
Hecke characters associated to
Drinfeld modular forms
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Abstract

In this article we explain how the results in our previous article on ‘algebraic Hecke
characters and compatible systems of mod p Galois representations over global fields’
allow one to attach a Hecke character to every cuspidal Drinfeld modular eigenform from
its associated crystal that was constructed in earlier work of the author. On the technical
side, we prove along the way a number of results on endomorphism rings of τ -sheaves
and crystals. These are needed to exhibit the close relation between Hecke operators
as endomorphisms of crystals on the one side and Frobenius automorphisms acting on
étale sheaves associated to crystals on the other. We also present some partial results
on the ramification of Hecke characters associated to Drinfeld modular eigenforms.
An important phenomenon absent from the case of classical modular forms is that
ramification can also result from places of modular curves of good but non-ordinary
reduction. In an appendix, jointly with Centeleghe we prove some basic results on
p-adic Galois representations attached to GL2-type cuspidal automorphic forms over
global fields of characteristic p.
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1. Introduction

Let p be a prime number, q a power of p and denote by Fq the field of q elements. For a pair

(F,∞), where F is a global function field with constant field Fq and ∞ is a fixed place of F ,

we define F∞ as the completion of F at ∞ and C∞ as the topological closure of an algebraic

closure of F∞. The Drinfeld symmetric space Ω = P1(C∞) r P1(F∞) serves as an analog of the

complex upper half plane. It carries a structure of a rigid analytic space over F∞, and GL2(F∞)

acts via rigid analytic automorphisms by the standard formula
(
a b
c d

)
z = (az + b)/(cz + d) for(

a b
c d

)
∈ GL2(F∞) and z ∈ Ω, cf. [Dri76] or [Gek86].

Let A be the set of elements of F regular away from ∞. Then for any congruence subgroup

Γ ⊂ GL2(A), the quotient Γ\Ω can be identified with XΓ(C∞) r CΓ, for a smooth projective

curve XΓ defined over a finite extension FΓ of F and a finite subset CΓ of XΓ(C∞) called the set

of cusps, cf. [GvdP80, IV § 1]. For any k, ` ∈ Z, one defines the space Mk,`(Γ,C∞) of Drinfeld

modular forms of weight k, type ` and level Γ, cf. [Gos80a] or [Gek88, (5.7)], as the C∞ vector

space of rigid analytic functions f : Ω→ C∞ that satisfy

f(γz) = (cz + d)k det(γ)−`f(z) ∀γ =

(
a b
c d

)
∈ Γ, z ∈ Ω

and have a Taylor series expansion around all cusps, cf. [Gek88, (5.7)].

Unless A has class number one, it is preferable to work in an adelic setting: by A∞F we

denote the adeles of F away from∞, by Â the profinite completion of A. We fix a compact open

subgroup K of GL2(Â). Then GL2(F )\(Ω× (GL2(A∞F )/K)) can be identified with XK(C∞)rCK
where XK is a finite disjoint union of smooth projective curves defined over a finite extension FK
of F and CK is a finite subset of XK(F ). Moreover, by strong approximation, one can find finitely

many subgroups Γi of GL2(F ) commensurable with and containing some fixed finite congruence

subgroup Γ of GL2(A) such that one has a disjoint decomposition XK(C∞) r CK =
⊔
i Γi\Ω,

see [Böc04, ch. 4].

One now generalizes in an obvious way the definition of Mk,`(Γ,C∞) to obtain a space

Mk,`(K,C∞) of Drinfeld modular forms of weight k, type ` and level K, cf. [Böc04, ch. 5].

Extending the definitions of Hecke operators from the case where A has class number one,

cf. [Gek88, § 7], one defines a set of commuting Hecke operators Tn on Mk,`(K,C∞) for every

ideal n of A that is prime to the conductor of K, see [Böc04, ch. 6]. The non-adelic setting would

only allow the definition of Hecke operators for principal ideals n.

By the commutativity of the Hecke operators, the space Mk,`(K,C∞) can be decomposed

simultaneously into a direct sum of generalized eigenspaces for all Tn. In particular, for every

set of compatible eigenvalues (an)n there exists a common eigenform f ∈ Mk,`(K,C∞) so that

Tnf = anf . Since all forms can be realized as global sections of suitable line bundles on XK,
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defined over FK (after possibly shrinking K), see [Gos80b, Theorem 1.79], the field F (an | n 6 A)

is a finite extension of F .1

A main difference to the classical case of elliptic modular forms is that Tqm = (Tq)
m as

endomorphisms of Mk,`(K,C∞) for any prime 0 6= q of A, e.g. [Gek86, VIII § 1]. This property

led Serre, cf. [Gos80c, p. 414], to ask whether the Hecke eigensystem of any eigenform is described

by a Hecke character. The question has since remained open. In the following we shall focus on

the Hecke stable subspace of cusp forms Sk,`(K,C∞), i.e., forms in Mk,`(K,C∞) whose Taylor

expansion have vanishing constant term at every cusp, because Serre’s question is, in principle,

well understood for the complementary space of Eisenstein series.

In [Böc04], based on the function field methods developed in [BP09] and inspired by the

situation for classical (elliptic) modular forms, we attach a compatible system of p-adic Galois

representation to every cuspidal Drinfeld modular Hecke eigenform. For classical elliptic modular

forms one uses étale, Betti and de Rham cohomology and various comparison theorems to

obtain such a result, cf. [Con]. The importance of the results of [BP09], the construction of

a theory of function field crystals, lies in the fact that these crystals can play the role of a

motive for cohomology that has étale, de Rham and Betti realizations at once. This makes

it possible in [Böc04] to realize the space Sk,`(K,C∞) as a kind of de Rham (or analytic)

realization of a certain crystal whose étale realizations form a compatible family of p-adic Galois

representations. Moreover, this crystal carries a naturally defined Hecke action, compatible with

the one from [Böc04, ch. 6].

As in the classical case, the transition from Hecke eigenforms to Galois representations is

characterized by an Eichler–Shimura relation; see formula (7). Unlike in the classical situation the

relation reads Tx = Frobx; this is a consequence of Verschiebung acting by zero on characteristic

p coefficients.2 Thus the Galois representations attached to cuspidal Hecke eigenforms have

abelian image. As pointed out by Goss, this is a further indication of the existence of a Hecke

character for every cuspidal Hecke eigenform that could at once answer Serre’s question and give

rise to the compatible system of Galois representations. The main result of this article is the

construction of this Hecke character. Furthermore, we provide results on its conductor and thus

on the ramification of the attached Galois representations.

As we will see in Proposition 7.3, the Hecke characters defined by Gross in [Gro82] and Goss

in [Gos92] are too restrictive. An adequate class of Hecke characters was defined in [Böc13]. There

we also prove a correspondence between such Hecke characters and suitable compatible systems

of abelian Galois representations. The latter correspondence is based on previous results in the

number field case due to Khare, e.g. [Kha05]. Let us recall the main definition from [Böc13]:

Denote by A∗F the group of ideles of F with their usual topology. An algebraic Hecke character

of F is a continuous homomorphism

χ : A∗F −→ (F alg)∗

for the discrete topology on the algebraic closure F alg of F , such that there exists a finite set of

field homomorphisms Σ ⊂ Hom(F, F alg) and a corresponding tuple of integers (nσ)σ∈Σ ∈ ZΣ such

that for all α ∈ F ∗ one has χ(α) =
∏
σ∈Σ σ(α)nσ . For instance, if F = Fq(t), then the elements of

1 The Hecke stability of these spaces of sections is not explained in [Gos80b]; see [Böc04, § 11.1] for a similar
argument.
2 From here on all Hecke operators Tx are indexed over the places x 6= ∞ of our base field, since such operators
generate the relevant Hecke algebras. We reserve n to denote conductors and p the prime of the coefficients.
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Σ are defined by mapping t to an arbitrary element of F alg rFalg
q . Unlike in [Gos92] or [Gro82],

we do not require that there exists an infinite subfield of F that is fixed by the elements in Σ.
For a place x of F , let $x denote a uniformizer of the completion of F at x, and denote by

(1, . . . , 1, $x, 1, . . . , 1) the idele in A∗F with $x at x and 1 elsewhere. We normalize class field
theory, so that a geometric Frobenius Frobx at x is mapped to the uniformizer $x at x. In § 6,
we prove the following theorem.

Theorem 1.1. Let f be a cuspidal Drinfeld modular Hecke eigenform for (F,∞) for some level,
weight and type. Then there is a unique Hecke character χf associated to f such that, for almost
all primes x of MaxA, the Hecke operator Tx at x satisfies

Txf = χf ((1, . . . , 1, $x, 1, . . . , 1))f.

The Hecke character χf allows one to recover the compatible system of Galois representations
attached to f by following [Böc13, § 2.5], based on [Ser68, § 2.5]. From this perspective,
Theorem 1.1 is rather imprecise if compared with the corresponding results known for the
compatible system attached to a classical modular forms, which is: for a classical Hecke eigenform
f of level N , the associated `-adic Galois representation is unramified outside the primes q
dividing `N , and for all such q the Hecke polynomial is equal to the characteristic polynomial
of a Frobenius automorphism at q. In Example 8.26 we show that the analogous statement
is not true in general for Galois representations attached to Drinfeld modular forms f . Their
ramification is controlled by the infinity type and the conductor of χf . We have no results on
the infinity type of χf . However we do have partial results on the conductor of χf for forms f of
weight 2 and level n, which can be ramified outside the level n, as well as partial results on the
ramification of p-adic Galois representations for forms f of arbitrary weight, via congruences to
weight 2; see Theorem 8.8 and Propositions 8.7, 8.18 and 8.22.

The behavior in the weight 2 case is for the experts not unexpected: the Galois action on the
p-adic Tate module of a non-isotrivial elliptic curve over a global function field of characteristic
p is not only ramified at places of bad reduction, but also at places of good but supersingular
reduction. Similarly, for cuspidal Drinfeld modular Hecke eigenforms f of weight 2, the associated
Hecke character χf can be ramified at places where the p-rank of the underlying modular curve
decreases under reduction.

Let us now summarize the role of this article, given [Böc04] and [Böc13], and in doing so,
also give an overview of its individual sections: the main result of [Böc04] is the construction
of a crystal, for any given sufficiently small level and any weight, that serves as a motive with
a Hecke action and whose analytic realization is (essentially) Sk,`(K,C∞), similar to Scholl’s
motive [Sch90] for classical modular forms. This crystal is shown to be flat and uniformizable
in the sense of Definition 4.11. Moreover, for the crystal as a whole, an Eichler–Shimura
relation is proved in [Böc04, § 13.4] which leads to an Eichler–Shimura relation of its étale
realizations. It follows that the étale realizations form a strictly compatible system of p-adic
Galois representations.

To describe crystals with extra endomorphisms in an axiomatic way, we shall, in Definition 5.1
of the present article, introduce the notion of a Hecke crystal. We expect that Hecke crystals will
arise from Drinfeld modular forms of any rank, and not only in the rank two case considered here
and treated in [Böc04].3 Given a Hecke crystal we shall explain how to decompose it under its

3 In the higher rank cases, a satisfactory compactification of the underlying moduli spaces has just recently be
obtained by Pink, cf. [Pin13].
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G. Böckle

Hecke action into generalized eigenspaces in a way similar to the decomposition of Sk,`(K,C∞).

This will be carried out in §§ 2–5. We find this decomposition an important point, which in [Böc04]

was not treated adequately. It gives a bijective correspondence between Hecke eigenforms f and

simple subquotients of the crystal, and it attaches to every simply subquotient, and hence to f ,

a strictly compatible system (ρf,p)p of one-dimensional p-adic Galois representations.

Section 2 recalls parts of the theory of [BP09] on τ -sheaves and function field crystals. We take

a direct, but slightly different, approach from [BP09] to the localization procedure that leads from

τ -sheaves to crystals; see the bottom of page 2011. Section 3 describes Galois representations

arising from crystals. It introduces the notion of a Galois abelian crystal and recalls the main

result from [Böc13]. Section 4 clarifies results on endomorphisms of crystals and their étale

and Betti realizations. Such endomorphisms will arise from the Hecke action on Hecke crystals.

Section 5 attaches a set of Hecke characters to any Hecke crystal. Finally in § 6 we recall the Hecke

crystals constructed in [Böc04] and we prove Theorem 1.1, restated as Corollary 6.7. The proof

is at this point rather straightforward: the results from [Böc13] applied to the strictly compatible

system (ρf,p)p yield the Hecke character χf . In § 7 we illustrate Theorem 1.1 by reworking some

examples from [Böc04], or [Böc14, ch. 12, § 7].

Finally, § 8 presents results on the ramification of the Hecke character χf , or a Galois

representation ρf,p, attached to a cuspidal Drinfeld Hecke eigenform f of some level n at a place

x not dividing n. We show that if ρf,p ramifies at such an x, then the p-rank of the corresponding

modular curve has to decrease under reduction to x, and the mod p Hecke eigenvalue for Tx
has to vanish. The case of weight 2 is directly accessible via the p-torsion of the Jacobian of the

modular curve. For the study of higher weight cases, we introduce congruence methods, standard

in the number theoretic setting, to perform a reduction of any weight to weight 2. We illustrate

our results by Example 8.26. In an appendix, we explain the precise relation between the p-rank

of a curve and the ramification of the p-adic Tate module of its Jacobian via results from [deJ98].

Key notation used throughout the article. We end this introduction with a small primer of

the main notation used throughout the article. We note that some of the notation becomes more

restrictive as the article proceeds; we hope that this list will avoid possible confusion.

– X,Y denote noetherian schemes over the field Fq. From Convention 2.11 onward until the

end of § 2 and from Convention 4.3 onward, X always denotes a smooth geometrically

irreducible curve over Fq. For the (absolute) q-power Frobenius on X we write σX , or

usually simply σ.

– For any field κ, we write Gκ for Gal(κsep/κ) of κ, where κsep is a separable closure of κ.

– If X is of finite type over Fq and x ∈ X is a closed point, then by kx we denote the residue

field at x, by dx its degree over Fq and by qx its order. Moreover, we write Frobx ∈ Gkx for

the geometric Frobenius automorphism at x, i.e., the inverse of the automorphism α 7→ αq
dx

of ksep
x .

– η = SpecK denotes the generic point of X, if X is integral.

– A is an Fq-algebra of essentially finite type, i.e., the localization of a finitely generated

Fq-algebra, and C = SpecA. The ring A plays the role of a coefficient ring. By MaxA ⊂
SpecA we denote the subset of maximal ideals. In the introduction and from Convention 2.6

onward, A is a Dedekind domain with constant field Fq and fraction field F . In that case,

by Ap and Fp we denote the completions at p ∈ Max(A).

– In §§ 4 and 5, L denotes a complete valued field containing K.
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– In §§ 6 and 8 we assume X to be projective, we mark a closed point ∞ on X, and we
take C = X r {∞} = SpecA. We use F to denote Frac(A) = Fq(X) and omit K from the
notation.

2. On τ -sheaves, crystals and good representatives

In this section, we first recall the notions of τ -sheaf and crystal from [BP09]. Our main interest
will lie in flat crystals, flatness being a property which is shared by the crystals we will ultimately
consider. From results in [BP09] we know that over the generic points of the base, flat crystals
possess a locally free representative. If the base is a curve, work of Gardeyn, see [Gar01], allows
one to extend the locally free representative from the generic fiber to an open subscheme of the
curve.

Throughout this section, Fq denotes the finite field of q elements for q a power of a prime p.
By X, Y we denote noetherian schemes over Fq. For the q-power Frobenius on X we write σ (or
σX). We write A for an Fq-algebra essentially of finite type and C for SpecA.

We recall some notions from [BP09] which are modeled on the notions F -sheaf or shtuka of
Drinfeld, cf. [Dri87] and t-motive of Anderson, cf. [And86].

Definition 2.1. A τ -sheaf F = (F , τ) on X over A (or simply a τ -sheaf on X) is a coherent
sheaf of OX×C-modules endowed with an OX×C-linear homomorphism

τ : (σ × id)∗F → F .

A morphism of τ -sheaves is an OX×C-linear morphism which respects the action of τ .

A τ -sheaf F is called locally free of rank r ∈ N if the underlying sheaf F is a locally free
OX×C-module of finite rank r.

The category Cohτ (X,A) of all τ -sheaves on X over A with the above notion of morphism
is an A-linear abelian category. Kernels, cokernels, etc. of a morphism ϕ are computed as the
corresponding object in the category of coherent OX×C-modules with the induced τ -action. The
morphism sets in Cohτ (X,A) are denoted Homτ ( , ).

The simplest non-zero τ -sheaf on X over A is the unit τ -sheaf 1X,A whose underlying sheaf
is OX×C and where τ is the adjoint map to σ × id : OX×C → (σ × id)∗OX×C . It is the unit
object for the natural operation of tensor product on τ -sheaves.

For any Fq-morphism f : Y →X there is a contravariant functor f∗ : Cohτ (X,A)→Cohτ (Y,
A), base change, which to any τ -sheaves F on X attaches the τ -sheaf on Y with underlying sheaf
(f × idC)∗F and induced τ -action. In particular, we obtain such a functor for the locally closed
immersion ix : x = Spec(kx)→X of any point x of X. In the same way, a covariant functor direct
image f∗ : Cohτ (Y,A)→ Cohτ (X,A) is defined which to G on Y attaches f∗G with underlying
sheaf (f×idC)∗G and induced τ -action. Another functor that will be of importance to us is change
of coefficients: for any A-algebra A′ we have a functor ⊗A A′ : Cohτ (X,A)→ Cohτ (X,A′).

For n ∈ N one defines the endomorphism τn : (σn × id)∗F → F inductively via τ1 = τ
and τn+1 = τn ◦ (σn × id)∗τ . The endomorphism τn is also a homomorphism of τ -sheaves τn :

(σn × id)∗F → F where (σn × id)∗F = ((σn × id)∗F , (σn × id)∗τ).

The main concept introduced in [BP09] is that of a crystal. The category Crys(X,A) of
A-crystals on X is obtained from the category of τ -sheaves by a localization procedure. In the
following we give a definition of this localization which is slightly different from but equivalent
to the one in [BP09, Proposition 3.39]: the new category has the same objects as the category of
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τ -sheaves, but more morphisms (and also more isomorphisms). For τ -sheaves F and G on X we
define the set of morphisms from F to G in Crys as

Homcrys(F ,G) =

(⋃
n∈N

Homτ ((σn × id)∗F ,G)

)/
∼,

where the equivalence relation ∼ is defined as follows: morphisms ϕ : (σn × id)∗F → G and
ψ : (σm × id)∗F → G are equivalent if there exists ` > max{m,n} such that

ϕ ◦ (σn × id)∗(τ `−n) = ψ ◦ (σm × id)∗(τ `−m).

An alternative way to think of morphisms in Crys is to display them as diagrams:

F (σn × id)∗Fτnoo ϕ // G.

Composition of morphisms in Crys is defined in the obvious way, i.e., the composite of ϕ :
(σn × id)∗F → G and ψ : (σm × id)∗G → H is defined as

ψ ◦ (σm × id)∗ϕ : (σm+n × id)∗F −→ H.

One can verify that Crys(X,A) forms an A-linear abelian category. The functors f∗, ⊗A A′
and Rif∗, for f proper, pass to well-defined functors on Crys(. . .).

It is perhaps instructive to explain the meaning of this localization procedure by giving the
proof of the following result (from [BP09]).

Proposition 2.2. A τ -sheaf F is the zero object in Crys(X,A) if and only if τF is nilpotent,
i.e., there exists n ∈ N such that τnF = 0.

Proof. Suppose first that τnF = 0. We need to show that in Crys(X,A) the morphisms 0→ F
and F → 0 are isomorphisms. By considering both of their composites, we are reduced to
proving that the zero map 0 : F → F is equivalent to the identity idF . But this follows from
τn ◦ 0 = 0 = τn ◦ idF . Suppose conversely that F is isomorphic to zero in Crys(X,A). Then the
zero map and the identity on F must be equivalent. The latter means that there exists n ∈ N
with τnF = τnF ◦ idF = τnF ◦ 0 = 0. 2

The following results we quote from [BP09, ch. 3 and § 4.1].

Proposition 2.3. (a) The category Crys(. . .) is obtained from Cohτ (. . .) by localization at
nil-isomorphisms, i.e., morphism in Cohτ (. . .) whose kernel and cokernel are nilpotent.

(b) Two τ -sheaves F , G are isomorphic in Crys(X,A) if and only if there exists a τ -sheaf H
and nil-isomorphisms F ϕ

← H ψ
→ G.

(c) For any τ -sheaf F , the morphism τn : (σn × id)∗F → F is a nil-isomorphism, and (so)
F and Im(τnF ) represent the same object in Crys(. . .).

(d) Any crystal has a representative on which τ is injective, namely Im(τnF ) for n� 0.

(e) For any morphism f : Y → X, the functor f∗ : Crys(X,A)→ Crys(Y,A) is exact.

(f) For any open immersion j : U ↪→ X, there is a functor j! : Crys(U,A)→ Crys(X,A),
extension by zero, characterized by j∗j! = id and i∗j! = 0 for i : Z ↪→ X a closed complement
to j.

We remark that in [BP09, § 3.4] the characterization in (a) was used to define Crys(X,A).
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Definition 2.4 [BP09, Definition 4.2.6]. The category Crysflat(X,A) of flat A-crystals is the full
additive subcategory of Crys(X,A) consisting of those crystals for which the crystal TorAi ( , A′)
vanishes for all i > 1 and all coefficient changes A→ A′.

Flat crystals are preserved under pullback and change of coefficients. After restriction to a
suitable finite locally closed stratification of the base X, they are, in some sense, representable by
τ -sheaves whose underlying sheaf is locally free. In particular cases, the latter will be important
in this article. We refer to [BP09, ch. 7] for further details.

Example 2.5. Let ix : x ↪→ X be the immersion of a closed point and let F be a flat crystal on
x. Then ix∗F is a flat crystal on X. This shows the need for a stratification as mentioned above.

Convention 2.6. From now on, for the remainder of this article, we fix an absolutely irreducible
affine smooth curve C with constant field Fq. Its coordinate ring A = Γ(C,OC) is a Dedekind
domain. By F = Frac(A) we denote its fraction field.

Coefficient rings with a name different from A need not be of the above type.

Proposition 2.7 [BP09, Proposition 7.5.8]. Let X = SpecK for a field K. Let F be a flat
A-crystal on X and denote by G a τ -sheaf that represents F . Then, if τG is injective, the sheaf
G is locally free. In particular, for any choice of G the image of τnG : (σn × id)∗G → G is locally
free for n sufficiently large.

We introduce the following notions which go back to [Gar01, § 1.I].

Definition 2.8. A τ -sheaf F on X is said to be good if it is locally free and if the base change
τx of τ to any x ∈ X is injective.

A τ -sheaf F on X is said to be generically good if its base change to any generic point is
good.

Proposition 2.7 can be restated as follows.

Corollary 2.9. Any flat A-crystal on SpecK has a generically good representative.

It is not difficult to deduce from Propositions 2.3(b) and 2.7 that the generic ranks of a
generically good representative are independent of any choices.

Definition 2.10. Suppose X is integral. The rank of F ∈ Crysflat(X,A) is the rank over η×C
of any representative of Fη as in Proposition 2.7.

To obtain stronger representability results for flat crystals, we need to recall further concepts
from Gardeyn [Gar01], and we need to restrict X to the curve case.

Convention 2.11. For the remainder of this section, we let X denote a smooth geometrically
irreducible curve with constant field Fq. Its closed points will be denoted by x, its generic point
by η and the corresponding immersions by ix : x ↪→ X and iη : η ↪→ X, respectively.

Definition 2.12. Let F be a good τ -sheaf on η.
A model of F is a locally free generically good τ -sheaf on X whose generic fiber agrees with

Fη.
The model is a good model if it is good as a τ -sheaf.
A model H of F is said to be maximal if Homτ ( ,H) represents the functor G 7→

Homτ (Gη,F).

Due to its universal property, one should think of a maximal model as a τ -sheaf analog of
the Néron model in the context of abelian varieties.
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Remark 2.13. Our definition of maximal model is slightly different from the one given by
Gardeyn. In [Böc04, ch. 8] it is shown that the two definitions agree, and, moreover, that the
maximal model, if it exists, is also characterized as being the largest coherent τ -subsheaf of iη∗F .

We quote the following result from [Gar01, Proposition 1.13].

Theorem 2.14 (Gardeyn).

(a) Every good τ -sheaf on η admits a maximal model. It is unique, up to unique isomorphism.

(b) Any good model is maximal.

For any generically good τ -sheaf F on X we write Fmax for the maximal model of Fη. By
the universal property of Fmax we have the following corollary.

Corollary 2.15. There is a canonical homomorphism F → Fmax.

Example 2.16. Even if F is generically good and its underlying sheaf is locally free, so that
ϕ : F → Fmax is injective, the monomorphism ϕ need not be bijective. Let X = SpecR for R a
discrete valuation ring with uniformizer π. If F is locally free and generically good on SpecR,
then so is πnF for any n ∈ N0. Now if F is good, then (πnF)max = F , and hence in this case ϕ
is not bijective.

In light of the above and Example 2.5, the following representability result is optimal.

Theorem 2.17. Let F be in Crysflat(X,A), and also denote by F a τ -sheaf representative which
is generically good and on which τF is injective, cf. Proposition 2.3(d) and Corollary 2.9. Let
ϕ : F → Fmax be the canonical homomorphism. Then there exists S ⊂ X of dimension zero such
that the restriction ϕ|XrS is an isomorphism. In particular, F has a locally free representative
on a dense open subscheme of X. Moreover, Ker(ϕ) lies in Crysflat(S,A).

Proof. We consider the exact sequence

0 −→ K −→ F ϕ−→ Fmax −→ C −→ 0

in Cohτ (X,A) with K = Ker(ϕ) and C = Coker(ϕ). By the construction of ϕ and the generic
goodness of the chosen representative, ϕη is an isomorphism. We deduce that the sheaves K
and C are supported on S × C for some zero-dimensional S ⊂ X. This proves all but the last
assertion.

For the last assertion, we may pass to the stalk at any closed point x of S. By
Proposition 2.3(e), this is an exact operation on crystals, so that

0 −→ Kx −→ Fx
ϕx−→ Fmax

x −→ Cx −→ 0

is exact in Crys(x,A). Now, Fmax
x has a locally free representative on x×C, which is a Dedekind

scheme. Therefore the τ -sheaf kernel of Fmax
x −→ Cx, which is a representative of Imϕx, is locally

free on x × C and thus flat as an A-crystal. Since Fx is also a flat A-crystal, the short exact
sequence 0→ Kx→ Fx→ Imϕx→ 0 yields the flatness of Kx by standard arguments. 2

Remark 2.18. If F has a locally free representative with τ injective, then a representative as in
the previous theorem is given by Im(τnF ) for n sufficiently large. In this case, it is easy to deduce
that ϕ has trivial kernel, since F is torsion-free.

From Theorem 2.17 it is straightforward to deduce the following result.

Corollary 2.19. Any F ∈ Crysflat(X,A) has a good representative on a dense open subset
of X.
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3. The generic Galois representation of a flat crystal

In this section we collect basic properties of Galois representations attached to flat crystals.
Our main focus is on the case where the base is a curve. There we explain how any A-crystal
gives rise to a strictly compatible family of p-adic Galois representations and we shall present
a satisfactory description of the ramification locus of the members of this family. We heavily
borrow from [BP09, Gar01, Kat73] and [TW96]. If the compatible system is abelian, we deduce
from [Böc13] that its semisimplification arises from a direct sum of Hecke characters.

As in § 2, by X,Y we denote noetherian schemes over Fq. Recall also from 2.6 that A is
throughout the coordinate ring of a smooth affine geometrically connected curve C over Fq.

To prepare the following result, recall that to any coherent sheaf F on X we can associate an
étale sheaf Fét on the small étale site as the functor that maps any étale morphism u : U → X
to Γ(U, u∗F). For any morphism f : Y → X we have (f∗F)ét = f∗ét(Fét), canonically. Moreover,
for any étale sheaf F one has a canonical isomorphism σ∗F ∼= F, cf. [SGA41

2 , Rapport § 1]. Thus

F → Fét induces for any τ -sheaf F a pair (Fét, τét : Fét → Fét). As in [BP09, ch. 10], we
define the étale sheaf of τ -invariant sections F ét as the contravariant functor on étale morphisms
u : U → X by

F ét(U) := (Γ(U, u∗F))τ := Ker(1− τét : Γ(U,Fét(U)) −→ Γ(U,Fét(U))).

We can now state the following important result of Katz, cf. [Kat73, Proposition 4.1.1].

Theorem 3.1 (Katz). Suppose X is normal and integral. Then the map F 7→ F ét defines an
equivalence of categories from the full subcategory category of Cohτ (X,Fq) on pairs (F , τ), such
that F is locally free and τ is an isomorphism, to the category of lisse Fq-sheaves on the small
étale site over X, i.e., to the category of continuous representations of the fundamental group
π1(X) on vector spaces over Fq of finite dimension.

In this correspondence, the rank of the lisse sheaf F ét over Fq is equal to the rank of F as an
OX -module, and the pullback of F ét to a closed point x ∈ X is the étale sheaf associated to i∗xF .

Let from now on X be normal and integral with generic point η = SpecK, and let A satisfy
Convention 2.6 so that it is a Dedekind domain of finite type over Fq. Suppose that F ∈Cohτ (X,
A) is generically good with generic rank r. Fix a maximal ideal p of A and n ∈ N, and consider
the functor

(SpecK ′
u−→ SpecK) 7→ Γ(SpecK ′, u∗(Fη)⊗A A/pn)τ (1)

for finite separable morphism K ↪→ K ′. If τ is an isomorphism on Fη ⊗A A/p, and thus also on
Fη ⊗A A/pn, it follows by Theorem 3.1 that this defines a lisse étale sheaf of Fq-vector spaces
over SpecK of rank equal to r dimFq A/p

n which is the rank of Fη ⊗A A/pn considered as a
OX -module. The étale sheaf is an A/pn-module in the obvious way, and via induction over n,
considering the growth of ranks, one finds that (1) defines a lisse étale sheaf of A/pn-modules of
rank r. In other words, F defines a Galois representation

ρF ,pn : GK → GLr(A/p
n).

For increasing n, these representations form an inverse system which in the limit defines a
representation

ρF ,p∞ : GK → GLr(Ap),

where Ap is the completion of A at p. Correspondingly, we write Fp for the completion of F at p.
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Remark 3.2. The representation ρF ,p∞ depends only on the generic fiber of F .

From Katz’s theorem, we also deduce the following corollary.

Corollary 3.3. Let F be a good τ -sheaf on X. Set D = Supp(Coker(τ : (σ × id)∗F → F))
and for p a maximal ideal of A define SFp ⊂ X as the image of the intersection D ∩ (X × {p})
under the projection X × C → X. Then ρF ,p∞ is unramified on X r SFp .

A good τ -sheaf is the maximal model of its generic fiber, and can therefore be constructed
out of the generic fiber, cf. Theorem 2.14 for curves and [Böc04, ch. 8] for any regular X. In this
sense, the properties we deduce on the ramification of ρF ,p∞ are properties which depend only
on the generic fiber of F , in agreement with Remark 3.2.

Proof of Corollary 3.3. We need to show that for every n the assignment

(U
g−→ X) 7−→ Γ(U, g∗F ⊗A A/pn)τ

defines a lisse A/pn-sheaf of rank r = rankF on XrSFp . By induction on n and using the obvious
A/pn-action it will suffice to show that it defines a lisse Fq-sheaf of rank equal to r · dimFq A/p

n

on X rSFp . For this we may apply Theorem 3.1 to the restriction of F ⊗AA/pn to U = X rSFp
where F ⊗A A/pn is a locally free sheaf of OX -modules of rank r · dimFq A/p

n and τ is onto and
hence an isomorphism. 2

Definition 3.4. We say F as in Corollary 3.3 is generically lisse at p if SFp is properly contained
in X.

Definition 3.5. By F ét
pn we denote the étale sheaf on X defined by

(U
g−→ X) 7−→ Γ(U, g∗F ⊗A A/pn)τ .

The functor defined by (1) is invariant under nil-isomorphism. From Corollary 2.9 we know
that any flat crystal possesses a generically good representative. Denoting by RepAp

(GK) the
category of continuous representations of GK on free finitely generated Ap-modules, we have
the following corollary.

Corollary 3.6. The assignment in (1) induces a functor

Crysflat(X,A)→ RepAp
(GK) : F 7→ ρF ,p∞ .

With regards to strict compatibility of the representations just constructed, we need the
following result, which is essentially from [BP09, ch. 10].

Proposition 3.7. Suppose F is good at a closed point x ∈ X which does not lie in SFp
(cf. Corollary 3.3). Then

det
Ap

(zdx id−ρF ,p∞(Frobx)) = det
A

(z id−τx|Fx) ∈ A[zdx ].

Proof. Under our hypotheses, Fx ⊗A A/pn is locally free of rank r over kx ⊗ A/pn. Since x is
not in SFp the map τx : σ∗Fx → Fx is an isomorphism. In the notation of [BP09], this implies
that Fx ⊗A A/pn is semisimple so that naive and crystalline L-functions agree, cf. [BP09, §§ 8.1
and 9.3] for the notation. In this situation, [BP09, Proposition 10.6.3] yields

det
A/pn

(id−zdxρF ,pn(Frobx)) = det
A/pn

(id−z τx ⊗A A/pn|Fx ⊗A A/pn) ∈ A/pn[z]

≡ det
A

(id−z τx|Fx) (mod pn).

Moreover, all three polynomials are of degree rdx with leading coefficient a unit. Passing to the
inverse limit over n, replacing z by z−1 and multiplying by zrdx yields the asserted result. 2
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For the following result, we recall the definition of a strictly compatible system from [Böc13,
Definition 2.16] adapted to the present context: let X be a smooth projective geometrically
irreducible curve over Fq and let C ⊃ C be a smooth compactification.

Definition 3.8. An F -rational strictly compatible system of n-dimensional representations of
GK for a ramification divisor D ⊂ X × C with defect set T ⊂ C and ramification set S ⊂ X
consists of:

(i) a continuous semisimple representation

ρp : GK → GLn(Fp)

for each p ∈ C r T , which is unramified outside S ∪ SDp where SDp = {x ∈ X | (x, p) ∈ D};
and

(ii) a monic polynomial fx ∈ F [z] of degree n for each x ∈ X r S,

such that S and T are finite, D has neither vertical nor horizontal components and for all
p ∈ C r T and x ∈ X r (S ∪ SDp ) one has CharPolρp(Frobx) = fx.

Remark 3.9. Insisting that D has neither vertical nor horizontal components implies that S and
T are unique. Moreover, the sets SDp for p /∈ T and {p ∈ C | (x, p) ∈ D} for s /∈ S are all finite.

Corollary 3.10. Suppose X is a smooth curve and F ∈ Crysflat(X,A). Then the
representations (ρF ,p∞)p, where p ranges over the maximal ideals of A at which F is generically
lisse in the sense of Definition 3.4, form a strictly compatible system of Galois representations.

Proof. In the following, denote by X the smooth compactification of X. Recall first that ρF ,p∞

only depends on Fη, which is represented by a good τ -sheaf on η. Next, by Theorem 2.14 we

can extend Fη to a maximal model on X. Let U be the maximal open subset of X on which F
is good, see Corollary 2.19. Clearly U ⊂ X is dense open, so that S = XrU is finite. Define DF
as

((X r U)× C) ∪ (X × (C r C)) ∪ Supp(Coker(τ : (σ × id)∗F|U −→ F|U ))

and T as

(C r C) ∪ {p ∈ C | U × {p} ⊂ DF}.
The set T is finite because Coker τ has a support of codimension at least 1 in X × C. Finally,
for p not in T define SFp (= SDFp ) as in Corollary 3.3, i.e., as the image of the projection onto U

of the intersection of DF with U ×{p}. By our definition of T , the sets SFp are finite. We deduce
from Corollary 3.3 that for any p /∈ T the representation ρF ,p∞ is unramified on the dense open
subset X r (S ∪ SFp ) of X.

Define for any x ∈ X r S the polynomial fx by

fx(z) = det(y id−τx|Fx)|y=zdx ∈ A[z].

It is monic of degree r = rankF . By Proposition 3.7, we have, for any p /∈ T and any x ∈
X r (S ∪ SFp ), that

CharPolρ(Frobx)(z) = fx(z) ∈ A[z].

This completes the proof that (ρF ,p∞)p/∈T forms a strictly compatible system of F -rational Galois
representations with ramification set S, defect set T and divisor DF . 2

2017

https://doi.org/10.1112/S0010437X15007290 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007290


G. Böckle

Remark 3.11. The proof of Corollary 3.10 shows that the divisor DF , or equivalently the sets
SFp , p /∈ T , describing ramification on the dense open set where Fη has a good model, can be
obtained in a straightforward manner from the maximal extension of Fη.

Definition 3.12. We say F ∈ Crysflat(X,A) is Galois abelian if the members of the compatible
system (ρF ,p∞)p are Galois representations with abelian image for almost all p ∈ Max(A).

In § 5 we shall deduce the property of being Galois abelian from the existence of a natural
Hecke action on the crystal. We end this section by an application of [Böc13, Theorem 2.20] to
the present setting. Using the notation of [Böc13], we conclude with the following theorem.

Theorem 3.13. Suppose X is a smooth curve and F ∈Crysflat(X,A) is Galois abelian of generic
rank r. Let D = DF . Then there exist a finite extension E of F and Hecke characters (χi)i=1,...,r

for ΣD over E such that for all places v of E not above T the v-adic Galois representation⊕r
i=1 ρχi,v of GK attached to

⊕r
i=1 χi is isomorphic to the semisimplification (ρF ,p∞ ⊗Ap Ev)

ss

for p below v. The list of characters (χi)i=1,...,r is unique up to permutation.

4. The endomorphism ring of a uniformizable crystal

The aim of this section is to obtain various results on the endomorphism rings of crystals
and τ -sheaves. We shall show that endomorphism rings of generically good τ -sheaves near the
generic point are finitely generated over A. The endomorphism ring of a τ -sheaf may, in general,
be smaller than that of its associated crystal. If a crystal has the further property that it is
uniformizable, cf. Definition 4.11, then its endomorphism ring is a subring of a finite rank matrix
algebra over A. The latter appears as the endomorphism ring of the analytification of the crystal.
Another way to gain information on the endomorphism ring is to consider the étale p-adic
realizations of the crystal. We end this section with a comparison between the endomorphism
ring of the analytification of a crystal and its p-adic realization. This will be needed in § 5.

We keep the notation Fq, X, Y,A introduced at the beginning of § 3.
The following lemma, which is essentially due to Anderson, cf. [And86, Theorem 2], is inspired

by analogous considerations for the endomorphism ring of an abelian variety.

Lemma 4.1. Suppose X is reduced. Let F and G be generically good τ -sheaves on X such that
in addition F is torsion-free.4 Then Homτ (F ,G) is a finitely generated projective A-module. If
X is irreducible, its rank is at most the product of the ranks of Fη and Gη, for η the generic
point of X.

Proof. Because A is a Dedekind domain, we need to show that Homτ (F ,G) is finitely generated
and A-torsion-free. By the torsion-freeness of F , it suffices to prove the assertion after base
change to a generic point η of X, i.e., under the assumption that X = SpecK for an Fq-field K.
For this it suffices to prove that the natural homomorphism

Homτ (F ,G)⊗Fq K → HomK⊗FqA(M,N) : (f ⊗ α) 7→ αf (2)

with M = Γ(SpecK ⊗ A,F) and N = Γ(SpecK ⊗ A,G) is injective. The modules M and N
are projective and finitely generated over K ⊗Fq A, and so the right-hand side is a projective
K⊗FqA-module of finite rank. Moreover, the given map is a homomorphism of K⊗FqA-modules.
Thus if the homomorphism is injective then the lemma is proved.

4 That is, F →
⊕

η iη∗Fη is injective, where the sum is over the generic points of X.

2018

https://doi.org/10.1112/S0010437X15007290 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007290


Hecke characters associated to Drinfeld modular forms

We assume that the homomorphism is not injective and thus that we can find f0, . . . , fm ∈
Homτ (F ,G) and α0, . . . , αm ∈ K with

∑
αi ⊗ fi 6= 0 and

m∑
i=1

αifi = 0 (3)

as a homomorphism from M to N . We also assume that m is minimal and that α0 = 1 in∑
αi ⊗ fi. Applying τG to

∑
αifi = 0 and any section s ∈M of F yields∑

τG(αifi(s)) =
∑

αqi τG(fi(s)) =
∑

αqi fi(τF (s)) = 0.

Since M is torsion-free and Im(τF ) ⊂ F generically generates F we must have
∑
αqi fi = 0 as a

homomorphism from M to N . Subtracting it from (3) yields
m∑
i=2

(αi − α)fi = 0.

By the minimality of m, we deduce that all the αi satisfy αqi = αi and hence lie in Fq. But then
the fi are linearly independent over Fq. This contradicts the minimality hypothesis on m. 2

Remark 4.2. The assertion of the lemma requires both that τF is injective and that F is torsion-
free. If either fails, F may have a non-zero direct summand H on which τH is zero. For such
an H one has Endτ (H) = EndOX×C (H), and the right-hand side need not be finitely generated
over A.

For flat crystals over a general noetherian X, a finiteness result on Homcrys as an A-module
seems conceivable, however only under suitable additional hypotheses, cf. Example 4.5.

Convention 4.3. For the remainder of this article, X will denote a smooth geometrically
irreducible curve with constant field Fq.
Proposition 4.4. Let F be Crysflat(X,A) and write F also for a generically good representative
in Cohτ (X,A). Then we have natural homomorphisms of endomorphism rings.

Endτ (F) //
� _

��

Endτ (Fmax)
� _

��

� � // Endτ (Fη)� _

��
Endcrys(F) // Endcrys(Fmax) �

� // Endcrys(Fη)
All vertical maps as well as the right horizontal ones are injective. If F → Fmax is injective,
cf. Remark 2.18, then the same holds for the left horizontal maps.

Proof. We shall only indicate the construction of the horizontal arrow on the lower left, the
other assertions being either rather straightforward or similar to but simpler than the argument
we give. To see that any endomorphism in Crys(X,A) of F extends to Fmax, we consider the
following commutative diagram.

F

��

(σn × id)∗Fτnoo

��

ϕ // F

��
Fmax (σn × id)∗Fmaxτnoo

� _

(σn×id)∗ι

��

Fmax
� _

ι

��
(σn × id)∗Fη

ϕη // Fη
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Here the upper horizontal line is the representative of an endomorphism of F as a crystal. Now

the point is that the image of ϕη ◦ (σn× id)∗ι is a coherent τ -subsheaf of Fη, whose generic fiber

lies in Fη. But Fmax contains all coherent subsheaves with this property, cf. Remark 2.13, and

hence ϕη ◦ (σn × id)∗ι factors via Fmax as had to be shown. Alternatively, one can also directly

apply the universal property of Fmax from Definition 2.12. 2

Example 4.5. We give two examples which explain parts of the difference between Endτ (F) and

Endcrys(F). For the first example, let X = SpecFq[θ] and A = Fq[t] and let C be the Carlitz-τ -

sheaf, i.e., the τ -sheaf corresponding to the pair (Fq[θ, t], (t − θ)(σ × id)) where (t − θ)(σ × id)

maps f(θ, t) to (t − θ)f(θq, t). Let F = C ⊕ (σ × id)∗C. Then the following diagram defines an

endomorphism in Endcrys(F) which, as we leave to the reader to prove, does not lie in the image

of Endτ (F):

C ⊕ (σ × id)∗C τ
←− (σ × id)∗C ⊕ (σ2 × id)∗C (x,y)7→(0,x) // C ⊕ (σ × id)∗C.

In the second example, we let X be arbitrary, take F = OX×C and define τ by adjunction

from

OX×C
a(σ×id)// OX×C

for some a ∈ Ar {0}. Then the homomorphism ϕn in Homcrys(F ,G) defined by the diagram

OX×C τn
←− (σn × id)∗OX×C ∼= OX×C

ϕ−→ G

for ϕ ∈ Hom(1X,A,G) is characterized by anϕn = ϕ. One deduces

Homcrys(F ,G) ∼= Homτ (F ,G)⊗A A
[

1

a

]
.

The crystals which we shall ultimately consider will be flat (and in fact have a locally free

representing τ -sheaf) and uniformizable. The latter condition will have a strong impact on their

endomorphism ring. We recall the necessary notions: let L ⊂ C∞ be any complete subfield

containing K (where SpecK = η) and denote by L〈t〉 the Tate-algebra (in the variable t) over

L, i.e., the ring

L〈t〉 =

{∑
i>0

ait
i | ai ∈ L, |ai|→ 0 for i→∞

}
of convergent power series on the closed unit disc (with coefficients in L). By σ̃, we denote

the endomorphism of L〈t〉 defined by σ̃(
∑

i ait
i) =

∑
i a
q
i t
i. There is an obvious homomorphism

K[t] = K ⊗Fq Fq[t] ↪→ L〈t〉. It is equivariant for the endomorphism σ × id on the domain and σ̃

on the range.

Since A is of finite type over Fq and of dimension one, we can find, for instance by the

Noether normalization lemma, an element t ∈ A such that Fq[t] ↪→ A is finite. One can verify

that, for L as above, the ring A⊗Fq [t]L〈t〉 is independent of the choice of such a t. We also write

σ̃ for idA⊗σ̃.

Definition 4.6. An analytic τ -module on L is a pair (M, τ) consisting of a finitely generated

A⊗Fq [t] L〈t〉-module and a σ̃-linear endomorphism τ : M →M .
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The category of analytic τ -modules on L over A is denoted Cohan
τ (L,A). It is A-linear

abelian. Similarly, one can define analytic crystals on L over A.
Regarding any τ -sheaf F ∈Cohτ (SpecK,A) as a pair (M, τ) consisting of a finitely generated

K⊗A-module and a (σ×id)-linear endomorphism τ : M →M , we define Fan = (M, τ)⊗K[t]L〈t〉.
Again this is independent of the choice Fq[t] ↪→ A.

Definition 4.7. We call the pair Fan = (M, τ)⊗K[t] L〈t〉 the analytification of F .

The analytification of 1η,A is thus given by the pair 1an
L,a = (A⊗Fq [t] L〈t〉, σ̃).

Proposition 4.8. Analytification defines a functor

Cohτ (SpecK,A)→ Cohan
τ (L,A) : F 7→ Fan

and the analogous assertion holds for the corresponding categories of crystals.

In [And86, §§ 2.9 and 2.10] the following properties of L〈t〉 are shown:

(a) the Fq[t]-module of fixed points (L〈t〉)σ̃ is equal to Fq[t] (from which it follows that (A⊗Fq [t]
L〈t〉)σ̃ = A);

(b) any F ∈ L〈t〉 can be written as F = uf where u ∈ L〈t〉 is a unit and f ∈ L[t] is monic with
all roots of absolute value at most one;

(c) L〈t〉 is a unique factorization domain.

The following lemma is a modification of Lemma 4.1.

Lemma 4.9. Suppose for (M, τ) ∈ Cohan
τ (L,A) that M is locally free and τ is injective, and

define P = HomCohan
τ

(1an
L,A, (M, τ)). Then P is a finitely generated projective A-module and the

homomorphism

ψ : P ⊗Fq [t] L〈t〉→ HomA⊗Fq [t]L〈t〉(1
an
L,A,M) ∼= M

is injective.

Proof. We first show that ψ is injective. To prove injectivity, we may pass from A to the subring
Fq[t], and so we may assume that A = Fq[t]. We argue by contradiction and let

m =
s∑
i=1

ϕi ⊗mi 6= 0

be an element in the kernel of ψ. We may assume that the number s of summands is minimal
among the non-zero elements in Ker(ψ). Since elements of P take their values in the torsion-free
A-module M , the A-module P itself is torsion-free, and hence the submodule generated by
{ϕi}i=1,...,s is free over A = Fq[t]. It follows from the minimality of s that the ϕi are linearly
independent over Fq[t]. As yet another simplifying hypothesis, we may assume that the elements
m1, . . . ,ms ∈ L〈t〉 have 1 as their greatest common divisor.

The elements mi can be written as mi = uifi where ui is a unit of L〈t〉 and fi is monic in
L[t] with roots of absolute value at most one. We may also assume that u1 = 1. We now consider
the element

m′ = (1⊗ σ̃(f1))m− (1⊗ f1)σ̃(m) =
s∑
i=2

ϕi ⊗ (fiσ̃(f1)ui − f1σ̃(fiui)).
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The element m′ lies again in Ker(ψ), since the kernel is fixed under σ̃. From the minimality of s
we deduce that

fiσ̃(f1)ui = f1σ̃(fi)σ̃(ui) for i = 2, . . . , s.

Since the fi are monic, we can separate them from the units and find

f1

σ̃(f1)
=

fi
σ̃(fi)

∈ L(t) and ui = σ̃(ui) for i = 2, . . . , s.

The latter yields ui ∈ (L〈t〉)∗∩ (L〈t〉)σ̃ = A∗. The former implies that f1/ gcd(f1, σ̃(f1)) must be
a divisor of all fi. Since the greatest common divisor of all fi is 1, the displayed quotient must
be 1, i.e., f1 must divide σ̃(f1). Comparing degrees and observing that both are monic, we find
f1 = σ̃(f1) and then the same for all i. It follows that the coefficients of the fi lie in Lσ̃ = Fq, so
that mi = fiui ∈ A = Fq[t] for all i. Therefore m = (

∑s
i=1miϕi)⊗ 1, and hence

∑s
i=1miϕi = 0.

This contradicts the linear independence of the ϕi. The proof of injectivity is thus complete.
To show that P is finitely generated, it suffices to show that P satisfies the ascending chain

condition. Now, any ascending chain of A-submodules of P yields, via the injectivity of ψ, an
ascending chain of A⊗Fq [t] L〈t〉-submodules of M . The latter is noetherian, and hence the same
follows for P . 2

Lemma 4.10. For F ∈ Cohan
τ (L,A), the natural homomorphism

Homτ (1an
L,A,F) −→ Homcrys(1

an
L,A,F)

is bijective, and hence the functor F 7→ Homτ (1an
L,A,F) factors via Crysan(L,A).

Proof. The bijectivity is immediate upon observing that τn : (σ̃n)∗1an
L,A→ 1an

L,A is an isomorphism
for all n ∈ N. For the second part note that Homcrys(1an

L,A,F) depends only on the crystal F . 2

Now let F lie in Crysflat(X,A). Extending the analytification functor, we define Fan :=
(Fη)an. On a dense open U ⊂ X, the crystal F has a good representative. Its rank is the rank of
the crystal F , cf. Definition 2.10. By the previous lemmas, HomCrysan(1an

L,A,Fan) is well defined
and is a projective A-module of rank at most the rank of F .

Definition 4.11. Let F ∈ Crysflat(X,A) be of rank r. Then F is uniformizable for K ↪→ L
where L ⊂ C∞ is a complete subfield, if rankA HomCrysan(1an

L,A,Fan) = r.

We say that F is (potentially) uniformizable at x ∈ X if L is (a finite extension of) the
completion of K at x.

Proposition 4.12. Suppose F ∈Cohτ (X,A) is generically good and uniformizable for K ↪→ L.
Then the homomorphism ψ : P ⊗Fq [t] L〈t〉→ Fan from Lemma 4.9 is an isomorphism.

Proof. By Lemma 4.9, ψ is injective and Im(ψ) is a locally free τ -subsheaf of Fan. By
uniformizability, they have the same rank. Hence they have the same rank over L〈t〉 (for
some finite homomorphism Fq[t] ↪→ A). We claim that there exist a ∈ Fq[t] r {0} such that
aFan ⊂ Im(ψ). Then it follows from [And86, § 2.10] that the natural homomorphism

(aFan)τ ⊗Fq [t] L〈t〉 −→ aFan

is an isomorphism, from which one easily deduces that ψ is an isomorphism.
To prove the claim, let B = (b1, . . . ,bR) be an Fq[t]-basis of P and hence an L〈t〉-basis of

Im(ψ). Using the elementary divisor theorem, we can also find an L〈t〉-basis C = (e1, . . . , eR)
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of Fan such that there are mi ∈ L〈t〉, i = 1, . . . , R, such that B′ = (m1e1, . . . ,mReR) is an
L〈t〉-basis of Im(ψ). Let A ∈ GLR(L〈t〉) be the matrix such that B′ = BA. It follows that τIm(ψ)

is given by A−1σ̃(A) ∈ GLR(L〈t〉). Let D be the diagonal matrix with entries (m1, . . . ,mR), so
that C = B′D−1. Then it follows that τFan is described by the matrix DA−1σ̃(A)σ̃(D)−1 with
respect to C. Since it preserves Fan, it will lie in MR(L〈t〉). Taking determinants, we deduce(∏

i

mi

)
σ̃

(∏
i

mi

)−1

∈ L〈t〉.

Since the mi can be written as a unit ui times a monic polynomial fi with all its roots of
absolute value at most 1, the expression has the same number of zeros and poles. Since it is not
allowed to have any poles, it must be a unit in L〈t〉. Separating the ui from the fi, we deduce,
moreover, that a =

∏
i fi must be invariant under σ̃ and hence lie in Fq[t]. The claim follows for

the a so defined. 2

Proposition 4.13. If F ∈ Crysflat(X,A) is uniformizable and P denotes (Fan)τ , then

Endcrys(Fη) ↪→ Endcrys(Fan) ∼= EndA(P ).

Proof. To see the inclusion on the left, let F also denote a generically good representative of F ,
and define M as the projective finitely generated K ⊗A-module M = Γ(η×C,Fη). Let ϕ be in
Endcrys(Fη). Choosing a representing diagram for ϕ, the underlying sheaf homomorphism yields

a ϕ ∈ HomK⊗A(Kσn⊗K M,M) for some n ∈ N.5 Via a choice Fq[t] ↪→ A, the endomorphism
ϕ induces an element in HomK[t](K

σn⊗K M,M). Denote by ψ the image of ϕ in Endcrys(Fan).

Then, similarly, ψ can be regarded as an element in HomL〈t〉(L〈t〉σ̃
n⊗K[t]M,L〈t〉⊗K[t]M). Since

M is free over K[t] of finite rank, the image of ϕ in HomK[t](K
σn⊗K M,M) may be considered

as a square matrix over K[t] and, analogously, the image of ψ as a square matrix over L〈t〉, and
moreover the first matrix is mapped to the second by applying K[t] ↪→ L〈t〉 to its entries. Hence
if ψ is the zero endomorphism, then so is ϕ.

For the isomorphism on the right, observe first that by Lemma 4.10 we have Endcrys(1an
L,A) =

Endτ (1an
L,A), and the latter coincides with the set of τ -invariant elements of 1an

L,A, i.e. with A.
Then from Proposition 4.12 we obtain

Endcrys(Fan) = Endcrys(P ⊗A 1an
L,A) = EndA(P ). 2

Example 4.14. Let F be a uniformizable crystal and denote by F also a generically good
representative. The previous proposition asserts that Endτ (Fan) = Endcrys(Fan), and so any
endomorphism in Endcrys(Fη) induces an endomorphism of analytic τ -sheaves. The first example
in 4.5 shows that Endτ (Fη) ↪→ Endτ (Fan) may be a strict inclusion.

We now explain a parallel but simpler investigation of Endcrys(F) based on Galois type
properties of F . We fix p ∈Max(A) and n ∈ N. The following is an analog of Lemma 4.9, whose
proof is immediate from Theorem 3.1.

Lemma 4.15. Suppose F ∈Cohτ (η,A/pn) is a locally free τ -sheaf on which τ is injective. Define
Qn as HomCohτ (1η,A/pn ,F) = Γ(η,F ét

pn). Then Qn is a free finitely generated A/pn-module and
the homomorphism

ψ : Qn ⊗A/pn 1η,A/pn → HomK⊗A/pn(1η,A/pn ,F) ∼= F

5 The notation Kσn

⊗K means that we regard K on the left as a ring over K on the right via σn.
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is injective. Let KF ,pn ⊂ Ksep be the fixed field of the kernel of ρF ,pn . Then ψ becomes an
isomorphism after base change from η to SpecKF ,pn .

We also have the following analog of Proposition 4.13.

Proposition 4.16. For F ∈ Crysflat(η,A/pn) of generic rank r, u : SpecKF ,pn → Spec η and
Qn = (u∗F ét

A/pn)τ one has

Endcrys(F) ↪→ Endcrys(u
∗F) ∼= EndA/pn(Qn) ∼= Mr(A/p

n).

Proof. Since u is faithfully flat, the injectivity on the left is straightforward. By the definition
of KF ,pn (and Theorem 3.1) we have Qn ∼= (A/pn)r and by the previous lemma u∗F ∼=
(1SpecKF,pn ,A/pn

)⊕r. To complete the proof, it remains to show that Endcrys(1η,A/pn) ∼= A/pn

(for any η). This is clear, since τ : (σ × id)∗1η,A/pn
τ
→ 1η,A/pn is an isomorphism. 2

Theorem 4.17. Suppose F ∈ Crysflat(X,A) is of rank r and uniformizable for K ↪→ L. Then
for any p ∈ Max(A) at which F is generically lisse and any n ∈ N there is a naturally defined
commutative diagram

Endcrys(Fη) �
� //

��

EndA(P )

��
EndA/pn(F ét

η,pn) �
� // EndA(P/pnP )

where P = (Fan)τ and the right vertical arrow is reduction modulo pn.

Proof. The ring A⊗Fq [t] L〈t〉, which appears in the analytification procedure, contains pn ⊗Fq [t]
L〈t〉 as an ideal, and the quotient ring is isomorphic to A/pn ⊗Fq L. (There exists a non-zero
g ∈ Fq[t] which lies in pn, and one verifies that L〈t〉/(g) ∼= L[t]/(g) ∼= L⊗Fq Fq[t]/(g).) Denoting
SpecL→ SpecK by v, one deduces the isomorphism

P ⊗A 1SpecL,A/pn
∼= Fan ⊗A A/pn ∼= v∗(Fη ⊗A/pn) ∼= (v∗F)η ⊗A/pn. (4)

From the definition of KF ,pn we now deduce that it is contained in L. Let u denote SpecKF ,pn →
SpecK. Then we obtain the diagram in the theorem by applying Endcrys to the commutative
diagram

Fη //

��

Fan

��
Fη ⊗A/pn // (u∗F)η ⊗A/pn // (v∗F)η ⊗A/pn

and the isomorphism EndA/pn(F ét
η,pn) ∼= Endcrys(Fη ⊗A/pn) due to Theorem 3.1. 2

5. Hecke crystals

In this section X and C are smooth geometrically connected curves over Fq with C affine. The
function field of X is denoted by K, and L ⊂ C∞ denotes a complete subfield containing K.

Definition 5.1. A Hecke crystal on X consists of:

(a) an A-crystal F on X which has a locally free representative and is uniformizable for some
K ↪→ L;
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(b) a commutative A-subalgebra T ⊂ Endcrys(F), called a Hecke algebra, generated by elements
Tx, x ∈ X, called Hecke operators,

such that, denoting by T the finite set of p ∈ Max(A) for which ρF ,p is not lisse, one has for all
p ∈ Max(A) r T , all x ∈ X r SFp (for SFp , see Corollary 3.3) and all n ∈ N,

Frobx = Tx ∈ EndA/pn(F ét
pn). (5)

Remark 5.2. Note that the divisor DF on X×C may have vertical components, i.e., there might
be a finite set S of closed points x of X for which (5) is never satisfied for any p. One way to
bound S is via Corollary 2.19. Namely, choose a zero-dimensional subset S ⊂ X such that the
canonical homomorphism F → Fmax is a nil-isomorphism on X r S and, moreover, Fmax is a
good representative on all of X r S. Then, by its definition, DF intersected with (X r S) × C
will have no vertical component.

Let (F ,T) be a Hecke crystal. Condition (a) implies the following: (i) the crystal F is A-flat;
(ii) the A-module P = (Fan)τ is a locally free A-module of rank r equal to the rank of the crystal
F ; and (iii) the ring Endcrys(Fan) is an A-subalgebra of EndA(P ), by combining Remark 2.18
and Propositions 4.4 and 4.13. Hence for any Tx its characteristic polynomial CharPolTx is well
defined and monic of degree r with coefficients in A. On the other hand, for x ∈ X r (S ∪ SFp )
one has the characteristic polynomial CharPolρF,p∞ (Frobx) ∈ Ap[z]. The two can be compared
via Theorem 4.17.

Proposition 5.3. Let (F ,T) be a Hecke crystal. Then for all p ∈ Max(A) r T and for all
x ∈ X r (S ∪ SFp ) one has

CharPolρF,p∞ (Frobx) = CharPolTx ∈ A[z].

Moreover, F is Galois-abelian, cf. Definition 3.12.

Proof. The only assertion which requires proof, in that it is not directly implied by Theorem 4.17,
is the final one, i.e., that the ρF ,pn are abelian for all n ∈ N and all p ∈Max(A)rT . The definition
of a Hecke crystal implies that the image of T in EndA/pn(F ét

pn) defines an abelian subalgebra.
By (5), the endomorphisms Frobx, x ∈ X r S, lie in this subalgebra, and hence they commute.
By the Čebotarov density theorem, e.g. [Ros02, Theorem 9.13A], any element of the finite Galois
group Gal(KF ,pn) is of the form Frobx for x in a subset of X of positive density. Hence ρF ,pn is
abelian. 2

Proposition 5.4. Let (F ,T) be a Hecke crystal. Then there exists a ∈ Ar {0} such that over
A′ = A[1/a] we have F i ∈ Crysflat(X,A′) such that

F ⊗A A′ ∼=
⊕
i

F i,

where the F i are invariant under T and CharPolTx|F i ∈ A[z] is a power of an irreducible
polynomial for all x ∈ X r S.

Note that since A is normal and thus integrally closed, any monic irreducible factor in F [z]
of the monic polynomial CharPolTx ∈ A[z] will lie in A[z].

Proof. The argument proceeds by induction. As long as the characteristic polynomial of some
Tx contains two relatively prime factors, we need to break up F into a direct sum, so that the
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summands correspond to the prime power decomposition of CharPolTx . In each step, we may
need to invert another element of Ar {0}. Now, each factor has a generic rank, and the sum of
these will be the generic rank of F . Hence this inductive procedure will terminate after finitely
many steps, completing the proof of the proposition. We now give details on the induction step.

Suppose that CharPolTx = f `11 · . . . · f `ss ∈ A[z] for monic pairwise distinct irreducible
polynomials fi ∈ A[t]. We would like to decompose F by the use of idempotents corresponding to
the f `ii as provided by the Chinese remainder theorem over F [z]. To clear denominators, we will
have to invert some non-zero a ∈ A. More concretely, choose ei ∈ F [z] such that ei is divisible

by
∏
j 6=i f

`j
j and ei ≡ 1 (mod f `ii ). Then∑

i

ei ≡ 1

(
mod

∏
j

f
`j
j

)
.

Let a ∈ A be non-zero such that aei ∈ A[z] for all i. Then all ei lie in A′[z] where A′ = A[1/a].
Define the crystal F i as ei(Tx)(F⊗AA′). Since eiej = δijei, we find F⊗AA′ ∼=⊕F i in Crys(X,A′).
In particular, the F i will be flat and also uniformizable (the idempotents are defined over A′).
Since the operators Tx′ commute, we have

Tx′(F i) = Tx′ei(Tx)(F ⊗A A′) = ei(Tx)Tx′(F ⊗A A′) ⊂ ei(Tx)(F ⊗A A′) = F i.
By its very definition, f `ii (Tx)ei(Tx) is a multiple of CharPolTx(Tx) and hence zero. This shows
in particular that the characteristic polynomial of Tx|F i is a power of fi. But the characteristic
polynomial of Tx is the product of the characteristic polynomials of its restrictions to the F i,
and since the fi are pairwise relatively prime, we deduce CharPolTx|F i = f `ii . This completes the
induction step. 2

Let (F ,T) be a Hecke crystal. The action of T on F induces an A-linear action on the finitely
generated projective A-module P := (Fan)τ . Moreover, the decomposition of F ⊗A A[1/a] =⊕

iF i from Proposition 5.4 induces a decomposition P ⊗A A[1/a] =
⊕

i Pi of A[1/a]-modules
for Pi := (Fan

i )τ . Fix some i and some x ∈ X. By construction of the F i, the characteristic
polynomial of Tx on Pi is the power of an irreducible polynomial fx,i ∈ A[z]. By some elementary
linear algebra, using the commutativity of T, one can show for each i the existence of a non-trivial
T-invariant subspace P̃i of P such that each Tx has minimal polynomial fx,i for its action on

P̃i. Conversely one can show that if P̃ is a non-trivial T-invariant subspace of P such that each
Tx has minimal polynomial an irreducible polynomial gx ∈ A[z] for its action on P̃ , then there
exists some i such that gx = fx,i for all x ∈ X. The following proposition gives a similar result
directly for F .

Proposition 5.5. Let (F ,T) be a Hecke crystal, and let A′ and F i ∈ Crysflat(X,A′) be as
in Proposition 5.4. Then there exist a dense open immersion j : U ↪→ X and subcrystals Gi ∈
Crysflat(U,A) of j∗F such that each Gi is invariant under T, is annihilated by CharPolTx|F i , is
uniformizable and satisfies j∗F i = Gi ⊗A A′.

Proof. In the following, we also denote by F a locally free τ -sheaf that represents the same-named
crystal. Following the proof of Proposition 5.4, there exist idempotents ei ∈ T ⊗A A′ such that
F i = eiF⊗AA′ for all i. This implies that F i = Ker(1−ei) for 1−ei ∈ Endcrys(F⊗AA′). Choose
hi ∈ T and m ∈ Z>0 such that ei = a−mhi for all i, so that F i = Ker(am − hi). We represent
each hi by a morphism hi : (σni × id)∗F → F for some ni > 0. The τ -sheaves

Gi := Ker(hi − amτni) : (σni × id)∗F → F
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are torsion-free on the regular scheme X×SpecA. Hence Gi is free over any point of X×SpecA
of codimension at most one, and thus there exists j : U ↪→ X dense open such that all Gi are
free over U × SpecA. In particular, j∗Gi is flat as a crystal, and thus has a rank as a crystal.
Since Gi is the kernel of some element in T, the subcrystal Gi ⊂ F inherits a T-action from
F . By construction we have Gi ⊗A A′ ∼= F i, and so Gi is annihilated by CharPolTx|F i for all
x ∈ X. Moreover, Gi is uniformizable for K ↪→ L. From F ⊗A A′ ∼=

⊕
iFi we deduce that the

F i ∈ Crysflat(X,A′) are uniformizable, i.e., that

rankA′ HomCrysan(1an
L,A,Gan

i ⊗A A′) = rankGi = rankF i.

By multiplying a maximal linear independent subset of HomCrysan(1an
L,A,Gan

i ⊗AA′) by a suitable
power of a, we obtain a linear independent subset of HomCrysan(1an

L,A,Gan
i ) of rankGi elements,

and so Gi is uniformizable. 2

Remark 5.6. Following the inductive procedure in the proof of Proposition 5.4, one can give a

more explicit description of the crystals Gi constructed in the proof of Proposition 5.5: if f
dx,i
x,i

is the minimal polynomial of Tx acting on F i, then Gi =
⋂
x Ker(f

dx,i
x,i (Tx)) where in the latter

expression we regard f
dx,i
x,i (Tx) as an endomorphism of F and thus Ker(f

dx,i
x,i (Tx)) as a subcrystal

of G.

Remark 5.7. Let (F ,T) be a Hecke crystal. Since the action of T is faithful on P = (Fan)τ ,
which is finitely generated and projective over A, there exists a finite extension F ′ of F such
that for all x ∈ X the eigenvalues of Tx lie in the normalization A′ of A in E. The minimal choice
for F ′ is the splitting field of all Hecke polynomials over F . Thus for G := F⊗AA′ the polynomial
CharPolTx|G splits into linear factors in F ′[z] for all x ∈ X, and if we apply Proposition 5.5 to
the Hecke crystal (G,T ⊗A A′) then CharPolTx|Fi is a power of a linear polynomial in F ′[z] for
all i and x ∈ X.

We now prove the following central technical result.

Theorem 5.8. Let (F ,T) be a Hecke crystal of rank r and P = (Fan)τ . Let F ′/F be a finite
normal extension over which all eigenvalues of all Tx, x ∈ X r S, considered as elements of
EndA(P ), are defined. Let f1, . . . , fr ∈ P ⊗AF ′ be a system of simultaneous linearly independent
eigenvectors for the semisimplified action of T⊗AF ′ on P ⊗AF ′.6 Let χ1, . . . , χr : A∗K → F alg be
Hecke characters as in Theorem 3.13 for the strictly compatible abelian system (ρss

F ,p∞), i.e., so

that for all places v of F alg above p of Max(A) r T , the representations ρss
F ,p∞ and

⊕r
i=1 ρχi,p∞

are conjugate within the group GLr((F
alg)v).

Then all χi can be defined over F ′, and after permuting the χi, writing $x for a uniformizer
of Kx, we have

Txfj = χj(1, . . . , 1, $x, 1 . . . , 1)fj ∀j = 1, . . . , r and x ∈ X r S.

Proof. Let A′ be the integral closure of A in F ′. Then as in Remark 5.7, all Tx are triagonalizable
in EndF ′(P ⊗AF ′) for P = (Fan)τ . Since the assertion of the theorem is not affected by replacing
A by A′, we may assume F = F ′ and A = A′ from the start. The uniqueness property of a strictly
compatible system does not change under the passage A → A[1/a], i.e., if we remove finitely

6 That is, we replace the finite dimensional F ′ vector space P ⊗A F ′ by the direct sum over its Jordan–Hölder
factors as a module over the finite F ′-algebra T⊗A F ′, where the factors occur according to their multiplicity.
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many points from Max(A). Hence we may apply Proposition 5.4 over A[1/a] to decompose F
into isotypical factors for the action of T. Thus we may assume that F is a single isotypical
factor and that all CharPolTx|F are powers of a linear polynomial (z − λx).

Denote by r the rank of F and by 1r ∈ GLr(Ap) the identity matrix. By Proposition 5.3 we
have

ρss
F ,p∞(Frobx) = λx 1r.

Now Theorem 3.13 yields a Hecke character χ with values in a finite extension E of F such that
χ⊕r gives rise to the system (ρss

F ,p∞), i.e., such that

ρss
F ,p∞(Frobx) = ρχ,v(Frobx) 1r

for v a place of E above a place p ∈ Max(A) r T and for x ∈ X r (SFp ∪ S). The way a Galois
representation is attached to a Hecke character implies that

λx = χ(1, . . . , 1, $x, 1 . . . , 1) ∈ F ⊂ E.

It is a general fact on Hecke characters that from the above it follows that χ takes its values in
F and this completes the proof of the theorem.

In lack of a reference of this general fact, we indicate an argument: for x ∈ X, let recx :
K∗x → Gab

Kx
be the reciprocity homomorphism of local class field theory and ιx : Gab

Kx
→ Gab

K the
embedding of the local abelianized absolute Galois group at x into the global one. Extending
the argument in [Böc13, Lemma 2.18] in an obvious way to the ramified places in S, one obtains
χ(1, . . . , 1, αx, 1 . . . , 1) = ρχ,v(ιx ◦ recx(αx)) for any x ∈ X and any non-zero αx ∈ Kx; we assume
v /∈ T . We wish to also show that χ(1, . . . , 1, αx′ , 1 . . . , 1) ∈ F ∗ at all places x′ ∈ S. If not, then
we can find at least one v /∈ T such that χ(1, . . . , 1, αx′ , 1 . . . , 1) ∈ Ev′/Fv for some place v′ of E
above v. In fact, by compactness of GK , the image will lie in O∗Ev′ rO

∗
Fv

. Now, note that ρχ,v is

unramified outside S ∪Sv and that the set {Frobx | x /∈ S ∪Sv} is dense in the maximal quotient
of GK that is unramified outside S ∪ Sv. By hypothesis, the ρχ,v(Frobx) take their values in
O∗Fv . It follows that ρχ,v(GKx′ ) modulo mc

Ev′
is contained in O∗Fv/(1 + mc

Fv
) for any c > 0. This

contradicts χ(1, . . . , 1, αx′ , 1 . . . , 1) ∈ Ev′/Fv. 2

6. The Hecke crystal for rank two Drinfeld modular forms

In this section we will recall our main example(s) of a Hecke crystal: the crystal of [Böc04] giving
rise to the space of rank two Drinfeld (double) cusp forms of fixed weight and level. Applying
the main result of the previous section yields the theorem announced in the introduction.

From now on we further restrict the notation, in addition to Conventions 2.6 and 4.3. We
denote by X a smooth projective geometrically irreducible curve over Fq, by ∞ a fixed closed
point on X and by C the affine curve C = X r {∞}. Then A, with SpecA = C, is a Dedekind
domain with finite unit (and class) group. We write F for both Frac(A) = Fq(X). The completion
of F at the place ∞ will be F∞. By n we denote a proper non-zero ideal of A, and we define
Xn = X r ({∞} ∪ Spec(A/n)) and denote by |Xn| its set of closed points.

Define K(n)⊂GL2(Â) as the subgroup of matrices that reduce to the identity modulo n. Then
XK(n) is the smooth compactification over F of the moduli space of rank two Drinfeld modules
with a full level n structure, see [Dri76, Gos80a] or [Böc04]. Moreover, n is the conductor of
K(n). Let k > 2 be an integer. We define Sk(K(n),C∞) = Sk,0(K(n),C∞) and note that, since n
is non-trivial, one has Sk,`(K(n),C∞) ∼= Sk(K(n),C∞) for all `, cf. [Böc04, Lemma 5.32]. Unlike
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in the classical case, the space S(2)

k (K(n),C∞) of so-called double cusp forms, i.e., of modular
forms vanishing to order 2 at all cusps, is preserved under the Hecke action, cf. [Gos80c].

The following theorem summarizes some of the main results of [Böc04].

Theorem 6.1. There exists a Hecke crystal Sk(n) on Xn which is uniformizable at ∞, i.e.,
for F ↪→ L = F∞, and has the following property: the projective finitely generated A-module
(Sk(n)an)τ when tensored over A with C∞ is, as a Hecke module, dual to the space Sk(K(n),C∞).

Proof. By [Böc04, Corollary 10.13], the crystal Sk(n) is uniformizable. The proof of [Böc04,
Proposition 13.4] shows that Sk(n) has a locally free representative on Xn×C, and, in particular,
Sk(n) is a flat A-crystal on Xn. Using Corollary 2.19, we choose a good representative F ∈
Cohτ (U,A) of Sk(n) on a dense open subset U ⊂ Xn. Let T ⊂ SpecA be the defect set of those
p ∈Max(A) such that ρSk(n),p is not lisse, and define for p /∈ T the set SFp ⊂ Xn as the projection
onto Xn of the intersection of Xn × {p} with the support of the cokernel of τ on Sk(n)⊗A A/p.
We note that if U is taken maximal, then Xn rU is precisely the intersection of the sets SFp for
all p /∈ T .

We now explain relation (5), needed for a Hecke crystal. For x ∈ Xn we consider the base
change i∗xSk(n) and denote by τx the action on it induced by τSk(n). Then [Böc04, Theorem 13.10]
states that the action on i∗xSk(n) induced from Tx on Sk(n) satisfies

Tx = τdxx : i∗xSk(n)→ i∗xSk(n), (6)

where we note that the dx-fold iterate of τx is (kx ⊗ A)-linear. By the proof of [BP09,

Theorem 10.6.3], one has τdxx = Frobx under the natural isomorphism ksep
x ⊗Fq Sk(n)ét

pn,x̄
'
→

(i∗x̄Sk(n) ⊗A A/pn)ss for ix̄ : x̄ → Xn a geometric point above x and (. . .)ss a canonical
τ -sheaf representative of (. . .) given by [BP09, Proposition 9.3.4]. By the definition of SFx , the
specialization map Sk(n)ét

η̄,pn → Sk(n)ét
x̄,pn is a GFx-isomorphism for η̄ a geometric point above

η = SpecF ∈Xn. And because p /∈ T , we have rankSk(n) = rankA/pn Sk(n)ét
η,pn(F sep). This yields

the required compatibility of actions

Frobx = Tx ∈ EndA/pn(Sk(n)ét
pn) ∀n ∈ N (7)

for p /∈ T and x /∈ SFp , which we also refer to as the Eichler–Shimura relation. Finally, the
Hecke-equivariant isomorphism ((Sk(n)an)τ )∨⊗AC∞ ∼= Sk(K(n),C∞) is [Böc04, Theorems 10.3,
13.2]. 2

Remark 6.2. In Corollaries 8.15 and 8.16 we shall prove: (i) the defect set T ⊂ C = SpecA is
empty, i.e., that ρSk(n),p is lisse for all p ∈Max(A); and (ii) the maximal U possible in the above
proof is the set of those x ∈ Xn at which Xn has good ordinary reduction.

Remark 6.3. Another main result of [Böc04] asserts that there is also a Hecke crystal S(2)

k (n)
having the same properties as Sk(n): however, where in the last condition (c) one has a Hecke-
isomorphism to the dual of the space of double cusp forms of weight k and level n. In addition
to the results quoted above, this also needs [Böc04, Theorem 12.3].

Remark 6.4. It should be possible to prove that Sk(n)max is a representative of the crystal Sk(n).
However this is not proved in [Böc04]. This would give a natural locally free representative on Xn.
We note though that this representative is relevant neither for (Sk(n)an)τ nor for the compatible
system (ρSk(n),p∞)p, since both depend only on the generic fiber Sk(n)η.
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Remark 6.5. Now let k = 2 and extend XK(n) to a smooth projective scheme over Xn with
structure morphism fn. Let jn : YK(n) ↪→ XK(n) denote the open immersion of the moduli space
YK(n) of rank two Drinfeld modules with a full level n structure into its compactification. Then
by [BP09, Proposition 6.4.10] one has S2(n) = G ⊗Fp A for G := R1fn∗(jn!1Xn,Fp) because

the functors pushforward and coefficient change commute. Since F 7→ F ét commutes with
pushforward and extension by zero, we have G ét = R1

étfn∗jn!Fp. Thus for k = 2, the Eichler–
Shimura relation is

Frobx = Tx ∈ EndFp(H
1
ét(X/F

sep, jn!Fp)), (8)

and one obtains (7) by coefficient change ⊗AA/pn for all x in a dense open subset U ⊂ X
that is independent of p. By Theorem 3.1, one may take as U the subset of those x ∈ Xn at
which the specialization map H1

ét(X/F
sep, jn!Fp)→ H1

ét(X/k
sep
x , jn!Fp) is an isomorphism of Fp

vector spaces. Similarly S(2)
2 (n) = H ⊗Fp A for H := R1fn∗1Xn,Fp , so that Hét = R1fn∗Fp, and

thus (8) holds without jn!. Moreover, from [Böc04, Theorem 14.8] one easily deduces that as
Hecke modules one has7

H1(Xn/F
sep,Fp)⊗Fp C∞ ∼= S

(2)
2 (K(n),C∞)∨. (9)

Remark 6.6. Due to the known shape of the Hecke algebra for Drinfeld cusp forms on the space
of rank r Drinfeld modules (with some level structure), we expect that the analog of Theorem 6.1
holds for any r ∈ N. The case r = 1 is rather easy but unpublished. Recent work [Pin13] of Pink
make the cases r > 3 accessible.

Corollary 6.7. Let f be a cuspidal rank two Drinfeld A-modular Hecke eigenform of weight k
and full level n. Then there is a unique Hecke character χf associated to f , such that for almost
all x ∈ |Xn| one has

Txf = χf (1, . . . , 1, $x, 1 . . . , 1)f.

Proof. We apply Theorem 5.8 to the crystal Sk(n) of the previous theorem. This yields Hecke
characters χj associated to the fj defined in Theorem 5.8, such that the inverses of the χj have the
above property for fj . Now observe that A′ ⊂ F ′ both embed into C∞. Hence the images of the fj
in (P⊗A′F ′)⊗F ′C∞, with P = (Sk(n)an)τ , form a basis of the dual of Sk(K(n),C∞) consisting of
eigenvectors of the semisimplified action of the Hecke algebra acting on Sk(K(n),C∞). It follows
that the eigenvalue system of any Hecke eigenform is equal to the eigenvalue system of some fj ,
and the proof of the corollary is complete. 2

7. An example

This section illustrates Corollary 6.7 by an explicit example based on [Böc14, Sec. 10.7]. Let
A = Fq[T ] and n = (T ). To distinguish the coefficient ring A from the base X = Xn, introduced
at the beginning of § 6, we use the variable θ on the base, so that X = SpecFq[θ, θ−1]. Note
that X × SpecA = Fq[θ, θ−1, T ]. In [Böc14, Proposition 10.29], a filtration of the Hecke crystal
S(2)

k ((T )) is computed.

Proposition 7.1. Let the notation be as above. Define

Fk,j

(
T

θ

)
=

min{j,k−2−j}∑
`=0

(
j

`

)(
k − 2− j

`

)(
T

θ

)`
.

7 The isomorphism (9) holds for any level K with target S
(2)
2,1(K,C∞)∨, forms of weight 2 and type 1; cf. [GR96,

(6.5)].
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Then for 4 6 k 6 q + 2 the crystal S(2)

k ((T )) has a filtration whose associated graded object is
isomorphic to (k−3⊕

j=1

(
OX×SpecA, Fk,j

(
T

θ

)
(σ × id)

))⊕q
. (10)

There are a number of remarks in order: the expression for Fk,j in [Böc04, Proposition 15.3]

is Fk,j(T/θ) =
∑k−2

`=0

(
`
j

)(
j

k−2−`
)
(T/θ − 1)k−2−`. The expression we give is from [LM08]. A proof

that both these expressions agree can be found in [Böc14, Remark 12.33].
The coefficients of the polynomial Fk,j are defined over Z and are independent of q (and thus

also p), subject to the restriction 4 6 k 6 q + 2.
The summands occur with multiplicity at least q: this is due to the fact that we work

with a full level n structure and not a(n enhanced) level Γ1(n) structure, see the proof of
Proposition 8.24. Since (10) is unchanged under j 7→ k − 2 − j, summands with j 6= k − 2 − j
occur with multiplicity at least 2q. But for q 6= p there may be higher multiplicities.

As follows from Theorem 6.1 and Proposition 5.4, each summand corresponds to a Hecke
eigenform. Since in general the Hecke action is not semisimple, cf. [LM08], the assignment need
not be 1–1. The number of Hecke eigenforms can be much smaller than the number of summands
in (10), which is q(k − 3).

Having coefficients in Fp and constant term one, for suitable αk,j,` ∈ Falg
p we obtain

Fk,j

(
T

θ

)
=

min{j,k−2−j}∏
`=1

(
1− αk,j.`

T

θ

)
.

Now let A(∞)
Fq(θ) denote the finite adeles of Fq(θ) with respect to the usual infinite place of

P1
Fq . For q a prime ideal of Fq[θ], denote by Oq the ring of integers of the completion of Fq(θ) at

q and by O1
q those elements of Oq reducing to the identity modulo the completion of q. Set

U(θ) = O1
(θ) ×

∏
q6=(θ)

O∗q .

Since Fq[θ] is factorial and since the map F∗q = (Fq[θ])∗ → O(θ)/O1
(θ) is an isomorphism, one

easily deduces that the diagonal embedding yields isomorphisms

(Fq(θ))∗
∼=−→ GL1(A(∞)

Fq(θ))/U(θ)

∼=−→ A∗Fq(θ)/(U(θ) × Fq((θ−1))). (11)

Definition 7.2. Let q be a prime power, 4 6 k 6 q + 2 and 1 6 j 6 k − 3. For 0 6 ` 6 min{j,
k − 2− j}, define the field embedding

σk,j,` : Fq(θ)→ Falg
q (T ) : g(θ) 7→ g(αk,j,`T ).

Define the Hecke character
χk,j : A∗Fq(θ)→ (Falg

q (T ))∗

by requiring that it is trivial on U(θ)×Fq((θ−1)) and that on (Fq(θ))∗, embedded diagonally into
A∗Fq(θ), it is given by

min{j,k−2−j}∏
`=0

σk,j,`.
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Proposition 7.3. Suppose 4 6 k 6 q + 2 and 1 6 j 6 k − 3. The system of Hecke eigenvalues
of a Drinfeld modular form corresponding to the crystal(

OX×SpecA, Fk,j

(
T

θ

)
(σ × id)

)
is described by the Hecke character χk,j for all prime ideals q of Fq[θ] different from (θ).

Proof. Let fk,j be a Hecke eigenform corresponding to the crystal in Proposition 7.1. Let q 6= (θ)
be a prime ideal of Fq[θ] generated by gq(θ) with gq(0) = 1, and denote by θ′ any root of gq.
Following the derivation of [Böc14, Ex. 10.31] and using (6), one obtains

Tqf =

(min{j,k−2−j}∏
`=0

gq(αk,j,`T )

)
· f

by computing the deg(q)th iterate of Fk,j(T/θ
′)(σ × id).

Let us now evaluate the Hecke character χk,j at the idele (1, . . . , 1, $q, 1, . . . , 1). Under the
isomorphism (11) this idele is the image of gq ∈ (Fq(θ))∗. By the definition of χk,j , its value at
gq is

min{j,k−2−j}∏
`=0

σk,j,`(gq) =

min{j,k−2−j}∏
`=0

gq(αk,j,`T ).

This completes the proof of the proposition. 2

Remark 7.4. Proposition 7.3 has two interesting features not explained by Corollary 6.7: the
conductor of each χk,j is equal to the level n of the corresponding Drinfeld cusp form and
the character χk,j computes the Hecke eigenvalues at all primes not dividing n. Corollary 8.25 in
§ 8 will give a theoretical explanation. It asserts that for any cuspidal Hecke eigenform of level
dividing a prime of degree at most one and of any weight, the associated Hecke character is
unramified outside the level.

8. Ramification

In the remainder of this article we investigate the ramification of p-adic Galois representations
attached to a cuspidal Drinfeld modular Hecke eigenform f at places x that divide neither the
level n of f nor the characteristic of the prime p. In weight 2, we shall link this to the geometry of
the underlying Drinfeld modular curve: We show that if f is ramified at a place x outside n, then
the p-rank of a corresponding Drinfeld modular curve must strictly decrease under reduction at
x. Moreover, in this case, the corresponding Hecke eigenvalue ax(f) will vanish. For the latter
we exploit the relation between function field automorphic forms and weight 2 Drinfeld cusp
forms, first noticed in [GR96]. In weight 2 the main results are Proposition 8.7 and Theorem 8.8.
In higher weight cases, we shall use congruences. There the main results are Propositions 8.18
and 8.22.

We often restrict our attention to doubly cuspidal Hecke eigenforms. The reason is [Böc04,
Corollary 14.7], which states that for any weight k > 2 one has a surjection Sk(K(n),C∞) →
S(2)

k (K(n),C∞) of Hecke modules whose kernel admits a basis of cuspidal Hecke eigenforms
g whose associated Galois representations all factor via the ray class field of F of conductor
n∞. This implies that for any such Hecke eigenform g the corresponding Hecke character χg is
unramified outside n∞.
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We continue with the notation from § 6. We write X for a smooth projective geometrically
irreducible curve over Fq, fix a point∞∈ |X| and set C =Xr{∞}= SpecA. We write F for both
Frac(A) = Fq(X). By n ⊂ A we denote a proper non-zero ideal, and Xn is Xr({∞}∪Spec(A/n)).

We begin with the following result on p-ranks and ramification that we regard as a
complement to the well-known criterion of Néron–Ogg–Shafarevich (NOS). It will be proved
in Appendix A and is a simple consequence of [deJ98].

Proposition 8.1 (Theorem A.1). Let X be a smooth projective curve over a finite field of
characteristic p and with function field K. Let J be an ordinary abelian variety over K with
good reduction at a place x of X. Then for the representation of GK on the group J [p∞](Ksep)
of p-power torsion points of J over Ksep the following are equivalent:

(a) the representation is unramified at x;

(b) the abelian variety J has ordinary reduction at x.

A curve is ordinary if its Jacobian has this property. Therefore the following result is relevant.

Theorem 8.2 (Gekeler). For any congruence subgroup Γ ⊂ GL2(A), the curve XΓ over its field
of definition FΓ is ordinary, and for any open subgroup K ⊂ GL2(Â), the curve XK over FK is
ordinary.

The proof is a consequence of the ramification calculations of Drinfeld modular curves
in [Gek86, § 5] combined with [Nak87, Theorem 2(i)] and XK(C∞)rCK =

⊔
i Γi\Ω, cf. page 2007;

see also [Pin00, Theorem 1.2]. One also has the following well-known result whose proof, in lack
of a suitable reference, we indicate.

Proposition 8.3. Let X be a smooth curve over a finite field of characteristic p with function
field K and let C be a smooth projective curve over X. Suppose that C is ordinary over the
generic point η of X. Then for all but finitely many x ∈ X, the curve Cx is ordinary.

Proof. Ordinariness of a smooth projective curve C over a field k of characteristic p > 0 can be
measured in terms of its p-rank: Denote by ϕ the endomorphism of H1(C,OC) induced from
the absolute Frobenius endomorphism σC : OC → OC , a 7→ ap. This is a p-linear endomorphism
on the finite-dimensional k vector space H1(C,OC); the rank of the matrix representing ϕ with
respect to any k-basis is independent of the choice of basis and called the p-rank of C. If k is
separably closed, the p-rank is equal to the Fp-dimension of the subspace of H1(C,OC) of fixed
points under ϕ. If C is geometrically irreducible, the p-rank of C is the Fp-dimension of the
module of p-torsion points of the Jacobian of C. A curve is ordinary precisely if its p-rank is
equal to dimkH

1(C,OC). If C is geometrically irreducible, the latter dimension is equal to the
genus of C.

Now if f : C → X denotes the structure morphism, then M = R1f∗OC is a locally free
OX -module whose rank is equal to dimkH

1(C,OC). The absolute Frobenius σC on C induces an
endomorphism ϕM :M→M, and one easily verifies that ϕM is σX -linear, i.e., for any sections
c of M and α of OX (on the same open U of X), one has ϕ(αc) = αpϕ(c) = σX(α)ϕ(c). By
passing from X to an open subset, which suffices for the proof of the assertion, we may assume
that M is a free OX -module. Choosing an OX -basis of M, the endomorphism ϕ can thus be
described by a square matrix βM, the Hasse–Witt matrix, whose entries are global sections of
OX . The fact that Cη is ordinary means that βM as a matrix over K has full rank. Now the rank
of βM under reduction can go down at most at finitely many places of X, namely at those where
detβM vanishes. Hence ϕx has full rank for all but finitely many x ∈ X. But then the p-rank of
Cx is full for all such x. This concludes the proof. 2
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Remark 8.4. By using minors of the matrix βM in the above proof, one can strengthen
Proposition 8.3 as follows: the p-rank of a curve over a function field K remains constant under
reduction for all but finitely many places of K (at which it can only decrease).

After some further preparation we will be ready to discuss the ramification properties
of Galois representations and Hecke characters attached to weight 2 cuspidal Drinfeld Hecke
eigenforms. For this, let XK(n) be the compactified modular curve as in § 6, and abbreviate
Xn = XK(n). The curve Xn is smooth projective over F but rarely geometrically connected.
Denoting by Jac(Xn) the Jacobian of Xn, one has the well-known Galois equivariant isomorphism

H1
ét(Xn/F sep ,Fp) ∼= Jac(Xn)[p](F

sep)∨.

On the left-hand side one has a Hecke action via correspondences of Xn. These induce
endomorphisms on Jac(Xn) and thus a Hecke action on the right-hand side. Because of the
geometric nature of the two Hecke actions, the displayed isomorphism is Hecke equivariant. We
combine this isomorphism with the observations from Remark 6.5 to obtain a Hecke equivariant
isomorphism

Jac(Xn)[p](F
sep)⊗Fp C∞ ∼= S

(2)
2 (K(n),C∞).

We define the Hecke algebra TZ,n as the Z-subalgebra of End(Jac(Xn)) generated by the
standard Hecke endomorphisms Tx, for x ∈ |Xn|, and let T(2)

Fp,n be the analogous subalgebra

of EndFp(Jac(Xn)[p](F
sep)). Then T(2)

Fp,n ⊗Fp C∞ is the Hecke algebra of S
(2)
2 (K(n),C∞). It has

been observed by Gekeler and Reversat in [GR96, (6.5)] that reduction defines a surjective ring
homomorphism

TZ,n // // T(2)

Fp,n.

We choose a finite field F ⊃ Fp over which the action of T(2)

Fp,n on Jac(Xn)[p](F
sep) becomes

triagonalizable. We fix an embedding ι : F ↪→ F sep ↪→ C∞, and we write T(2)

F,n for T(2)

Fp,n ⊗Fp F.

Now let f be a Hecke eigenform in S
(2)
2 (K(n),C∞) with Hecke eigenvalue system (ax(f))x,

where the x range over |Xn|. Via ι, this defines a homomorphism t̄f : T(2)

F,n → C∞. By Vf we

denote an irreducible subspace of Jac(Xn)[p](F
sep) ⊗Fp F on which T(2)

F,n also acts by t̄f . By the

definition of F, we have dimF Vf = 1. Because of the Eichler–Shimura relation from Remark 6.5,
there is a well-defined commutative action ρ̄f : GF → AutF(Vf ) and, moreover, we have the
following proposition.

Proposition 8.5. Let f be a Hecke eigenform in S
(2)
2 (K(n),C∞). Then for ρ̄f defined as above,

we have

ρ̄f (Frobx)
(8)
= ax(f)

Corollary 6.7
= χf (1, . . . , 1, $x, 1 . . . , 1)

for all but finitely many x ∈ Xn.

The existence of ρ̄f can also be obtained from [GR96] by Gekeler and Reversat or from
Appendix B.

Remark 8.6. Let F ′ ⊂ F sep be the field generated by F and F. Clearly, the above χf is defined
over F ′. Moreover, one can easily show that the compatible system (ρχf ,P∞)P where P ranges
over all places of F ′ can be obtained from ρ̄f by ρχf ,P∞ := ρ̄f ⊗F F

′
P where F ′P denotes the

completion of F ′ at P.
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We write Tap Jac(Xn) for the p-adic Tate module lim
←−n

Jac(Xn)[p
n](F sep). Its mod p reduction

is Jac(Xn)[p](F
sep). By Xord

n ⊂ Xn we denote the dense open subscheme of points where Xn

has good ordinary reduction, cf. Proposition 8.3. Then Proposition 8.1 applied to the present
situation gives the following result.

Proposition 8.7. The GF -representation Tap Jac(Xn) is unramified at all places x ∈ |Xord
n |. It

is ramified at all places in Xn rXord
n . In particular, for any doubly cuspidal Hecke eigenform f

of weight 2 and minimal level K(n), the Hecke character χf is unramified at all x ∈ |Xord
n |.

We note that, by Proposition 8.3 (and its proof), the finite list of good reduction non-ordinary
primes of Xn can in principle be found by analyzing the Hasse–Witt matrix for Xn.

Our next aim is a refinement of Proposition 8.7. For this we define Tord
Z,n ⊂ End(Jac(Xn)) as

the subring of TZ,n generated by the Tx for x ∈Xord
n . We write tf : TZ,n→ Ff for the composite of

TZ,n→ T(2)

Fp,n with the homomorphism t̄f : T(2)

Ff ,n→ Ff . Let mf and mord
f be the kernels of tf and

of the restriction of tf to Tord
Z,n. Then m?

f is a maximal ideal of T?
Z,n for ? ∈ {∅, ord} that contains

the prime p. For the completions at p we write T̂?
Z,n and m̂?

f , respectively. The completions T̂?
Z,n

act on the p-divisible group Jac(Xn)(p).
By P1, . . . ,Ps we denote the minimal primes of T̂ord

Z,n contained in m̂ord
f . Then each T̂ord

Z,n/Pi

is an integral domain of finite rank over Zp, and thus its fraction field is one of the p-adic

completions of the ring of fractions of T̂ord
Z,n. By strong multiplicity one for automorphic forms

for GL2, which allows one to disregard Hecke operators at finitely many places, each Pi defines
a cuspidal automorphic form Φi together with a place pi above p of the field of definition Ei of
Φi; one can think of Ei as the fraction field of T̂ord

Z,n/Pi and of pi as the maximal ideal of the

normalization of T̂ord
Z,n/Pi in Ei. By ni we denote the conductor of Φi, so that Φi is a new form

of level ni dividing n. It is not excluded that Φi = Φj for different i, j; however, then we have
pi 6= pj .

We now apply the results of Appendix B, where we formulate and prove some general results
on the representation of GF on p-adic Tate modules and their mod p reductions. There, for each
Φi we define a simple abelian variety AΦi in the ni-new part of the Jacobian for level K1(ni), a
field of endomorphisms EΦi acting on AΦi with [EΦi : Q] = dimAΦi and, for each place pi of EΦi

above p, a representation ρΦi,pi : GF → GL1((EΦi)pi) unramified outside ni and with (EΦi)pi the
pi-adic completion of EΦi . In fact, one has EΦi = Ei. The ρΦi,pi describe the action of GF on
the pi-component of TapAΦi . They are characterized by ρΦi,pi(Frobx) = αi,x for all x ∈ Xord

ni ,
where αi,x is the root of slope zero of gx(z) = z2 − Txz + Sxqx in (EΦi)pi . Let AΦi(p)pi be the
pi-component of the p-divisible group of AΦi over the base Xni .

Write Oi for the ring of integers of (Ei)pi and pi also for the maximal ideal of Oi. Then

one has a monomorphism T̂ord
Z,n/m̂

ord
f ↪→ Oi/pi that sends Tx (mod m̂ord

f ) to αx (mod pi) for all

x ∈ |Xord
n |. By Xord

Φi,pi
we denote the set of x ∈ Xni at which AΦi/kx(p)pi has non-trivial étale

part. By Corollary B.4, |Xord
Φi,pi
| is the set of x ∈ |Xni | where Tx acts by a unit of Oi on Φi. Note

that Xord
Φi
⊇ Xord

n for all i.

Theorem 8.8. Let ρ̄f : GF → GL1(Tord
Z,n/m

ord
f ) be the Galois representation corresponding to Vf

from Proposition 8.5. Then the following hold.

(a) The representation ρ̄f is unramified for x ∈ ⋃iX
ord
Φi,pi

. For x ∈ Xord
Φi,pi

one has

χf ((1, . . . , 1, $x, 1, . . . , 1)) = ρ̄f (Frobx) ≡ Tx ≡ αi,x = ρΦi,pi(Frobx) (mod pi)

under Tord
Z,n/m

ord
f ↪→ Oi/pi.
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(b) If ρ̄f is ramified at x ∈ Xni , then Tx ≡ 0 (mod pi) for its action on Φi and x /∈ Xord
Φi,pi

.

(c) There exists an i ∈ {1, . . . , s} such that for all x ∈ |Xn| the mod pi reduction of the
eigenvalue of Tx on Φi is equal to the eigenvalue of Tx acting on f . In particular:

(i) if ax(f) 6= 0, then the étale part of AΦi/F (p)mf extends to a p-divisible group on
SpecOX,x;

(ii) if ax(f) = 0, then AΦi/kx(p)mf has trivial étale part, and so x /∈ Xord
Φi,pi

.

(d) At all places x /∈ Xn where some Φi is semistable, the representation ρ̄f is unramified.

Proof. By the choice of Pi we have for all x ∈ |Xn| where Xn has ordinary reduction that the
value of Tx in T̂ord

Z,n/Pi after reduction modulo m̂ord
f agree with the value of Tx in T̂ord

Z,n/m̂
ord
f . On

the one hand we have ρ̄f (Frobx) = Tx (mod mord
f ) for almost all such x. On the other we have

from Theorem B.14(d) that ρΦi,pi(Frobx) = αi,x ≡ Tx (mod pi) for all x ∈ Xord
Φi,pi

.8 Part (a) now

follows from the Čebotarov density theorem. The proof of (b) is simple: if ρ̄f is ramified at x,
then by (a) so is ρΦi,pi for all i = 1, . . . , s. By Theorem B.14(f) this implies (b). Part (d) is a
direct consequence of Proposition B.6, where we also recall the definition of semistable.

To prove (c), let Φ be a cuspidal automorphic new form corresponding to a minimal prime
P under mf in T̂Z,n, and let p be the corresponding place of Frac(T̂Z,n/P). By multiplicity one,
(Φ, p) must coincide with one of the (Φi, pi). Because of the congruence by which we chose (Φ, p),
the first assertion of (c) follows. Parts (i) and (ii) are then implied by Theorem B.14(b), (f). 2

Remark 8.9. It follows from Theorem 8.8(a) that from the Hecke action on S
(2)
2 (K(ni),C∞),

i = 1, . . . , s, one can compute χf ((1, . . . , 1, $x, 1, . . . , 1)) at all places x ∈ ⋃iX
ord
Φi,pi

.

Remark 8.10. The ramification properties of ρΦi,pi at places where AΦi has semistable reduction
are completely described by Corollary B.5 and Proposition B.6. Jointly with T. Centeleghe we
plan to work out the ramification for the further reduction types of AΦi . There seem to be
plausible conjectures to what happens. They suggest that one should be able to describe the
ramification ρ̄f in terms of that of the ρΦi,pi at all places where AΦi has either potentially
semistable but not potentially good reduction, or where it has potentially good ordinary
reduction. For instance, if Φ is a ramified principal series at x such that one character is
unramified with image of Frobenius a p-adic unit, then we expect for such x that ρΦ,p, and
hence ρ̄f , is unramified at x, and yet x is in the support of the conductor of Φ.

In the remaining cases, i.e., at places x where the reduction of all AΦi is potentially good non-
ordinary, we have currently no approach to understand the restriction ρ̄f |GFx or its ramification.

Example 8.11. The following example shows that ax(f) = 0 does not imply that ρ̄f is ramified
at x: Let E be an elliptic curve over F with split multiplicative reduction at ∞, and
assume that E has good supersingular reduction at a place x of F . Let F ′/F be a Galois
extension such that the GF ′-representation on E[p](F sep) is unramified at the places above x.
Denote by E′ the base change E ×F F ′. At any place ∞′ of F ′ above ∞ the curve E′ has
split multiplicative reduction. By [GR96], which goes back to Drinfeld, there exists a cuspidal
automorphic Hecke eigenform Φ′ over F ′ that is Steinberg at ∞′ and such that Ta`E

′ = Ta` Φ′

8 We caution the reader that the Hecke algebra Tord
?,n used here and T?,n used in Appendix B are different for

? ∈ {Z,Fp}. For ? = Z this does not matter, since the automorphic multiplicity one, crucial to our applications,
requires only the Hecke operators Tx, x ∈ Xord

n and not the Tx, x ∈ Xn rXord
n , nor the additional qxSx of TZ,n.

For ? = Fp we have qxSx = 0, and results for the possibly larger algebra TFp,n still hold for Tord
Fp,n used here; see

also Remark B.11.
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for all primes ` including p. Let f denote the doubly cuspidal weight 2 Drinfeld Hecke eigenform
such that ρ̄f agrees with the mod p reduction of Tap Φ′, i.e., with the GF ′-representation on
E′[p](F sep). Because E′ is supersingular at x, at all places x′ of F ′ above x we have ax′(f) = 0
and yet, by construction of F ′, the representation ρ̄f is unramified at x′.

The above example uses that F ′ is not the minimal field of definition of f (or Φ or E). We
do not know whether, over such a minimal field, ρ̄f has to be ramified if ax(f) = 0.

Example 8.12. We claim that there exist doubly cuspidal weight 2 Hecke eigenforms f1, f2 with
ρ̄f1 = ρ̄f2 for which there exists x ∈ |Xn| with Txf1 = 0 and Txf2 6= 0. In particular, the Φi in
Theorem 8.8(b) may depend on f and not just on ρ̄f .

To show the above claim, we follow the method employed in the previous example. We let
E1 and E2 be any elliptic curves over F that are split multiplicative at∞ and such that, at some
place x of F , both curves Ei have good reduction: however, E1 has ordinary and E2 supersingular
reduction. Now choose F ′ finite separable over F such that GF ′ acts trivially on Ei[p](F

sep) for
both i. Arguing as in Example 8.11, the claim follows.

We now turn to the case of arbitrary weight k > 2, and we fix an n that is a proper non-zero
ideal of A. Let K ⊂ GL2(Â) be a compact open subgroup that is neat, i.e., such that for all
g ∈ GL2(AF ) the torsion in GL2(F ) ∩ gKg−1 is p-torsion.9 By YK we denote the moduli space
for rank two Drinfeld modules with a level K structure and by jK : YK→ XK the open immersion
into the smooth compactification of YK. Abbreviate Yn = YK(n) and jn = jK(n). We regard Xn

and Yn either as smooth schemes over Xn or as curves over F . Let Fpn be the étale sheaf
of pn-torsion points of the universal Drinfeld module on Yn. By [Böc04, Corollary 7.2], the
dual F∨n := HomA/pn(Fn, p

−nΩA/Fq/ΩA/Fq) is isomorphic to (Mk(n)⊗A A/pn)ét, where we recall
from [Böc04, Definition 10.1] that Mk(n) is the A-motive attached to the universal Drinfeld
module on Yn. We define Gpn = jn!F

∨
pn . Since Sk(n) is defined as the pushforward under Xn to

Xn of jn! Symk−2Mk(n), we have as GF -representations:

H1
ét(Xn/F sep , Symk−2 Gpn) ∼= (Sk(n)⊗A A/pn)ét(F sep) ∼= ρSk(n),pn . (12)

Thus H1
ét(Xn/F sep ,Symk−2 Gpn)n>1 is an inverse system. Note also that one has a short

exact sequence

0→ H1
ét(Xn/F sep ,Symk−2 Gp)→ H1

ét(Xn/F sep ,Symk−2 Gpn)→ H1
ét(Xn/F sep , Symk−2 Gpn−1)→ 0

(13)
for all n. It is part of a long exact cohomology sequence in which the H0 and H i, i > 2,
terms vanish: for H0 this holds because Symk−2 Gpn is the extension by zero from an affine to
a projective scheme; for H i, i > 2, this uses that Xn is a curve in characteristic p, and that the
coefficients jn! Symk−2 Gpn are in characteristic p, as well.

Lemma 8.13. Let dk,n be the dimension of Sk(K(n),C∞).

(a) For any n, p, k, the A/pn-module H1
ét(Xn/F sep ,Symk−2 Gpn) is free of rank dk,n.

(b) For p|n, any n, k, and x ∈ |Xord
n |, the A/pn-module H1

ét(Xn/ksep
x
, Symk−2 Gpn) is free of rank

dk,n.

Proof. To prove (a), denote by π the Galois cover Xn′ → Xn over F sep for n′ := lcm(n, p).
By [Gek86, § 5], all non-trivial inertia subgroups of π at closed points of Xn, i.e., at the cusps

9 This generality is convenient for Proposition 8.24, Corollary 8.25 and Example 8.26.
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of Xn, are p-groups. Since clearly the Galois action on π∗ Symk−2 Gpn is of p-power order, this
implies (i) and (ii) of:

(i) the action of GK on π∗ Symk−2 Gpn , for K the function field of Xn′ , is via a p-group;

(ii) the action of inertia of a closed point of Xn on Symk−2 Gpn is via a p-group;

(iii) the curve Xn′/F
sep is ordinary.

Property (iii) is implied by Theorem 8.2. Now by [Pin00, Theorem 0.2], which is an analog of
the Grothendieck–Ogg–Shafarevich formula, and by [Pin00, Proposition 5.6(a)], which computes
some local terms, it follows that the Euler–Poincaré characteristic of the étale cohomology of
Symk−2 Gpn , considered as a vector space over F, is given by

(1− gXn − hXn) dimF(Symk−2 Gpn(Ksep)) = −dimF A/p
n · dk,n,

where gXn is the genus of Xn and hXn is the number of cusps of Xn/F
sep. Arguing as for (13), we

see that H i(Xn/F sep , Symk−2 Gpn) is possibly non-zero only for i = 1. From this, (a) follows.
For (b), observe that the analogs of (i)–(iii) hold for kx instead of F : conditions (i) and (ii) are

clear since p divides n, so that the Galois cover Xnpn−1 → Xn trivializing Symk−2 Gpn has degree
a power of p; (iii) holds because x lies in |Xord

n |. One now argues as in (a) to obtain (b). 2

For the following result, we regard jn : Yn ↪→ Xn as a compactification over Xord
n , and we

regard the étale sheaf Fpn of pn-torsion points of the universal Drinfeld module as a sheaf on Yn.
Then the extension by zero Gpn = jn!F

∨
pn is an étale sheaf on Xn. By f̄n : Xn → Xord

n we denote
the structure morphism.

Corollary 8.14. If p|n, then the étale sheaves R1
étf̄n∗ Symk−2 Gpn of A/pn-modules are lisse on

Xord
n .

Proof. Using the specialization from η to x ∈ |Xord
n | for the sequence (13) as given to the same

sequence with F sep replaced by ksep
x , it suffices to prove the result for n = 1. Next, by the sheaf

analog of (12) we have
R1

étf̄n∗ Symk−2 Gp
∼= (Sk(n)⊗A A/p)ét

as étale sheaves on Xord
n . Since Sk(n) has a locally free representative F on Xn × C, so does

Sk(n) ⊗A A/p on X × SpecA/p. Thus F is a vector bundle over the curve Xord
n × SpecA/p.

Replacing the representative by Im(τn) for n� 0, which over the curve is again locally free, we
can assume that τ is generically injective on F . Because A/p is finite it follows that in fact τ is
generically an isomorphism, and thus, by Lemma 8.13(a), the rank of F over Xn × SpecA/p is
dk,n. Consider now i∗xF for x ∈ Xord

n . Because of Theorem 3.1 and Lemma 8.13(b), the induced
τx must be an isomorphism. Again from Theorem 3.1, we deduce that F ét is lisse over Xord

n , and
this concludes the proof of the corollary. 2

Corollary 8.15. The compatible system (ρSk(n),p∞)p has empty defect set T ⊂ Max(A).

Proof. Let p be in Max(A) and let n′ := lcm(p, n). Then by (12) and by Corollary 8.14, the
GF -representation ρSk(n′),p∞ is lisse on Xord

n′ . Since for any p, the crystal Sk(n) is a subcrystal of
Sk(n′), the assertion follows. 2

Corollary 8.16. The ramification set of (ρSk(n),p∞)p is contained in SpecA r Xord
n . In

particular, for any Hecke eigenform f ∈ Sk(K(n),C∞), the conductor of χf is supported on
SpecArXord

n .
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Proof. Because of Corollary 6.7, its proof and Theorem 5.8, which link the system (ρSk(n),p∞)p to
the direct sum of Hecke characters χf , with f traversing all Hecke eigensystems for level n and
weight k, it suffices to show that the conductors of all χf have support outside Xord

n . Suppose
x is in the support of the conductor of some χf . Then (ρSk(n),p∞)p is ramified at x for all p.

However, by Corollary 8.14, the representation ρSk(n),p∞ is unramified at all x ∈ Xord
n for any p

dividing n. 2

To study the compatible system of Galois representations attached to a single Hecke
eigenform, we introduce some further notation. We continue with k > 2 and a non-trivial proper
ideal n ⊂ A. Denote by Tk(n, A) the A-subalgebra of Endcrys(Sk(n)) generated by the Hecke
operators Tx, x ∈ |Xn|. As explained above Proposition 5.3, the algebra Tk(n, A) is a subalgebra
of EndA(P ) for a finitely generated projective A-module P = (Sk(n)an)τ .

Definition 8.17. An extension F ′ of F inside C∞ is said to split Tk(n, A) if the action of Tx on
P ⊗A F ′ is triagonalizable for all x ∈ |Xn|.

In the following, we denote by F ′ a finite extension of F that splits Tk(n, A) and by A′

the normalization of A in F ′. We note that F ′ splits Tk(ñ, A) for all divisors ñ of n. For any
homomorphism A→ Ã we define Tk(n, Ã) := Tk(n, A) ⊗A Ã. If A ⊂ Ã ⊂ C∞, then Tk(n, Ã) is
isomorphic to the Ã-subalgebra of Endcrys(Sk(n)) generated by the Hecke operators Tx, x ∈ |Xn|.

Let f be a Hecke eigenform in Sk(K(n),C∞). By ax(f) we denote the eigenvalue of f under Tx
for x ∈ |Xn|. We describe two concrete ways to attach the strictly compatible system (ρf,P∞)P.
One way is to consider the subcrystal Ff of Sk(n) ⊗A A′ defined as in Proposition 5.5 as the

intersection of the kernels of all µf,x(Tx)dk,n , where µf,x is the linear polynomial z−ax(f) ∈ A′[z]
and x ranges over |Xn|; see also Remark 5.6. The crystal Ff is a Hecke crystal on a dense open
subscheme Uf of Xn. Denoting by r the rank of the crystal Ff , the system ρf,P∞ is uniquely
defined by

ρ⊕rf,P∞ = ρss
Ff ,P∞ , (14)

where P ranges over Max(A′) and where the superscript ss means that we pass to the
semisimplification of ρFf ,P∞ ⊗AP

F ′P. A second alternative construction runs as follows:

for P ∈ Max(A′) above p ∈ Max(A), abbreviate H1
ét(Xn/F sep , Symk−2 GPn) := H1

ét(Xn/F sep ,

Symk−2 Gpn ⊗Ap A
′
P) and define

H1
ét(Xn/F sep ,Symk−2 GP∞) = lim

←−
H1

ét(Xn/F sep , Symk−2 GPn),

so that by (12) the GF -representation H1
ét(Xn/F sep , Symk−2 GP∞) is isomorphic to ρSk(n),P∞ ⊗Ap

A′p. In particular, the action of Tx on H1
ét(Xn/F sep ,Symk−2 GP∞)⊗A′ F ′ is diagonalizable for all

x ∈ Xn, and by Theorem 4.17 the latter module has the same eigenvalue systems as P ⊗A F ′P.

We define H1
ét(Xn/F sep , Symk−2 GP∞)f as the intersection⋂

x∈|Xn|

Ker(µf,x(Tx)dk,n : H1
ét(Xn/F sep , Symk−2 GP∞)→ H1

ét(Xn/F sep , Symk−2 GP∞)). (15)

Because of ρSk(n),p∞ ⊗Ap F
′
P
∼=
⊕

f ρFf ,P∞ ⊗A′p F ′P, where the sum runs over all Hecke
eigensystems of eigenforms f ∈ Sk(K(n),C∞), and which follows from Propositions 5.4 and 5.5
and Corollary 8.15, we see that the GF -representation H1

ét(Xn/F sep , Symk−2 GP∞)f ⊗A′P F ′P is

isomorphic to ρFf ,P∞ ⊗A′p F ′P. With r from (14) it follows that

ρ⊕rf,P∞ = (H1
ét(Xn/F sep ,Symk−2 GP∞)f )ss.
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Proposition 8.18. Let f ∈ Sk(K(n),C∞) be a Hecke eigenform.

(a) The defect set of (ρf,P∞)P in Max(A′) is empty, its ramification set contained in Max(A)r
Xord

n .

(b) Let P ∈ Max(A′) be above p ∈ Max(A), n′ := lcm(n, p). Then ρf,P∞ is unramified at
x ∈ |Xord

n′ | and ρf,P∞(Frobx) = ax(f).

Proof. Part (a) follows from (14) and Corollaries 8.15 and 8.16. For (b) observe that the Eichler–
Shimura relation (7) as proved in Theorem 6.1 yields

Tx = ρSk(n),P∞ (16)

as actions onH1
ét(Xn/F sep ,Symk−2 GP∞). Because of Corollary 8.15 this holds for all P ∈Max(A′).

Now Corollary 8.16 implies that SFP in the proof of Theorem 6.1 is disjoint from |Xord
n′ |, and so for

a given P equality (16) holds for all x ∈ |Xord
n′ |. Specializing (16) to the generalized f -eigenspace

of H1
ét(Xn/F sep , Symk−2 GP∞) and semisimplifying completes the proof of (b). 2

Let f ∈ Sk(K(n),C∞) be a Hecke eigenform and fix P ∈Max(A′). Define m as the kernel of
the homomorphism Tk(n, A′)→ A′P/P, Ty 7→ ay(f) (mod P). For any Tk(n, A′)-module M , we
denote by Mm the localization of M at m, and we note that localization is exact.

The following result describes congruences between weight k and weight 2 forms. Results
similar to part (a) are well known for classical modular forms.

Lemma 8.19. Set p := A ∩ P ∈ Max(A) and n′ := lcm(n, p). Choose a field extension F ′ ⊃ F
that splits Tk(n′, A).

(a) There exists a Hecke eigenform g ∈ S2(n′,C∞) such that

ay(f) ≡ ay(g) (mod P) for all y ∈ |Xn′ |.

(b) If ρf,P∞ is ramified at some x ∈ |Xn′ |, then ax(f) ≡ 0 (mod P).

(c) If ax(f) ≡ 0 (mod P), then any g as in (a) is doubly cuspidal.

Proof. For (a) we have to show that the ideal m′ of T2(n′, A′) generated by P and {Ty − ay(f) |
y ∈ |Xn′ |} is a proper ideal. Then m′ is maximal, as a kernel of a homomorphism to A′/P; the
localization S2(n′,C∞)m′ is non-zero and Hecke stable; and any Hecke eigenform g ∈ S2(n′,C∞)
which is non-zero after localization at m would work for (a).

To see that m′ is proper, it suffices to show that H1
ét(Xn′/F sep ,Sym0 GP)m′ is non-zero. Since

p divides n′, the sheaf Symk−2 Fp is constant and isomorphic to A/p⊕(k−1). We deduce the
isomorphism (Sym0 Gp)

⊕(k−1) ∼= Symk−2 Gp and hence the isomorphism of modules over the free
commutative A-algebra A[Tx | x ∈ |Xn|],

H1
ét(Xn′/F sep ,Sym0 GP)⊕(k−1) ∼= H1

ét(Xn′/F sep ,Symk−2 GP).

This implies H1
ét(Xn′/F sep ,Sym0 GP)

⊕(k−1)
m′

∼= H1
ét(Xn′/F sep ,Symk−2 GP)m as A′/P-modules and

thus completes (a).
We now prove (b). Let x be in |Xn′ |. Arguing as in Lemma 8.13(b), we deduce from the

exactness of localization that the A′/Pn-rank of H1
ét(Xn′/ksep

x
, Symk−2 GPn)m is independent of

n. If this rank was equal to the A′/Pn-rank of H1
ét(Xn′/F sep ,Symk−2 GPn)m, then using Ff and
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following the proof of Corollary 8.14, one deduces that ρf,P∞ is unramified at x, which is ruled
out by the hypothesis of (b). The congruence argument employed in (a) now yields

dimA′/PH
1
ét(Xn′/F sep , Sym0 GP)m′ > dimA′/PH

1
ét(Xn′/ksep

x
,Sym0 GP)m′ .

We claim that Tx ∈ m′, so that 0 = ax(g) ≡ ax(f) ≡ 0 (mod P).
Denoting by in : CK(n)/F → Xn the closed immersion of the cusps, one has the short exact

sequence 0 → jn!j
∗
n A
′/P → A′/P → in∗i

∗
nA
′/P → 0 on Xn, whose left term is isomorphic to

Sym0 GP. The associated long exact sequence of étale cohomology together with the specialization
homomorphism to x give the following diagram.

0 // A′/P //

'
��

H0
ét(CK(n)/F

sep, A′/P) //

'
��

H1
ét(Xn/F

sep, jn!A
′/P) //

��

H1
ét(Xn/F

sep, A′/P) //

��

0

0 // A′/P // H0
ét(CK(n)/k

sep
x , A′/P) // H1

ét(Xn/k
sep
x , jn!A

′/P) // H1
ét(Xn/k

sep
x , A′/P) // 0

The isomorphism on the far left is clear. The isomorphism on the second term is shown as follows:
The compactification Xn of Yn is obtained by gluing in formal Drinfeld–Tate curves at the cusps.
The special fibers of the latter, i.e., the components of CK(n)/F , are isomorphic to SpecF (n),
where F (n) is the Drinfeld cyclotomic extensions of F of conductor n, see [Böc04, §§ 2.2–2.4].
It follows that the action of GF on H0

ét(CK(n),Fp) is unramified outside n. The above diagram
remains exact after localization at m′. It follows that the specialization H1

ét(Xn/F
sep, A′/P)m′ →

H1
ét(Xn/k

sep
x , A′/P)m′ is not an isomorphism. From the alternative described in Theorem 8.8(c),

we deduce that Tx ∈ m′.
Finally, to show (c), we argue by contradiction and assume that some g from (a) is not

doubly cuspidal. Then its Galois representation belongs to H0
ét(CK(n)/F

sep, A′/P), and so we
know that the specialization homomorphism to H0

ét(CK(n)/k
sep
x , A′/P) is an isomorphism. As

explained in the proof of Theorem 6.1, this implies that for the actions on H0
ét(CK(n)/F

sep, A′/P)
we have Tx = Frobx. As explained in the previous paragraph, the Galois action on this module
is unramified on Xn and via a finite order character. Because x is in |Xn′ |, it follows that Frobx,
and hence also Tx, act via some invertible matrix over A′/P. In particular, ax(g) must be a unit,
which is a contradiction. 2

As a corollary to the proof just given, we also record the following.

Corollary 8.20. Let f be an eigenform in S2(K(n),C∞)rS(2)
2 (K(n),C∞). Then for all x ∈ Xn

we have ax(f) = ρ̄f (Frobx).

Remark 8.21. With slightly more work but similar methods, one can show that for k > 3 and

a Hecke eigenform f ∈ Sk(K(n),C∞) r S
(2)
k (K(n),C∞), one has for all P ∈ Max(A′) and p =

P ∩ A the equality ax(f) = ρf,P∞(Frobx) for all x ∈ Xnp. Recall, from the second paragraph of
the introduction to the present section, that it follows from [Böc04, Corollary 14.7] that χf is
unramified outside n.

Proposition 8.22. Set p := A ∩ P ∈ Max(A) and n′ := lcm(n, p). Choose a field extension
F ′ ⊃ F that splits Tk(n′, A). Let m′ ⊂ T2(n′, A′) be as above, and let x be in |Xn′ |. Then:

(a) if ax(f) 6≡ 0 (mod P), then ρf,P∞ is unramified at x and ρf,P∞(Frobx) = ax(f);

(b) if ax(f) ≡ 0 (mod P), then Jac(Xn′/kx)(p)m′ has trivial étale part and Jac(Xn′/kx) is
non-ordinary.
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Proof. Suppose first that ax(f) 6≡ 0 (mod P). Then by Lemma 8.19(b), ρf,P∞ is unramified at x.

Moreover, Lemma 8.19(a) provides a weight 2 doubly cuspidal eigenform g of level n′ such that

ax(g) ≡ ax(f) (mod P) for all x ∈ |Xn′ |. Let m ⊂ Tk(n, A′) be as defined above Lemma 8.19.

Because of Theorem 8.8(c), the specialization map H1
ét(Xn′/F sep , Sym0 GP)m′ → H1

ét(Xn′/ksep
x
,

Sym0 GP)m′ is an isomorphism. Arguing as in the proof of Lemma 8.19(b), we deduce that the

specialization map H1
ét(Xn′/F sep , Sym0 GP∞)m → H1

ét(Xn′/ksep
x
,Sym0 GP∞)m is an isomorphism.

Passing to the f -component defined in (15), it remains an isomorphism. Therefore the Eichler–

Shimura relation (7) applies to give ρf,P∞(Frobx) = ax(f). This completes (a).

Suppose now that ax(f) ≡ 0 (mod P), and let g be as in Lemma 8.19(a). By Lemma 8.19(c),

we deduce that g is doubly cuspidal. Hence we can apply Theorem 8.8 to g, and by its part (c)(i)

the proof of (b) is immediate. 2

The following is an immediate consequence of Proposition 8.22.

Corollary 8.23.

(a) Let x be in |Xord
n |. Then ax(f) 6= 0, and for P ∈Max(A′[1/ax(f)]) the representation ρf,P∞

is unramified at x and satisfies the Eichler–Shimura relation ax(f) = ρf,P∞(Frobx).

(b) Let P be in Max(A′) and p = P ∩A. Then ρf,P∞ is unramified at all x ∈ |Xord
np |.

The next result is useful for the two examples given below.

Proposition 8.24. Let K′ ⊂ K ⊂ GL2(Â) be open subgroups such that K′ is normal in K with

p-group quotient. Then any cuspidal weight k Hecke eigensystem of level K′ occurs as a weight

k cuspidal Hecke eigensystem of level K.

Proof. Consider the diagram

YK′
jK′ //

πY

��

XK′

πX
��

YK
jK // XK

where YK is the modular curve for Drinfeld modules with a level K structure, XK is its smooth

compactification, jK is the corresponding open immersion, and similarly for K′ in place of K;

and, moreover, πY and πX are the respective covering morphisms. Note that πY is a Galois cover

with Galois group K/K′. However, there might be ramification at the boundary of CK′ → CK.

The weight k Hecke eigensystems of level K′ occur in H1
ét(XK/F sep , jK′! Symk−2 F∨p∞). By the

spectral sequence of composition of πX with the structure morphism of XK, we obtain, using that

πY is finite étale, the isomorphism

H1
ét(XK′/F sep , jK′! Symk−2 F∨p∞) ∼= H1

ét(XK/F sep , jK!(πY∗ Symk−2 F∨p∞)).

The isomorphism is compatible with Hecke correspondences away from the level of K′.
Next, observe that Symk−2 F∨p∞ over YK′ is π∗Y Symk−2 F∨p∞ , so that by the projection formula

we have

πY∗ Symk−2 F∨p∞
∼= Symk−2 F∨p∞ ⊗Fp πY∗Fp.

Furthermore, πY∗Fp ∼= IndKK′ Fp ∼= Fp[K/K′] as a representation of the fundamental group of
YK. Because K′ is normal in K with p-group quotient, it follows that the semisimplification
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of Fp[K/K′] is isomorphic to Fdp for d = [K : K′]. Arguing as for (13), the H0 and H2 terms
vanish for étale cohomology with Fp-coefficients for a proper extension by zero on a curve. Hence

H1
ét(XK′/F sep , jK′! Symk−2 F∨p∞)ss ∼=H1

ét(XK′/F sep , jK′! Symk−2 F∨p∞)ss

∼=H1
ét(XK/F sep , jK! Symk−2 F∨p∞)ss,⊕d

as Hecke modules, and this completes the proof. 2

We define K′1(n) with K(n) ⊂ K′1(n) ⊂ GL2(Â) as the set of those matrices
(
a b
c d

)
that satisfy

a− 1 ≡ c ≡ d− 1 ≡ 0 (mod n).

Corollary 8.25. Let A = Fq[T ] and suppose that n is a prime of degree one of A. Then for
any cuspidal Drinfeld Hecke eigenform f of level dividing n and any weight, the Hecke character
χf is unramified outside the level of f , and ax(f) = χf (1, . . . , 1, $x, 1 . . . , 1) for all x outside the
level of f .

Proof. Suppose first that n = (T ). By Proposition 8.24, any f as in the theorem has the same
eigensystem as some g ∈ Sk(K′1(n),C∞). Now in this case, the curve XK′1(n) overXn = SpecA[1/T ]

is simply P1
Xn

, e.g. [Böc14, Proposition 10.10(b)]. Now, trivially, the curve P1 has everywhere
ordinary reduction. Then by Proposition 8.18,10 the conductor of χf = χg divides (T ) for g
of level K′1(T ). By acting on the primes of degree one of P1 via an automorphism of the form
T 7→ T + a for a suitable a ∈ Fq, one sees that the argument just given applies to all primes n of
degree one. So suppose finally that f has level one. Then f also occurs in levels (T ) and (T + 1).
By what we have just proved, the conductor of χf divides T and T + 1. But then the conductor
must be one, as asserted. The last part is immediate from Corollary 8.23. 2

Example 8.26. We now apply Proposition 8.22 to the examples in § 7. For j = 1 and 4 6 k 6 q+2
we have Fk,1 = 1 + (k − 3)(T/θ). Then for the corresponding form f , the Hecke eigenvalue of
T(h) for h ∈ Fq[θ] with constant term 1 is given by (top of page 2032)

h((k − 3)T ).

Suppose now further that 5 6 k 6 p+ 2, so that k − 3 lies in F∗p r {1}, and that h(θ) is linear.
Then the linear polynomials h(T ) and h((k − 3)T ) are distinct and both have constant term 1,
and so they have no common roots. In particular, if we choose p = (h((k − 3)T )), and x = (h),
then ax(f) ≡ 0 (mod p). Thus the Jacobian of X(th((k−3)t)) has a factor of non-ordinary reduction
at the prime h(θ). Since h was arbitrary, it follows that for any linear polynomial h ∈ Fp[T ] with
constant term 1, the Drinfeld modular curve X(th(t)) has non-ordinary reduction at the prime
h((k − 3)−1θ). Now note that k ∈ {5, . . . , p− 2} was arbitrary. We thus deduce that X(th(t)) has
non-ordinary reduction at all primes h(αθ) for α ∈ F∗p r {1}.

By Proposition 8.24 below, we can descend from a full level t structure to a Γ′1(t)-type
level structure. The advantage of this is that numerical computations with the latter type level
structure have a lower complexity. To be more explicit, set Γ′1(th(t)) := GL2(Fq[t]) ∩ K′1(th(t)).
Now by Proposition 8.24, the Drinfeld modular curve XΓ′1(th(t)) of level Γ′1(th(t)) over Fq(θ)
has non-ordinary reduction for all primes of the form h(αθ), α ∈ F∗p r {1}. In fact, for each
α ∈ F∗p r {1} there is a weight 2 cuspidal Hecke eigenform gα of level Γ′1(th(t)) whose Hecke
eigenvalue at h(αT ) is zero. The last result was verified independently by R. Butenuth who

10 Strictly speaking, we have only proved Proposition 8.18 for levels K(n). However, the arguments all go through
for neat levels K. We stuck to K(n) because we did not wish to get into fields of definitions of the curves XK.
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computed numerically the Hecke operators on weight 2 forms for Γ′1(th(t)). We leave it up to
the reader to draw further conclusions for primes p and x of degree larger than one.
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Appendix A. Ramification and the p-rank of abelian varieties under reduction

The present appendix is motivated by the results in § 8 on the ramification of Galois
representations associated to Drinfeld modular forms. Its main result is a simple consequence
of [deJ98] by de Jong and it is certainly well known to the experts. At the time of writing this
we could not find an argument in the literature. De Jong pointed out that results of this kind are
described in the language of F -crystals independently in the recent work [Yan11, Proposition 4.6].
Due to the simplicity of the argument and the complementary nature of our results in § 8, we
give a complete treatment.

Let us recall the theorem of Néron–Ogg–Shafarevich, cf. [ST68]. It links the reduction
behavior of an abelian variety A over a local field K to ramification properties of the action
of the absolute Galois group of K on the `-adic Tate module of A where ` is any prime different
from the residue characteristic p of K: the variety has good reduction if and only if the Galois
representation is unramified. If p > 0 a similar much deeper theorem holds if instead of the Tate
module at p one considers the p-divisible group attached to A. This is due to Tate for K of
characteristic zero, [Tat67], and de Jong for K of characteristic p, [deJ98].

In this appendix we shall derive a similar type Galois criterion in a related setting: let K
be a local field of characteristic p with ring of integers O and residue field k. Let A over O be
an abelian scheme of dimension g with generic fiber A over K and special fiber Ak, so that in
particular A has good reduction. It is well known that the p-adic Tate module TapA of A is free
over Zp and that its rank rankpA = rankZp TapA satisfies 0 6 rankpA 6 g. One calls rankpA
the p-rank of A.11 Moreover, TapA carries a natural continuous Zp-linear action of GK which
provides one with a Galois representation:

ρA,p : GK −→ AutZp(TapA) ∼= GLrankp A(Zp).

Considering the étale quotient of the pn-torsion scheme of A, whose reduction to k agrees with
the étale quotient of the pn-torsion scheme of Ak, one sees that any pn-torsion point of Ak has
a unique lift to a pn-torsion point of A. In particular,

rankpAk 6 rankpA.

Our main result relates the reduction behavior of the p-rank to the ramification of ρA,p.

Theorem A.1. The p-rank of A is constant under reduction if and only if ρA,p is unramified.

11 The formula rankpA = rankZp TapA is used over any field K of characteristic p > 0 to define the p-rank of A.
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The proof given below is a straightforward consequence of the main theorem of [deJ98].

Remark A.2. As the p-rank of an abelian variety is unchanged under finite extension of its base
field, Theorem A.1 has the following consequence: the representation ρA,p is unramified if and
only if it is potentially unramified. It might be interesting to explore possible relations between
the decrease of the p-rank under reduction and the rank of the inertial action.

As a corollary to Theorem A.1 we obtain a Galois criterion for the constancy of the p-rank of
curves under reduction: let C over O be a smooth projective geometrically irreducible curve with
generic fiber C and special fiber Ck. As in the proof of Proposition 8.3, one defines the p-rank of
C as

rankpC = dimFp H
1
ét(CKsep ,Fp) = dimFp H

1(CKsep ,OC)ϕ 6 dimK H
1(C,OC).

Clearly the Qp-vector space H1
ét(CKsep ,Qp) comes naturally equipped with an action of GK .

Corollary A.3. The action of GK on H1
ét(CKsep ,Qp) is unramified if and only if rankpC =

rankp Ck.

Proof. This is straightforward from Theorem A.1: The Jacobian JacC of C is an abelian scheme
over O whose generic fiber is the Jacobian JacC of C and whose special fiber is the Jacobian of
Ck. Now the Tate module of JacC tensored with Qp over Zp is dual to H1

ét(CKsep ,Qp) as a module
for GK . Moreover, the rank of H1

ét(CKsep ,Qp) over Qp is equal to that of H1
ét(CKsep ,Fp) over Fp.

Thus we have on the one hand rankpC = rankp JacC and on the other that the GK-action on
H1

ét(CKsep ,Qp) is unramified if and only if this action of ρJacC ,p is unramified. 2

To prove Theorem A.1, we shall in fact prove a result on p-divisible groups. Recall that a
p-divisible group G over O of height h = heightG is an inductive system (Gn, ιn)n>0 where:

(a) Gn is a finite flat group scheme over O of rank phn;

(b) for each n > 0, the following sequence is exact:

0 −→ Gn ιn−→ Gn+1
pn−→ Gn+1.

One example of a p-divisible group is the inductive system A[pn] of the pn-torsion subschemes
of the abelian scheme A over O. We denote it by A(p). Any p-divisible group has a maximal
étale quotient Gét. It is formed by the sequence of maximal étale quotients Gn,ét of Gn over O.
If GK denotes the generic fiber of K, then its étale quotient GK,ét surjects onto the generic fiber
(Gét)K , but this need not be an isomorphism.

To any p-divisible group over K one attaches its p-adic Tate modules Tap GK = lim
←−n
Gn(Kalg).

It carries a natural action of GK . The assignment GK 7→ Tap GK defines a functor from p-divisible
groups over K and p-adic Galois representations of GK , which restricts to an equivalence of
categories when restricted to étale p-divisible groups over K. Moreover, the equivalence restricts
to an equivalence between p-divisible étale groups G over O and unramified p-adic Galois
representations.

Since the p-rank of A is the same as the height of A(p)ét, Theorem A.1 is now an immediate
consequence of the following more general result on p-divisible groups, which will also be useful
in Appendix B.

Theorem A.4. Suppose G is a p-divisible group over O. Then Tap G is an unramified
representation of GK if and only if heightGK,ét = heightGét.
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Remark A.5. The height is invariant under base change. Thus if heightGK,ét > heightGét, then

Tap G restricted to GK′ for any finite extension field K ′ of K remains ramified, analogous to

Remark A.2.

Our essential tool to prove Theorem A.4 is the following result of de Jong adapted to our

situation.

Theorem A.6 [deJ98, Corollary 1.2]. Let G and H be p-divisible groups over O. Then the

natural homomorphism

HomO(G,H) −→ HomK(GK ,HK)

is bijective. In particular, any homomorphism that is an isomorphism over K is an

isomorphism over O.

Proof of Theorem A.4. By a suitable base change, we may assume for the proof that the residue

field k of O is algebraically closed. Then Gk is trivial and hence a representation of GK is

unramified if and only if GK acts trivially.

One direction of the theorem is now immediate: Suppose that heightGK,ét = heightGét and

consider for any n > 1 the following commutative diagram.

Gn,K,ét(K
sep)

' // Gn,ét(K
sep)

'
&&

Gn,ét(K)oo

'
��

Gn,ét(k)

The left horizontal map is an isomorphism by hypothesis. The map from the center to the

lower right is an isomorphism because Gn,ét is finite étale and k is algebraically closed. The

right vertical map is the composition of the isomorphism Gn,ét(O)→ Gn,ét(k), which holds since

Gn,ét→ SpecO is étale, and the inverse of the isomorphism Gn,ét(O)→ Gn,ét(K), that uses that

Gn,ét is proper. It follows that the right horizontal map is an isomorphism and hence that GK
acts trivially on GK,n(Ksep).

Suppose now that the action of GK on TapA is trivial. Then one can associate to TapA the

following trivial p-divisible group: denote by Tn the constant group scheme over O with generic

fiber

Gn(K) ∼= (Z/(pn))heightGK,ét .

With respect to the canonical inclusion Tn(K) ↪→ Tn+1(K) these group schemes form a p-divisible

group T = (Tn, ιn) which is obviously étale over O. Note that TK is the étale quotient of GK by

the equivalence of Galois representations and étale p-divisible groups over K.

Now Theorem A.6 of de Jong yields a homomorphism G → T of p-divisible groups over O,

which over the generic fiber arises from the isomorphism GK,ét→ TK . Since T is étale, we obtain

an induced homomorphism Gét→ T which over the generic fiber yields

GK,ét −→ (Gét)K −→ TK .

As the composite is an isomorphism and the left-hand map is surjective, all maps are

isomorphisms, and thus heightGK,ét = heightGét.
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Appendix B. Basic results on p-adic Galois representations and their reductions

for automorphic forms over characteristic p function fields

Gebhard Böckle and Tommaso Centeleghe

This second appendix is concerned with results on p-adic Galois representations and their

reductions attached to cuspidal automorphic forms over characteristic p function fields for which

we could not find an adequate reference. Many results are inspired by related results on Galois

representations over number fields. However there are significant differences, for instance that

the representations we deal with are abelian.

We assume some familiarity with the theory of automorphic forms and representations.

Details can be found in the following references. A good presentation of the general theory

is [BJ79, § 5]. In particular, it gives the correct framework of cuspidal automorphic forms

and automorphic representations. Much narrower, but very close to the present setting

is [vdPR97, § 2]. The reference [Pia79] presents strong multiplicity one for cuspidal automorphic

representations for GLn. The tensor product theorem can be found in [Fla79] and the local theory

for GL2 is nicely presented in [BH06].

In this appendix, the basic notation is as in § 6. We let k be the finite field Fq. By X we

denote a smooth projective geometrically irreducible curve over k on which we fix a closed point

∞. By F we denote the function field k(X) of X. We set C = X r {∞} and let A be the

coordinate ring of the affine curve C. We choose a non-zero proper ideal n of A. As before, by

Xn we denote X r ({∞} ∪ Spec(A/n)); it is a dense open subscheme in X. The residue field of

X at x is kx and its order is qx. By Ox we denote the completion of the local ring OX,x and by

Mx the maximal ideal of OX,x.

By K1(n) we denote the compact open subgroup of GL2(Â) of matrices whose reduction

modulo n is the subgroup{(
1 b
0 d

) ∣∣∣∣ b ∈ A/n, c ∈ (A/n)∗
}
⊂ GL2(A/n),

and we write X1,n for the corresponding modular curve XK1(n) over F . The curve X1,n is in general

only a course moduli scheme; by [Gek80, (3.4.17)] it is fine if either deg∞ is even or if n contains

a prime divisor of odd degree, because under these conditions the corresponding congruence

subgroups admit no elliptic fixed points. Arguing as in [KM85, ch. 9, Paragraph 9.4.3], one also

finds that X1,n is defined and geometrically irreducible over F .

Because some arguments we use follow [Wil86], who works in the classical case of Hilbert

modular forms with a Γ1(N) structure, we chose to work with X1,n. This setup has the advantage

over Xn that the corresponding space of newforms satisfies the multiplicity one property with

respect to the Hecke algebra generated by the Hecke operators Tx and Sx (diamond operators)

where x ranges over all places x ∈ |Xn|; for multiplicity one, the operators Tx with x in a cofinite

subset of |Xn| are in fact sufficient. Moreover, one has the following uniqueness result.

Lemma B.1. Let Π be an irreducible cuspidal automorphic representation for GL2(AF ). Then

there exists a unique non-zero ideal n of A that is maximal under inclusion, such that ΠK1(n) is

non-zero. Moreover, if Π is special at∞, then dimC ΠK1(n)×K∞ = 1 for K∞ the Iwahori subgroup

at ∞. In particular, there exists a unique cuspidal automorphic eigenform Φ of level K1(n) that

spans Π.
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Proof. This follows as in [Cas73, Theorems 1, 3], except that no discussion of Archimedean places

is needed. Write Π =
⊗

x Πx in its tensor product representation with local factor Πx at each

place x of F . Define K1,x,c as the set of matrices in GL2(OX,x) whose reduction modulo Mc
x is of

the form
(

1 b
0 d

)
with b ∈ OX,x/Mc

x and d ∈ (OX,x/Mc
x)∗. By Theorem 1 of [Cas73], for each place

x there exists a unique integer cx > 0 such that the fixed point set Π
K1,x,cx
x is a one-dimensional

complex vector space. Moreover, by the global theory of automorphic forms almost all cx are zero.

Define n as the product
∏
x 6=∞Mcx

x , so that one has K1(n) =
∏
x 6=∞K1,x,cx . Then the subspace

of vectors of Π fixed under K1(n)×K∞ is one-dimensional. 2

In the following we consider the abelian variety

An := Jnew
1,n := Jac(X1,n)

n-new

over F , which is the quotient of Jac(X1,n) modulo the subgroups of the form Jac(X1,m) for proper

divisors m of n, mapping to Jac(X1,n) via the usual degeneracy maps. By An we denote the Néron

model of An over X, and by An,Ox and An,x, its base change to Ox and kx respectively. We denote

by

En := Tnew
1,n ↪→ End0

F (Jnew
1,n )

the Q-subalgebra spanned by the Hecke operators Tx and Sx where x ranges over all places

x ∈ |Xn|. Using the Néron model, one obtains for any place x ∈ |Xn| an algebra-homomorphism

EndF (An) ↪→ Endkx(An,x) which is injective, so we may identify EndF (An) with a subring

of Endkx(An,x), and in particular we regard En as subalgebra of End0
kx(An,x). The following

properties will be important.

(a) The abelian variety An is ordinary over F by Theorem 8.2 and has good reduction at all

places x ∈ |Xn|, because X1,n is a smooth projective curve over Xn.

(b) En is an étale Q-algebra, i.e., a product of finite field extensions of Q, by the multiplicity

one property mentioned above.

(c) For each indecomposable idempotent ε of En (so that εEn is a field), we have dim(εAn) =

[εEn : Q] by the theory of newforms.

(d) At all x ∈ X rXn, each factor εAn as in (c) has bad reduction; the base change to Xn

of An is an abelian scheme.

(e) For each x ∈ |Xn|, denote by πx, Vx ∈ Endkx(An,x) the qx-Frobenius endomorphism and

qx-Verschiebung on An,x, so that Tx = πx + SxVx in Endkx(An,x) by [Dri76, § 11, Theorem 2].

For each place x of |Xn| we define gx(z) ∈ En[z] as the polynomial

gx(z) = z2 − Txz + Sxqx. (B1)

We note that Tx and Sx lie in the maximal order of En.

For a (rational) prime ` 6= p, we denote by Ta`(An) the `-adic Tate module; it is a

representation of GF on a free Z`-module of rank 2 dimAn. We set V`(An) := Ta`(An) ⊗Z` Q`.

Correspondingly we define En,` := E ⊗Q Q`. For every prime λ of En above `, we define

Vλ(An) := V`(An) ⊗En,`
(En)λ where (En)λ denotes the completion at λ. The notation V` and

Vλ is used analogously for the pair (εAn, εEn).

Lacking a suitable reference, we give a proof of the following result which describes properties

well known for abelian varieties attached to the weight 2 elliptic modular form by Shimura.
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Proposition B.2. Denote by A the quotient abelian variety εAn of An and set E := εEn. Then:

(a) let ` be a prime different from p and λ a place of E above `. Then Vλ(A) is an absolutely
irreducible two-dimensional representation of GF over Eλ;

(b) the embedding E ↪→ End0
F (A) is an isomorphism and the abelian variety A is F -simple.

Proof. For (a) we first recall the following well-known argument that Vλ(A) is a free Eλ-module
of rank two: By replacing A by an isogenous abelian variety one can assume that the ring of
integers OE of E embeds into EndF (A). Since the class group of OE is finite, there exists m such
that λm is a principal ideal, say (a) for some a ∈ OE r {0}. Now multiplication by a induces
an endomorphism aA of A that is an isogeny of degree NormE/Q(a)2 = NormE/Q(λ)2m. A key
insight to see this is that degree and Norm for non-zero elements in OE are multiplicative maps
to Z that agree on Z up to a power and hence can only differ on OE by that power; see [Mum70,
§ 19]. Since ` is different from p, the kernel of aA is an étale `-primary torsion scheme of order
|OE/λ|2m. One deduces that the limit lim

←−n
Ker(anA) must be free over the completion of OE at

λ of rank two, which implies that Vλ(A) is free of rank two over Eλ.
The proof of the absolute irreducibility is now similar to that of [Rib77, Theorem 2.3], which

goes at least back to Deligne. Suppose that the semisimplification of Vλ(A) over some extension
E′λ of Eλ is the direct sum of two one-dimensional representations, say given by characters χi,
i = 1, 2, of GF . Because A has total toric reduction at ∞, one of the characters must be trivial
when restricted to the decomposition group at ∞; the other restriction must be the cyclotomic
character. At places not dividing n, the representations are unramified; at those dividing n, they
are finitely ramified. We may thus assume that χ1 is of finite order and χ2 is the product of
the cyclotomic character by a character χ′2 of finite order. For a place x not above n∞, we
deduce that the trace of Frobx acting on Vλ(A) is χ1(Frobx) + qxχ

′
2(Frobx). From [Dri76, § 11,

Theorem 2] it is known that at places x not above n∞, the complex absolute value of the trace
satisfies the Ramanujan–Petersson bound 2

√
qx, and this gives a contradiction.

For the proof of (b), we follow [Rib92, Theorem 3.3] but use the Tate conjecture for function
fields over finite fields, which is a theorem due to Zarhin [Zar75]. It asserts that

End0
F (A)⊗Q Q`

∼= EndQ`[GF ](V`(A)).

The ring E ⊗Q Q` embeds into the left-hand side. Decomposing it and V`(A) according to the
primes λ above ` we obtain the canonical embedding Eλ ↪→ EndQ`[GF ](Vλ(A)), which is an

isomorphism, by (a). It follows that the embedding E ↪→ End0
F (A) becomes an isomorphism after

tensoring with Q` over Q, and by faithful flatness of this operation we deduce E = End0
F (A).

Now the Poincaré complete reducibility theorem for abelian varieties shows that A is simple. 2

We recall the standard short exact sequence of p-divisible groups over F :

0 −→ An(p)loc −→ An(p) −→ An(p)ét −→ 0, (B2)

where the subscripts loc and ét denote, as usual, the local and étale parts. If we wish to work in
the isogeny category of p-divisible groups we add a superscript 0 to the notation.

The action of En on An (up to isogeny) induces an action of the completion En,p of En at p
on the p-divisible group A0

n(p). The Qp-algebra En,p is a product of fields (En)p obtained as the
completion of En at its places p above p. Using for instance the corresponding idempotents, one
can decompose A0

n(p) as a direct product over p-divisible groups (A0
n(p))p which carry an action

of (En)p. By an argument as in the proof of Proposition B.2(a), one shows that the height of
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(A0
n(p))p is a multiple of the degree [(En)p : Qp]; we define the height of (A0

n(p))p over (En)p as
the positive integer

height(En)p(A0
n(p))p :=

height(A0
n(p))p

[(En)p : Qp]
.

A similar notation of height over E applies to any finite field extension E of Qp and any p-divisible
group G over an irreducible scheme S such that E embeds into End0(G). Passing to local and
étale parts of a p-divisible group is functorial in homomorphism. Therefore the action of En,p on
A0

n(p) induces actions of En,p on (A0
n(p))? for ? ∈ {loc, ét}. For the same reason, the passage to

local or étale parts commutes with passing from A0
n(p) to (A0

n(p))p.

Lemma B.3. Let x be a place of |Xn| and p a prime ideal of En above p. Let vp be the valuation
on (En)p such that vp(qx) = 1. Let ε ∈ En denote an indecomposable idempotent. Then the
following hold.

(a) The polynomial gx(z) from (B1) annihilates πx.

(b) If T 2
x 6= 4Sxqx in εEn, then the subalgebra εEn[πx] ⊂ End0

kx(εAn,x) is free over εEn of
rank two, and (A0

n,Ox(p))p has height 2 over (En)p.

(c) Localizing (B2) in the isogeny category at p, one obtains the short exact sequence

0 −→ (A0
n(p)loc)p −→ (A0

n(p))p −→ (A0
n(p)ét)p −→ 0, (B3)

in which the outer terms have height 1 over (En)p.

(d) If vp(Tx) = 0, the sequence (B3) extends to a local-étale sequence over Ox:

0 −→ (A0
n,Ox(p)loc)p −→ (A0

n,Ox(p))p −→ (A0
n,Ox(p)ét)p −→ 0.

(e) Whenever vp(Tx) < 1/2, the slope filtration sequence (slopes are indicated by
superscripts)

0 −→ (A0
n,x(p))

1−vp(Tx)
p −→ (A0

n,x(p))p −→ (A0
n,x(p))

vp(Tx)
p −→ 0,

is split, with outer terms of height 1 over (En)p.

(f) If vp(Tx) > 1/2, then (A0
n,x(p))p has constant slope 1/2.

Proof. Since all assertions are assertions in the respective isogeny categories, we may choose
an indecomposable idempotent ε and give the proof after replacing (An, En,An) by (A := εAn,
E := εEn,A := εAn) so that E is a field and A is a simple abelian variety with dimA = [E : Q]
and Néron model A. We use πx, gx etc. for this situation as well. This simplification simply
means that we focus on the Galois orbit of a single automorphic eigenform Φ of level K1(n) that
is new at n, and on the corresponding factor A of An and coefficient field E.

By the easy part of the Tate conjecture one has a monomorphism

End0
kx(Ax) ↪→ AutGal(kx/kx)(V`(Ax))

for any ` 6= p. It is well known, e.g. [Dri76, § 11, Theorem 2, part 2], that gx is the characteristic
polynomial of Frobx ∈ Gal(kx/kx) and that πx maps to Frobx under the above inclusion. Hence
(a) is proved.

The condition in (b) is that the two eigenvalues of Frobx acting on V`(A) are distinct. Since
they both occur in the characteristic polynomial, the extension E ↪→ E[πx] is proper. Now since
πx satisfies a polynomial of degree two, we have either that E[πx] is a field extension of E of
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degree two or that E[πx] ∼= E ×E with E being embedded diagonally. This proves the assertion
on E→ E[πx]. From this it follows that A0

Ox(p) is of height 1 over E[πx]⊗QQp. After localization
we obtain that (A0

Ox(p))p is of height 1 over E[πx]p, and this proves the remaining part of (b).
Consider now a pair (x, p) with x ∈ |Xn| and p such that vp(Tx) < 1/2. Since vp(Sxqx) = 1 we

have T 2
x 6= 4Sxqx, and so (b) applies. By (b) and the p-part of the Tate conjecture over kx, proven

by Tate, see [CCO14, Appendix 1], the minimal polynomial of πx is gx. Part (e) now follows from
the Dieudonné classification of p-divisible groups over perfect fields. In fact, since kx is perfect,
the sequence in (e) is split. Let us also note that, independently of (b), if vp(Tx) > 1/2, then the
possible roots of πx must have slope 1/2, and this proves (f).

If we further assume vp(Tx) = 0, then the Newton polygons of Frobenius on the special and on
the generic point of (A0

Ox(p))p agree. The existence of the filtration as asserted in (d) is therefore
implied by [Kat79, (2.6)], see also [Zin01, Theorem 7]. Finally we note that by Theorem 8.2 and
Proposition 8.3, the set of points x ∈ |Xn| at which A is ordinary is dense open. Thus by passing
to the generic fiber of such a point, (c) follows from (d). 2

Because of (c) of the above lemma, for every prime p of En above p, the étale part of (A0
n(p))p

defines a one-dimensional Galois representation of GF on ((TapAn) ⊗Zp Qp)p. We shall refer to
it by

ρΦ,p : GF → GL1((En)p),

where Φ is an automorphic form of level K1(n) that is new at n corresponding to an
indecomposable idempotent ε of En such that p is a prime of εEn above p; note that given
p there is a unique such E and hence a unique Galois orbit of Φ. Our notation emphasizes the
relation to automorphic forms. The idempotent ε is also denoted by εΦ if we wish to stress
the relation to Φ, and then we write AΦ for εΦAn, EΦ for εEn etc.

Corollary B.4. Let Φ be an automorphic form of level K1(n) that is new at n. Let p be a
prime above p of EΦ. Then ρΦ,p is ramified at x ∈ |Xn| if and only if vp(Tx) > 0, i.e., if and only
if AΦ has non-ordinary reduction at x.

Proof. Let x be in |Xn|. By Theorem A.4 applied to (A0
n(p))p, the representation ρΦ,p is ramified

at x if and only if the étale part of (A0
n,Ox(p))p is of height 1 over (En)p. Going through the

possibilities in Lemma B.3, the corollary follows. 2

We also give the following intrinsic characterization of ρΦ,p.

Corollary B.5. Let Φ be a cuspidal automorphic eigenform of level K1(n) that is new at n.
Let p be a prime above p of EΦ. Denote by Xord

Φ the set of places x ∈ |Xn| at which AΦ has
ordinary reduction and by αx,p ∈ (EΦ)p the unique root of gx of slope zero at x ∈ Xord

Φ . Then

∀x ∈ Xord
Φ : ρΦ,p(Frobx) = αx,p, (B4)

and ρΦ,p is uniquely characterized by (B4). Moreover, ρΦ,p is infinitely ramified when restricted
to the decomposition group at any x ∈ |Xn|rXord

Φ .

In fact, condition (B4) for any subset of Xord
Φ of density one already characterizes ρΦ,p.

Proof. The first assertion follows from Lemma B.3(d): The restriction of ρΦ,p to a decomposition
group GFx for x ∈ Xord

Φ is the Galois representation of GFx attached to (A0
n,Ox(p)ét)p that is

unramified at x. It is determined by the image of Frobx which in turn is equal to the action of the
geometric Frobenius on the special fiber (A0

n,x(p)ét)p. This is the étale quotient of (A0
n,x(p))p on
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which Frobx has characteristic polynomial gx. From here the first assertion is straightforward. The
second follows from the Čebotarov density theorem. The last assertion is implied by Theorem A.4
and Remark A.5. 2

We say that Φ is semistable but non-good at x if its local representation at x is an unramified
twist of a Steinberg representation, say by a character χΦ,x, or equivalently if the associated Weil–
Deligne representation has unramified underlying Weil representation, and that the monodromy
N is non-zero. At such a place, the conductor exponent of Φ is 1. For the Hecke operator Ux
defined as for instance in [Wil86, (1.3.1)], its eigenvalue on Φ is equal to χΦ,x(Frobx). Moreover,
the following proposition describes ρΦ,p at x in a simple way.

Proposition B.6. Let Φ be an automorphic form of level K1(n) that is new at n. Let x be a place
of SpecAr |Xn| at which Φ is semistable. Then for any prime p above p of EΦ the representation
ρΦ,p is isomorphic to χΦ,x when restricted to GFx , and in particular it is unramified at x.

Proof. If Φ is an unramified Steinberg representation at x, then, by the local Langlands
correspondence for the `-adic representations of AΦ, one deduces that AΦ has semistable
reduction but not good reduction at x. Since the action of EΦ induces a faithful action on
the reduction, the reduction must be totally toric because [EΦ : Q] = dimAΦ. Note that this
behavior also occurs for the place ∞.

By the generalization of the Tate curve construction due to Mumford and Raynaud to abelian
varieties, e.g. [BL91], there exists a π-adic uniformization of Ax, i.e., a short exact sequence

0 −→ Λ −→ T (Fx) −→ AΦ(Fx) −→ 0

such that:

(a) T is a torus over Fx with dimT = dimAΦ that is split over an unramified extension of Fx;

(b) there exists an EΦ-order O such that T carries an action O→ End(T ) of O, Λ is a torsion-
free O-module of generic rank one and Λ→ T (Fx) is O equivariant;

(c) there exists an O-linear positive definite Riemann form, i.e., an O-homomorphism σ : Λ→
X∗(T ), the character group of T , such that (i) for all λ, λ′ ∈ Λ: σ(λ′)(λ) = σ(λ)(λ′) and (ii)
the symmetric bilinear form 〈λ, λ′〉 := −log |σ(λ)(λ′)| on Λ is positive definite;

(d) the sequence is GFx-equivariant.

Using the `-adic representations, one sees that the action of GFx on Λ is given by χΦ,x. Now the
pn-torsion of AΦ is clearly Λ1/pn/Λ ⊂ T (Fx)/Λ, and the proposition follows. 2

Next, we present some results on the (semisimplification of the) mod p reduction of the
representation on TapAn. The main complication here is that we have to do this integrally over
Zp and not after tensoring TapAn with Qp. This leads to the usual difficulties when studying

congruences. For this we define the orders Λ⊂ Λ̃⊂ EndF (An), where Λ is the Z-span in EndF (An)
of the Hecke-operators Tx x ∈ |Xn|, and Λ̃ is the Z-span of Tx and qxSx, x ∈ |Xn|. By On we
denote the maximal order of En which we consider inside End0

F (An). One has On ⊃ Λ̃ because
EndF (An) is finitely generated over Z. Before we go on, we need the following result.

Lemma B.7. The subrings Λ ⊂ Λ̃ are orders of En.

Proof. The result is proved as in [Rib77, Corollary 3.1] by Ribet and rests on results from [DS74]
by Deligne and Serre. We indicate the argument: it suffices to show that Λ⊗ZQ = En under the
given inclusion Λ ⊂ En. To prove this, we will show that for any (Galois orbit of an) eigenform

2052

https://doi.org/10.1112/S0010437X15007290 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007290


Hecke characters associated to Drinfeld modular forms

Φ, the ring EΦ is generated by the images of the Hecke operators Tx, where x ranges over a
dense open subset U of Xn.

Let ` be a prime different from p, and consider the `-adic representation ρΦ,` of GF on V`(AΦ).
We denote by ρss

Φ,` its semisimplification. Since the representation ρΦ,` is unramified at the places
x in U and since they are dense, the elements Frobx, x ∈ U , form a dense subgroup in the image
of GF → Aut(V`(AΦ)). Hence ρss

Φ,` is determined uniquely by the traces ρΦ,`(Frobx), x ∈ U ;
cf. [DS74, Lemma 3.2]. Let E′Φ be the subfield of EΦ generated over Q by the eigenvalues of Tx
acting on Φ for all x ∈ U . Let σ be an automorphism of C that fixes E′Φ, and let Φσ denote the
corresponding eigenform. Then ρss

Φ,` and ρss
Φσ ,` are isomorphic because we have Tr ρΦ,`(Frobx) =

Tr ρΦσ ,`(Frobx) for all x ∈ U . But then det ρΦ,`(Frobx) = det ρΦσ ,`(Frobx) = det ρΦ,`(Frobx)σ

for all x ∈ |Xn|, and so the eigenvalues of Φ under Sx must lie in E′Φ, which completes the
argument. 2

As we shall see shortly, mod p congruences are measured by the maximal ideals m of Λ that
contain p. Any such m may be contained in several maximal ideals p of On, which are the prime
ideals we have considered so far. We define Λm to be the completion of Λ at its maximal ideal m.
For any maximal ideal m̃ of Λ̃ above m we define Λ̃m̃ analogously. We note that congruences can
occur in two ways: First, it may happen that for a fixed form Φ, two prime ideals p1 and p2 of
EΦ above p may lie above m. Second, for two different forms Φ1 and Φ2 there could be ideals pi
of EΦi above p that both contain m. We also note that the residue field Λ/m could be properly
contained in the residue field On/p for any p above m.

Lemma B.8. The map m̃ 7→ m̃ ∩ Λ is a bijection between the maximal ideals of Λ̃ above p and
the maximal ideals of Λ above p. Moreover, one has Λ/m ∼= Λ̃/m̃ if m and m̃ correspond under
this bijection.

Proof. It is a standard argument to see that the map is surjective: The maximal ideals of Λ̃ and
Λ are in bijection with the indecomposable idempotents of the p-adic completions of the two
rings, denoted by Λ̃p and Λp, respectively. By the previous lemma, Λ→ Λ̃ is an inclusion of free

Z-modules of the same rank and hence Λp → Λ̃p is an inclusion of free Zp-modules of the same

rank. Therefore, distinct idempotents of Λp have to map to distinct idempotents of Λ̃p, and this
gives the surjectivity of the map in the lemma.

The main point of the proof of injectivity is the claim that under any homomorphism Λ̃ to
a field of characteristic p, the elements qxSx map to zero. This is so because Sx has finite order,
say dx, in En, so that (qxSx)dx = qdxx · 1, and the latter element becomes zero under maps to
characteristic p. But if the target is a field, any nilpotent element will be zero, and so the claim
follows. We now show how to deduce the injectivity from the claim.

Let m̃ ⊂ Λ̃ be a maximal ideal containing p that contracts to m ⊂ Λ. By the previous
paragraph, m̃ contains the elements qxSx (∈ EndF (A)), and hence Λ̃/m̃ is generated over Fp by

the images of the Tx, x ∈ |Xn|. It follows that the composite Λ→ Λ̃→ Λ̃/m̃ is surjective. By
definition, the kernel of this composite is m, and it follows that the induced map Λ/m→ Λ̃/m̃
is a surjection between finite fields and hence an isomorphism. We also see that m̃ is the unique
ideal of Λ̃ that is generated by m and by {qxSx | x ∈ |Xn|}, and this shows the surjectivity. 2

We now fix a maximal ideal m of Λ above p and denote by m̃ the corresponding maximal ideal
of Λ̃. We denote by Pm the set of prime ideals p of On that contain m. Then Λ̃m̃ ↪→

∏
p∈Pm

(En)p
factors via

Λ̃m̃ ↪→
∏
p∈Pm

(On)p. (B5)
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G. Böckle

We also denote by Φp the automorphic form (up to Galois conjugacy) such that (EΦ)p 6= 0 so
that we have the representation∏

p∈Pm

ρΦp,p : GF →
∏
p∈Pm

GL1((On)p).

Corollary B.9. (a) The image of
∏

p∈Pm
ρΦp,p is contained in GL1(Λ̃m̃) under the

inclusion (B5), and so this representation factors via a unique representation

ρm̃ :: GF → GL1(Λ̃m̃).

(b) The reduction ρm̃ (mod m̃) defines a representation

ρ̄m :: GF → GL1(Λ/m) ∼= GL1(Λ̃/m̃),

whose image spans the finite field Λ/m over Fp.

Proof. Denote by U an open dense subset of Xn that consists of ordinary places only. By the
Čebotarov density theorem, together with Theorem 8.2 and Proposition 8.3, the Frobenius
automorphisms Frobx, x ∈ U , are dense in the maximal quotient of GF unramified outside
U . It follows that the images of these Frobx are dense in the closed subset

∏
p∈Pm

ρΦp,p(GF ) of
GL1(

∏
p∈Pm

(On)p). Hence
∏

p∈Pm
ρΦp,p factors via the smallest subring of

∏
p∈Pm

(On)p over Zp
that contains

∏
p∈Pm

ρΦp,p(Frobx) for all such x, and this choice of subring is optimal.
Denote by αx and βx, for x of good ordinary reduction, the roots of gx in the completion En,p

at p (which is a product of p-adic fields). We make choices so that vp(αx) = 0 and vp(βx) = 1 for all
primes p of En above p; note that αx and βx can be found in En,p since for an ordinary place x the
polynomial gx splits in En,p. It is then clear that αx and βx lie in (On)p. We observe that by this
choice we have αx ≡ Tx mod qx in (On)p. Using the Newton method for gx(z) = z2 +Txz+ qxSx
with initial value z0 = Tx, we see that αx lies in fact in Zp[Tx, qxSx]. Hence, after completion

at m̃, we find that αx projected to
∏

p∈Pm
(On)p lies in Λ̃m̃. Now this projection of αx is equal

to
∏

p∈Pm
ρΦp,p(Frobx), and this completes the proof of (a). Part (b) is now immediate from

Lemma B.8. 2

Remark B.10. We do not know whether in fact Λ̃m̃ is the smallest subring of
∏

p∈Pm
(On)p over

Zp over which
∏

p∈Pm
ρΦp,p is defined.

Remark B.11. Let U ⊂ Xn be dense open. The proof of Corollary B.9 shows that Λ̃m̃ is
generated over Zp by the images of {Tx, Sx | x ∈ |U |}. Using also Lemma B.8, moreover,
Λ/m is generated over Fp by the images of {Tx | x ∈ |U |}.

To describe the multiplicity of ρ̄m in An[p]
ss, we denote, for each p ∈ Pm, by dm,p the degree

of (On)/p over Λ/m and by em,p the ramification index of (On)p over Zp.

Proposition B.12. Denote by An[p]
ss the semisimplification of An[p] as a module over Fp[GF ].

Then the multiplicity of ρ̄m in An[p]
ss is

tm :=
∑
p∈Im

dm,pem,p.

This is also the multiplicity of the semisimplification of An[p] as a Λ-module of Λ/m.
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Proof. We choose an isogeny ξ : An→ A′ where A′ is an abelian variety with endomorphism ring
equal to On. The induced map An[p

n]→ A′[pn] has kernel and cokernel bounded independently
of n. Thus it will suffice to show that A′[pn]ss[m̃](Ksep) ∼= (Λ̃/m̃)ntm for large n, where [m̃] denotes
the m̃-torsion of the semisimplification. For this, it suffices to show the latter for n = 1. However,

A′[p]ss(Ksep) ∼=
⊕
p

(εpA
′
ét[p])

ss(Ksep).

Now each (εpA
′
ét[p])

ss(Ksep) is isomorphic to (On/p)em,p for m̃ = p∩Λ̃. Moreover, for p ∈ Pm, each
On/p is isomorphic to (Λ/m)dm,p as a vector space over Λ/m, and so the result is proved. 2

Finally, from the p-adic setting we deduce some consequences on the Frobenius action and
on ramification for the mod p situation. For m as above, define Xm-ord

n ⊂ Xn as the subset of
those x such that for one p ∈ Pm one has vp(Tx) = 0 together with the generic point of Xn.

12

Theorem B.13. (a) At x ∈ |Xm-ord
n |, the representation ρ̄m is unramified and one has

ρ̄m(Frobx) = Tx (mod m) and ρΦp,p(Frobx) = ρ̄m(Frobx) (mod p) (B6)

for those p ∈ Pm such that vp(Tx) = 0; the right equality uses the natural inclusion Λ/m ↪→ On/p.
In particular, Tx is non-zero modulo m.

(b) For x ∈ Xn rXm-ord
n , one has Tx ≡ 0 (mod m).

We cannot say anything about ramification or the Frobenius action at the places x ∈ Xn r
Xm-ord

n .

Proof. The first assertion in (a) follows from the definition of Pm and Corollary B.4. From the
proof of Corollary B.9, one deduces the first formula in (B6). The second is immediate from
the proof of Proposition B.12. Part (b) is clear from the definitions of Xm-ord

n and of Pm. 2

We end this appendix with some remarks on more general levels than K1(n). Let K ⊂ GL2(Ã)
be a compact open subgroup and choose a non-zero ideal n′ of A such that K ⊃ K(n′). Let Φ′

be a cuspidal automorphic form for GL2(AF ) that is invariant under K and that is an eigenform
for all Tx, x - n′. By multiplicity one for GL2, and Lemma B.1, there exists a unique minimal
level n (i.e., n ⊂ A is maximal under inclusion) and a cuspidal eigenform Φ of level K1(n) such
that Φ and Φ′ have the same eigenvalues for all x - nn′; in fact, one has n|n′. Moreover, the
automorphic representation generated by Φ and by Φ′ are isomorphic and have the same field
of definition EΦ. From Corollary B.5, Theorem B.13 and the above paragraph, one deduces the
following theorem.

Theorem B.14. Let Φ′ be a cuspidal automorphic eigenform for GL2(AF ) of level n′. Let p be
a prime of EΦ′ above p. Denote by Xord

Φ′,p the places x ∈ Xn′ at which gx has a root αx in (EΦ′)p
of slope zero.

(a) The set Xn′ rXord
Φ′,p is finite.

(b) There exists a unique homomorphism ρΦ′,p : GF → GL1((EΦ′)p) that is unramified over
Xord

Φ′,p and such that

∀x ∈ Xord
Φ′,p : ρΦ′,p(Frobx) = αx,p.

12 The notation Xm-ord
n is chosen to emphasize the similarities with Xord

n ; it could also be motivated by the notion
of an ordinary p-divisible group.
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(c) One has ρΦ′,p = ρΦ,p for a unique newform Φ of some level n dividing n′. At all x ∈
Xn rXord

Φ,p the representation ρΦ′,p is infinitely ramified.

(d) Denote by TZ,n′ the Z-Hecke-algebra for K(n′), and let P denote the minimal prime
defining Φ′, so that EΦ′ = Frac(TZ,n′/P). Let m be any maximal ideal that contains P and p,
and denote by p a maximal ideal of EΦ′ under m. Then there exists a unique homomorphism
ρ̄Φ′,m : GF → GL1(TZ,n′/m) that is unramified outside Xord

Φ′,p and such that

∀x ∈ Xord
Φ′,p : ρ̄Φ′,m(Frobx) ≡ αx,p ≡ Tx (mod m).

(e) One has ρΦ′,p(Frobx) ≡ ρ̄Φ′,m(Frobx) (mod p) under TZ,n′/m ↪→ On/p.

(f) For n as in (c) and x ∈ Xn rXm-ord
n , one has Tx ≡ 0 (mod m).

(g) If ρ̄Φ′,m is ramified at x ∈ Xn′ , then Tx ≡ 0 (mod m).

Proof. Let Φ be a cuspidal eigenform as was identified in the paragraph preceding the theorem.
Then Xn′ r Xord

Φ′,p ⊂ Xn r Xord
Φ,p is clear and (a) follows. For (b), define ρΦ′,p := ρΦ,p and use

the uniqueness from Corollary B.5. Corollary B.5 also yields (c). For (d), observe that we can
define ρΦ′,p(Frobx) as ρ̄Φ′,m(Frobx) (mod p), but then restrict the domain to TZ,n′/m. Parts (e)
and (f) are then obvious from Theorem B.13. Assertion (g) is implied by (d) and the definition
of Xord

Φ′ . 2
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BJ79 A. Borel and H. Jacquet, Automorphic forms and automorphic representations, in Automorphic
forms, representations and L-functions, Part 1, Symposium in Pure Mathematics, Oregon State
University, 1977, Proceedings of Symposia in Pure Mathematics, vol. 33, eds A. Borel and W.
Casselman (American Mathematical Society, Providence, RI, 1979), 189–202.

BL91 S. Bosch and W. Lütkebohmert, Degenerating abelian varieties, Topology 30 (1991), 653–698.

BH06 C. Bushnell and G. Henniart, The local Langlands conjecture for GL(2), Grundlehren der
Mathematischen Wissenschaften, vol. 335 (Springer, Berlin, 2006).

Cas73 W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301–314.

CCO14 C.-L. Chai, B. Conrad and F. Oort, Complex multiplication and lifting problems, Mathematical
Surveys and Monographs, vol. 195 (American Mathematical Society, Providence, RI, 2014).

Con B. Conrad, Modular forms and the Ramanujan conjecture, http://math.stanford.edu/∼conrad
/papers/rambook.pdf.

DS74 P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér. (4) 7
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