and returns a function over lists. We assume that lists of horizontal curves are aligned in a right-to-left manner, and those of vertical curves are aligned in a bottom-to-top manner. Thereby Figure 1 shows that the jigsaw function transforms $\left[\mathrm{V}_{1}, \mathrm{~V}_{0}, \mathrm{~V}_{2}\right]$ into $\left[\mathrm{H}_{1}, \mathrm{H}_{1}, \mathrm{H}_{0}, \mathrm{H}_{0}, \mathrm{H}_{1}\right]$.
We assume that three arguments of the jigsaw function, pieces :: $(\mathrm{V}, \mathrm{H}) \rightarrow(\mathrm{H}, \mathrm{V})$, $h_{0}:: \mathrm{H}$, and $v_{0}:: \mathrm{V}$, satisfy a requirement that

$$
\begin{equation*}
\text { pieces }\left(v_{0}, h_{0}\right)=\left(h_{0}, v_{0}\right) . \tag{1}
\end{equation*}
$$

This guarantees that only terminating curves can occur at the left of terminating curves under the top horizontal edge.

## 4 Definition of the jigsaw function

We implement the jigsaw function based on the idea of 'boundary updating', explained in Section 2. A boundary is represented by a list of either vertical or horizontal curves from bottom right to top left (right-to-left in ( $\mathbf{\nabla}, \mathbf{)}$ )-representation in Section 2), which has type [Edge $a b$ ] with

$$
\text { data Edge } a b=\text { Vert } a \mid \text { Horiz } b
$$

where the types of vertical and horizontal curves are parameterized. The Edge type is isomorphic to the Either type in Haskell's standard library. We do not use the Either type, however, because its constructors are Left and Right, which may cause confusion with the left and right of jigsaw pieces. The initial boundary only consists of vertical edges from the bottom to the top, i.e., [Vert $x_{0}, \ldots$, Vert $x_{l-1}$ ], and a horizontal edge Horiz $h_{0}$ will be added on demand at the tail of the list with a curve $h_{0}$ of the top edge of the board.

We implement the jigsaw function as follows:

$$
\begin{aligned}
& \text { jigsaw pieces } h_{0} v_{0}=\text { map unHoriz } \cdot \text { place } \cdot \text { map Vert } \\
& \text { where } \text { unHoriz (Horiz } x)=x \\
& \text { isHoriz (Horiz })=\text { True } \\
& \text { isHoriz (Vert })=\text { False } \\
& \text { place } \left.=\text { until (all isHoriz) (step pieces } h_{0} v_{0}\right) .
\end{aligned}
$$

Here, place :: [Edge $a b] \rightarrow$ [Edge $a b$ ] repeatedly updates the boundary, preserving its value, until it contains only Horiz elements; the loop function until is defined by

$$
\begin{aligned}
& \text { until }::(a \rightarrow \text { Bool }) \rightarrow(a \rightarrow a) \rightarrow(a \rightarrow a) \\
& \text { until } p f x \mid p x=x \\
& \mid \neg p x=\text { until } p f(f x) .
\end{aligned}
$$

The auxiliary function unHoriz :: Edge $a b \rightarrow b$ unwraps the Horiz constructor; although it is a partial function, it is clear that place always returns a list that contains no Vert elements. For the function step, it suffices to make a single valuepreserving boundary update, assuming that at least one Vert element is present, and
guaranteeing to make progress. We specify it as follows:

$$
\begin{aligned}
& \text { step } p h_{0} v_{0}(x s+[\text { Vert } v, \text { Horiz } h]+y s)=x s+\left[\text { Horiz } h^{\prime}, \text { Vert } v^{\prime}\right]+y s \\
& \text { where }\left(h^{\prime}, v^{\prime}\right)=\text { pieces }(v, h)
\end{aligned} \quad \begin{aligned}
& \text { step } p h_{0} v_{0}(x s+[\operatorname{Vert} v]) \left\lvert\, \begin{array}{l}
v=v_{0}=x s \\
\mid \\
v \neq v_{0}=x s+\left[\operatorname{Vert} v, \text { Horiz } h_{0}\right] .
\end{array}\right.
\end{aligned}
$$

The first rule of the step function corresponds to placing a single piece. The second rule represents that a terminating curve at the left of the board does not contribute to the result because of requirement (1). The third rule corresponds to board extension with the $h_{0}$ edge.

Note that the patterns in the specification of step may match multiple places, but the computation is still confluent because no pairs of redexes interfere with one another when the definition is regarded as a rewriting system. This is a trivial case of confluent rewriting systems (Baader \& Nipkow 1998). The termination of place depends on the three parameters: pieces, $h_{0}$, and $v_{0}$. When pieces is given by pieces $(x, y)=(y, v)$ with a constant $v \neq v_{0}$ for any $x$ and $y$, the computation of place [ $v$ ] will generate an infinite number of $h_{0} \mathrm{~s}$.

Nondeterminism of pattern matching for the step function corresponds to flexibility in the order of placing pieces. When we always rewrite the rightmost occurrence of [Vert $v$, Horiz $h$ ] at the input (extending it with Horiz $h_{0}$ if possible), the procedure corresponds to the horizontal placement of pieces. When we always rewrite the leftmost occurrence, the procedure corresponds to the vertical placement of pieces. When we simultaneously rewrite multiple occurrences of [Vert $v$, Horiz $h$ ], the procedure corresponds to the parallel placement of pieces.

Using the jigsaw function, the 3-to-2 radix conversion radixConv ${ }_{3,2}$ is implemented by

$$
\begin{aligned}
& {\text { radix } \text { Conv }_{3,2}}::[\mathrm{V}] \rightarrow[\mathrm{H}] \\
& \text { radixConv }{ }_{3,2}=\text { jigsaw pieces } \mathrm{H}_{0} \mathrm{~V}_{0}
\end{aligned}
$$

where $\mathrm{V}, \mathrm{H}, \mathrm{V}_{0}, \mathrm{H}_{0}$, and pieces are given as examples in Section 3.

## 5 Metamorphism in the jigsaw model

We start with an ordinary definition of metamorphism, which is an unfold after a fold, consuming the input by the fold, and generating an output by the unfold. In this paper we use the following variations of the foldr and unfoldr functions:

$$
\begin{aligned}
& \text { foldr }::((b, a) \rightarrow a) \rightarrow a \rightarrow[b] \rightarrow a \\
& \text { foldr } g e[]=e \\
& \text { foldr } g e(x: x s)=g(x, \text { foldr } g e x s) \\
& \text { unfoldr }::(a \rightarrow \operatorname{Maybe}(b, a)) \rightarrow a \rightarrow[b] \\
& \text { unfoldr } f s=\text { case } f s \text { of Nothing } \rightarrow[] \\
& \quad \operatorname{Just}\left(x, s^{\prime}\right) \rightarrow x: \text { unfoldr } f s^{\prime}
\end{aligned}
$$

where the first argument of foldr has an uncurried form for convenience of formalization. The 3 -to- 2 radix conversion radix $\operatorname{Conv}_{3,2}$ is implemented as a metamorphism
by

$$
\begin{aligned}
& \text { radixConv } 3,2::[\mathrm{V}] \rightarrow[\mathrm{H}] \\
& \text { radixConv }{ }_{3,2}=\text { unfoldr modDiv }{ }_{2} \cdot \text { foldr sumMul }{ }_{3} 0 \\
& \text { where } \text { sumMul }_{3}::(\mathrm{V}, \text { Int }) \rightarrow \text { Int } \\
& \text { sumMul }_{3}\left(\mathrm{~V}_{i}, s\right)=i+s \times 3 \\
& \left.\operatorname{modDiv}_{2}:: \text { Int } \rightarrow \text { Maybe( } \mathrm{H}, \text { Int }\right) \\
& \bmod ^{\operatorname{Div}}{ }_{2} s \mid s=0=\text { Nothing } \\
& \mid s \neq 0=\operatorname{Just}\left(\mathrm{H}_{j}, t\right) \quad \text { where } \quad j+t \times 2=s
\end{aligned}
$$

where V and H are defined as in Section 3, and we employ a 'smart' whereclause computing remainders for readability. We assume that ternary and binary representations are given by a list of digits from the least significant to the most significant digits. This definition can be easily generalized to $m$-to- $n$ radix conversion.

As we have shown, the radix $\operatorname{Conv}_{3,2}$ function can also be implemented in jigsaw style. An important difference from the ordinary definition is that the computation does not involve types (like Int) other than that of inputs and outputs (like V and H ). In the ordinary definition, we have to first complete the computation with foldr to obtain the integer representation of the input. Even if lazy evaluation is used, unfoldr does not produce anything before foldr is completed because the first element of the output, which is the least significant digit, is determined by the whole input. On the other hand, the jigsaw procedure can start some parallelizable computation when the input is being read.

We will demonstrate that the jigsaw function can represent a metamorphism 'under a certain condition' as indicated by the equation

$$
\begin{equation*}
\text { unfoldr } f \cdot \text { foldr } g e=\text { jigsaw pieces } h_{0} v_{0} \tag{2}
\end{equation*}
$$

with some pieces, $h_{0}$, and $v_{0}$, which are determined by $f, g$, and $e$. The condition is given in the following definition, which will be required to make Equation (2) hold.

## Definition 5.1

Three functions $f:: a \rightarrow \operatorname{Maybe}(\mathrm{H}, a), g::(\mathrm{V}, a) \rightarrow a$, and $e:: a$ are said to satisfy the jigsaw condition with pieces $::(\mathrm{V}, \mathrm{H}) \rightarrow(\mathrm{H}, \mathrm{V}), h_{0}: \mathrm{H}$, and $v_{0}:: \mathrm{V}$ when all of the following clauses are satisfied:
(i) $f e=$ Nothing holds;
(ii) $f(g(v, s))=$ Nothing for $(v, s)::(\mathrm{V}, a)$ if and only if $v=v_{0}$ and $f s=$ Nothing;
(iii) $f^{\#}(g(v, s))=\left(h^{\prime}, g\left(v^{\prime}, s^{\prime}\right)\right)$ for $(v, s)::(\mathrm{V}, a)$ when $\left(h, s^{\prime}\right)=f^{\#} s$ and $\left(h^{\prime}, v^{\prime}\right)$ $=$ pieces $(v, h)$, where

$$
\begin{aligned}
& f^{\#}:: a \rightarrow(\mathrm{H}, a) \\
& f^{\#} s=\text { case } f s \text { of } \operatorname{Nothing} \rightarrow(h, s) \\
& \quad \operatorname{Just}\left(h, s^{\prime}\right) \rightarrow\left(h, s^{\prime}\right) .
\end{aligned}
$$

The variables pieces, $h_{0}$, and $v_{0}$ in the above definition are the arguments of the jigsaw function in Equation (2). Condition (i) forces the metamorphism to generate an empty list for the empty list. This restriction is essential to make Equation (2) hold. Condition (ii) stipulates a property on the nonproductive seeds of unfoldr.


Fig. 2. Jigsaw condition (iii).

Condition (iii) is the most weighty condition, which is visualized as a diagram in Figure 2. Intuitively, this means that our jigsaw procedure can process the $f$ generator using pieces before folding the whole input with $g$. The 'if' part of condition (ii) always holds when condition (iii) holds under requirement (1).

Let us check whether the jigsaw condition is satisfied for two implementations of radixConv ${ }_{3,2}$. Condition (i) holds because $\operatorname{modDiv}_{2} 0=$ Nothing from the definition. Condition (ii) holds because $\operatorname{modDiv}_{2}\left(\operatorname{sumMul}_{3}\left(\mathrm{~V}_{i}, s\right)\right)=\operatorname{modDiv}_{2}(i+s \times 3)=$ Nothing if and only if $i=s=0$. Condition (iii) holds because

Before showing a strict relationship between the jigsaw condition and Equation (2), we give an intuitive explanation for this condition on metamorphisms by comparing with the streaming condition (Bird and Gibbons, 2003; Gibbons, 2007). A direct implementation of a metamorphism defined by unfoldr $f \cdot$ foldr $g::[\mathrm{V}] \rightarrow[\mathrm{H}]$ works as follows:

where any part of the output cannot be obtained before reading the whole input. Roughly speaking, the streaming condition enables the order of $f$ and $g$ to alternate like

for 'productive inputs' ( $x$ satisfying $f x \neq$ Nothing), thereby writing a part of the output after reading only a part of the input. This alternation cannot always happen, of course. It is impossible to do that if we cannot determine the first part of output
before reading the whole input like the radix conversion. On the other hand, jigsaw condition (iii) can alternate the order even when the streaming condition does not hold. Assuming the existence of the pieces function satisfying the condition, we can obtain

by using $f^{\#}$ instead of $f$ and repeatedly applying the equivalence relation on pieces to the diagram of metamorphism above as many times as possible. The obtained diagram exactly illustrates our jigsaw computational model, in which each pieces box represents a jigsaw piece. The leftmost and rightmost pieces boxes correspond to jigsaw pieces at the top right and bottom left corners of the board respectively. We can observe that vertical curves are given as an input and horizontal curves are obtained as an output.

Now let us show a strict relationship between our jigsaw model and a metamorphism. We show that Equation (2) holds when the jigsaw condition is satisfied. Since the result of the place function does not depend on piece placing strategy, it suffices to prove Equation (2) for a specific strategy. We adopt a horizontal-first piece placing strategy. The proof consists of two steps: First we show that the horizontal piece placing corresponds to the behavior of the unfoldr function; then we show that its vertical repetition corresponds to the behavior of the foldr function. We start with the lemma for the case where the place function takes a boundary containing only one vertical edge (with Vert) at its head. We use the following equations on the place function:

$$
\begin{align*}
& \text { place } \left.x s=\text { place (step pieces } h_{0} v_{0} x s\right)  \tag{3}\\
& \text { place }(\text { Horiz } h: x s)=\text { Horiz } h: \text { place } x s \tag{4}
\end{align*}
$$

which are obvious from the definition of place and step. In the rest of this section, we will assume that pieces, $h_{0}$, and $v_{0}$ are fixed, thus so are place and $f^{\#}$.

## Lemma 5.1

Let $f, g$, and $e$ satisfy the jigsaw condition with pieces, $h_{0}$, and $v_{0}$. For all $v$ and $s$,
place (Vert $v$ : map Horiz (unfoldr $f s)$ ) $=$ map Horiz (unfoldr $(f \ltimes g)(v, s)$ )
where the $f \ltimes g$ function is defined by

$$
\begin{aligned}
& (f \ltimes g)::(\mathrm{V}, a) \rightarrow \operatorname{Maybe}(\mathrm{H},(\mathrm{~V}, a)) \\
& (f \ltimes g)(v, s)=\text { if } f(g(v, s))=\text { Nothing then Nothing } \\
& \quad \text { else } \operatorname{Just}\left(h^{\prime},\left(v^{\prime}, s^{\prime}\right)\right) \text { where }\left(h, s^{\prime}\right)=f^{\#} s \text { and }\left(h^{\prime}, v^{\prime}\right)=\text { pieces }(v, h) .
\end{aligned}
$$

## Proof

We prove the statement by coinduction.

```
    place (Vert \(v\) : map Horiz (unfoldr \(f\) s))
\(=\{\) unfoldr and map \(\}\)
    case \(f s\) of Nothing \(\rightarrow\) place [Vert \(v\) ]
                Just \(\left(h, s^{\prime}\right) \rightarrow\) place (Vert \(v:\) Horiz \(h:\) map Horiz (unfoldr \(\left.f s^{\prime}\right)\) )
\(=\{\) equation (3) and step for [Vert \(v]\}\)
    case \(f s\) of Nothing \(\rightarrow\) if \(v=v_{0}\) then [] else place [Vert \(v\), Horiz \(h_{0}\) ]
                                Just \(\left(h, s^{\prime}\right) \rightarrow\) place (Vert \(v:\) Horiz \(h:\) map Horiz (unfoldr \(\left.f s^{\prime}\right)\) )
\(=\left\{\right.\) merge the else clause in the Nothing branch and the Just branch using \(\left.f^{\#}\right\}\)
    if \(f s=\) Nothing \(\wedge v=v_{0}\) then []
    else place (Vert \(v\) : Horiz \(h\) : map Horiz (unfoldr \(f s^{\prime}\) )) where \(\left(h, s^{\prime}\right)=f^{\#} s\)
\(=\{\) equation (3) and step \(\}\)
    if \(f s=\) Nothing \(\wedge v=v_{0}\) then []
    else place (Horiz \(h^{\prime}\) : Vert \(v^{\prime}\) : map Horiz (unfoldr \(f s^{\prime}\) ))
            where \(\left(h, s^{\prime}\right)=f^{\#} s\) and \(\left(h^{\prime}, v^{\prime}\right)=\) pieces \((v, h)\)
\(=\{\) equation (4) \(\}\)
    if \(f s=\) Nothing \(\wedge v=v_{0}\) then []
    else Horiz \(h^{\prime}\) : place (Vert \(v^{\prime}\) : map Horiz (unfoldr \(f s^{\prime}\) ))
                where \(\left(h, s^{\prime}\right)=f^{\#} s\) and \(\left(h^{\prime}, v^{\prime}\right)=\) pieces \((v, h)\)
\(=\{\) coinduction principle \(\}\)
    if \(f s=\) Nothing \(\wedge v=v_{0}\) then []
    else Horiz \(h^{\prime}\) : map Horiz (unfoldr \((f \ltimes g)\left(v^{\prime}, s^{\prime}\right)\) )
            where \(\left(h, s^{\prime}\right)=f^{\#} s\) and \(\left(h^{\prime}, v^{\prime}\right)=\) pieces \((v, h)\)
\(=\{\operatorname{map}\}\)
    map Horiz (if \(f s=\) Nothing \(\wedge v=v_{0}\) then [] else \(h^{\prime}:\) unfoldr \(\left.(f \ltimes g)\left(v^{\prime}, s^{\prime}\right)\right)\)
        where \(\left(h, s^{\prime}\right)=f^{\#} s\) and \(\left(h^{\prime}, v^{\prime}\right)=\) pieces \((v, h)\)
\(=\quad\{\) unfoldr and jigsaw condition (ii) \(\}\)
    map Horiz (unfoldr \((f \ltimes g)(v, s))\)
```

The above proof employs coinduction because of the coinductivity of the results of place and unfoldr. Assuming that unfoldr $f s$ always generates finite lists for any $s$, we might use induction on the structure of the lists to prove the statement.
Next, we present the relationship between the place function and metamorphism, which is described in the following lemma. In the proof of the lemma, we apply an unfoldr fusion law (Meijer et al., 1991). For $f:: b \rightarrow(a, b), h:: c \rightarrow(a, c)$, and $g:: c \rightarrow b$,

$$
\begin{align*}
f(g z)=\text { case } h z \text { of Nothing } & \rightarrow \operatorname{Nothing}  \tag{5}\\
\operatorname{Just}(x, y) & \rightarrow \operatorname{Just}(x, g y)
\end{align*} \longrightarrow \text { unfoldr } f \cdot g=\text { unfoldr } h .
$$

We can simply confirm that $f, g$, and $h=f \ltimes g$ introduced in Lemma 5.1 satisfy the above fusion condition under jigsaw condition (iii). In addition, we use the following equation on the place function:

$$
\begin{equation*}
\text { place }(x s+y s)=\text { place }(x s+\text { place } y s) \tag{6}
\end{equation*}
$$

for all $x s$ and $y s$, which can be shown by induction on the computation of place ys.

## Lemma 5.2

Let $f, g$, and $e$ satisfy the jigsaw condition with pieces, $h_{0}$, and $v_{0}$. For all $v s$,

$$
\text { place }(\text { map Vert } v s)=\text { map Horiz }(\text { unfoldr } f(\text { foldr } g \text { e vs })) .
$$

## Proof

We prove the statement by induction on $v s$. When $v s=[]$, both sides of the equation become [] because of jigsaw condition (i). When $v s=w: w s$,

```
    place (map Vert (w:ws))
    = {map and equation (6) }
        place (Vert w : place (map Vert ws))
    = {induction hypothesis }
    place (Vert w : map Horiz (unfoldr f (foldr g e ws)))
    = {Lemma 5.1}
    map Horiz (unfoldr (f\ltimesg) ( w, foldr g e ws))
    = {fusion law (5) with jigsaw condition (iii)}
    map Horiz (unfoldr f(g(w, foldr g e ws)))
    = {foldr }
    map Horiz (unfoldr f (foldr g e (w:ws)))
```

This lemma immediately concludes Equation (2).

## Theorem 5.1

Let $f, g$, and $e$ satisfy the jigsaw condition with pieces, $h_{0}$, and $v_{0}$. For all lists $v s$, jigsaw pieces $h_{0} v_{0} v s=u n f o l d r f(f o l d r g e v s)$.

Proof

$$
\begin{aligned}
\text { jigsaw pieces } h_{0} v_{0} v s= & \{\text { jigsaw }\} \\
& \text { map unHoriz (place (map Vert vs)) } \\
= & \{\text { Lemma } 5.2\} \\
& \text { map unHoriz (map Horiz (unfoldr f (foldr ge vs))) } \\
= & \{\text { unHoriz and map }\}
\end{aligned}
$$

## 6 Applications

We have shown how to implement $m$-to- $n$ radix conversion in the jigsaw model. This section presents two other examples of metamorphism that can be implemented with the jigsaw model. The jigsaw condition requires us to discover an appropriate function pieces. Although it is difficult to show a general method for constructing the function, the following examples may help us to find candidates of the pieces function.

Group-by procedure for multiple data lists. 'Group by' is a core database operation that groups an input data list into lists of data having the same key. We assume that an input is given as a divided list, so we concatenate them to obtain a list of all data. This operation is a metamorphism consisting of concatenation and grouping. When $k$ and $v$ are types of keys and values, both V and H are $[(k, v)]$, which is the same type as intermediate data.

```
flipApp \(::([(k, v)],[(k, v)]) \rightarrow[(k, v)]\)
flipApp \(\left(l_{1}, l_{2}\right)=l_{2}+l_{1}\)
partByHd \(::[(k, v)] \rightarrow \operatorname{Maybe}([(k, v)],[(k, v)])\)
partByHd [] \(=\) Nothing
partByHd \(((k, v): l)=\operatorname{Just}((k, v): t s, f s)\) where \(\left(t s, f_{s}\right)=\) partByKey \(k l\)
groupByFst \(=\) unfoldr partByHd \(\cdot\) foldr flipApp []
```

where the partByKey function takes a key and a list of key-value pairs and returns a pair of lists: the first list contains those elements whose key is equal to the given one; the second list contains the remaining elements. Jigsaw condition (i) holds from the definition of partByHd. To make the other jigsaw conditions hold, we use flipApp, which appends two lists in flipped order even though we could use a simple append to implement the 'group by' operation. Taking $h_{0}=v_{0}=[]$ and

```
pieces ([ ],[]) = ([ ],[ ])
pieces ([],(k,v):l)=((k,v):ts,fs) where (ts,fs)=partByKey kl
pieces }((k,v):\mp@subsup{l}{1}{},\mp@subsup{l}{2}{})=((k,v):ts,fs) where (ts,fs)=partByKey k (l l + l l ),
```

we have groupByFst $=$ jigsaw pieces $h_{0} v_{0}$. Jigsaw condition (ii) can be confirmed with a simple calculation. For condition (iii) with $v=l_{1}$ and $s=(k, v): l_{2}$

$$
\begin{aligned}
& \text { partByHd }{ }^{\#}\left(f l i p A p p\left(l_{1},(k, v): l_{2}\right)\right) \\
&=\{\text { flipApp and partByHd }\} \\
&((k, v): t s, f s) \text { where }(t s, f s)=\operatorname{partByKey} k\left(l_{2}+l_{1}\right) \\
&=\{\text { properties of partByKey }\} \\
&\left(t s^{\prime}, f s_{2}+f s_{1}\right) \text { where }\left(t s^{\prime}, f s_{1}\right)=\text { partByKey } k\left((k, v): t s_{2}+l_{1}\right) \\
& \quad\left(t s s_{2}, f s_{2}\right)=\operatorname{partByKey~} k l_{2} \\
&=\{\text { pieces and flipApp }\} \\
&\left(t s^{\prime}, \text { flipApp }\left(f s_{1}, f s_{2}\right)\right) \text { where }\left(t s^{\prime}, f s_{1}\right)=\operatorname{pieces}\left((k, v): t s_{2}, l_{1}\right) \\
&\left(t s_{2}, f s_{2}\right)=\operatorname{partByKey~} k l_{2}
\end{aligned}
$$

where some obvious properties of partByKey are used. Condition (iii) for the other cases can also be checked in a similar way.

Heap sort. Gibbons (2007) presents a heap sort program as an example of metamorphism that does not satisfy the streaming condition. We demonstrate that the program meets the jigsaw condition. Although the heap sort algorithm cannot inherently be parallelized, we can implement it in the jigsaw model in which parallel evaluation is possible. This fact should not surprise us. The outcome is exactly a form of 'parallel bubble sort' as explained below. We basically follow Gibbons's definition of a heap sort except that the definition of the heap and its operating
functions are abstracted out because two equivalent heaps may differ depending on their construction history.

```
data Heap a=Empty | 〈nonempty heap whose elements have type a\rangle
insert :: (a,Heap a) -> Heap a
insert (x, t) = \langlea heap obtained from the heap t by adding x\rangle
splitMin :: Heap a Maybe(a,Heap a)
splitMin Empty = Nothing
splitMin t | t\not= Empty = Just (m, t')
    where }m=\langlea minimum element in the heap t
        t'}=\langlea heap obtained by removing m from t
heapSort = unfoldr splitMin · foldr insert Empty
```

where $\langle$ text $\rangle$ indicates an implementation abstracted by its specification. We require these functions only to satisfy a property

$$
\begin{align*}
& \operatorname{splitMin}^{\#}(\operatorname{insert}(x, t))= \\
& \quad \text { if } x<m \text { then }(x, t) \text { else }\left(m, \operatorname{insert}\left(x, t^{\prime}\right)\right) \text { where }\left(m, t^{\prime}\right)=\operatorname{splitMin}^{\#} t \tag{7}
\end{align*}
$$

for any nonempty heap $t$, which promises that splitMin extracts a minimum element in a given heap. Jigsaw condition (i) holds from the definition of splitMin. Let us introduce $\infty$ for the (dummy) largest value, which is often used in sorting programs. We extend the definition of insert with insert $(\infty, t)=t$ to deal with the $\infty$ value. Taking $h_{0}=v_{0}=\infty$ and

$$
\begin{array}{l|l}
\text { pieces }(x, y) \mid & x<y=(x, y) \\
\mid & x \geqslant y=(y, x),
\end{array}
$$

we obtain heapSort $=$ jigsaw pieces $h_{0} v_{0}$. Jigsaw condition (ii) holds due to an extension of the definition of the insert function. For jigsaw condition (iii) with $v \neq \infty$ and a nonempty heap $s$,

$$
\left.\begin{array}{rl} 
& \quad \text { splitMin\# }(\operatorname{insert}(v, s)) \\
= & \{\text { expected property }(7)\} \\
& \text { if } v<m \text { then }(v, s) \text { else }(m, \operatorname{insert}(v, t)) \text { where }(m, t)=\operatorname{splitMin} \# \\
= & \{\operatorname{insert} \text { and splitMin }\}
\end{array}\right\}
$$

Condition (iii) for other cases can similarly be checked. Since the pieces function swaps a wrong ordered pair of adjacent items, this exactly behaves as a bubble sort.

## 7 Concluding remarks

We have introduced a jigsaw model for metamorphisms. When it satisfies the jigsaw condition, a metamorphism can be implemented in our model such that there is room for parallel evaluation. It would be interesting to consider fusion and inversion on the jigsaw model, which we have left for future work.

We do not claim that the jigsaw model will always provide an efficient implementation of metamorphisms. It is difficult to compare computational complexity between the jigsaw model and a naïve implementation of metamorphisms because their 'computation units' differ. For example, in $m$-to- $n$ radix conversion, when the size of input is $k$ and that of output is $l$, a naïve implementation of metamorphisms takes $k$-fold multiplication and $l$-fold division, while the jigsaw model takes $k l$-fold simple pattern matching. The most important feature of the jigsaw model is its flexibility in computation.

## Acknowledgment

The author would like to thank Jeremy Gibbons and anonymous reviewers for their many insightful suggestions and corrections. He is also indebted to Hideya Iwasaki and Zhenjiang Hu for the helpful discussion they had with him.

## References

Baader, F. \& Nipkow, T. (1998) Term Rewriting and All That. Cambridge, UK: Cambridge University Press.
Bird, R. \& Gibbons, J. (2003) Arithmetic coding with folds and unfolds. In Proceedings of the 4th Advanced Functional Programming, Lecture Notes in Computer Science, vol. 2638. Springer-Verlag, pp. 1-26.
Gibbons, J. (2007) Metamorphisms: Streaming representation-changers. Sci. Comput. Program. 65(2), 108-139 (Elsevier).
Meijer, E., Fokkinga, M. \& Paterson, R. (1991) Functional programming with bananas, lenses, envelopes and barbed wire. In Proceedings of the 5th Functional Programming Languages and Computer Architecture, Lecture Notes in Computer Science, vol. 523. Springer-Verlag, pp. 124-144.

