Newton polyhedra and estimates FOR EXPONENTIAL SUMS

Kamel Ariffin bin Mohd Atan

The use of the Newton polygon method to establish certain properties concerning zeros of polynomials in one variable is well-known. For example in the proof of Puiseux's theorem on the power series development of algebraic functions. In the p-adic case where p is a prime the Newton polygon method yields complete information on the sizes and numbers of zeros of polynomials in one variable with coefficients in Ω_{p}, the algebraic closure of the field of p-adic numbers.

This thesis is concerned with building up the Newton polygon analogue for a polynomial in two variables with coefficients in Ω_{p} and to investigate relationships between properties of this analogue which we call the Newton polyhedron and the zeros of the associated polynomials. Secondly this thesis demonstrates the application of the Newton polyhedron method in estimating the exponential sums associated with certain polynomials in $Z_{p}[x, y]$, where Z_{p} denotes the ring of p-adic integers.

Chapter 2 investigates the Newton polygon of a polynomial in relation to estimating the exponential sum $S\left(f^{\prime}, p^{\alpha}\right), \alpha \geqslant 1$, where f is not constant modulo p. For a polynomial g in $Z_{p}[x, y]$ and $\alpha \geqslant 1$ the exponential sums $S\left(g ; p^{\alpha}\right)$ are defined by

$$
S\left(g ; p^{\alpha}\right)=\sum_{(x, y) \bmod p^{\alpha}} e_{p^{\alpha}}(g(x, y))
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ 22.00+0.00$.
and the derivative of g is denoted by g^{\prime}. The investigation of the Newton polyhedron for a polynomial in two variables over Ω_{p} begins in Chapter 3. If $f(x, y)=\sum_{i, j} a_{i j} x^{i} y^{j}$ is a polynomial in $\Omega_{p}^{p}[x, y]$, then the Newton polyhedron of f, denoted by N_{f}, is the lower convex hull of the set of points $\left(i, j\right.$, ord $\left.a_{i j}\right)$ in the Euclidean space R^{3}. The relationships between certain properties of N_{f} and the zeros of the associated polynomial f is subsequently examined.

Chapter 4 estimates the size of zeros of polynomials in $\Omega_{p}[x, y]$ and investigates the relationships between the Newton polyhedrons of a pair of polynomials in $Z_{p}[x, y]$ and their common zeros. It is shown that if f is a polynomial in $\Omega_{p}[x, y]$ and

$$
\delta=\max _{r, s} \frac{1}{r+s}\left(\operatorname{ord}_{p} f(\alpha, \beta)-\operatorname{ord}_{p} \frac{f^{(r+s)}(\alpha, \beta)}{r!s!}\right)
$$

for some α, β, where the maximum is taken over all pairs of (r, s) $0 \leqslant r, s<\operatorname{deg} f$, not both 0 or $\operatorname{deg} f$, then f has a zero $\left(\xi_{0}, n_{0}\right)$ in Ω_{p}^{2} with

$$
\operatorname{ord}_{p}\left(\xi_{0}-\alpha, n_{0}-\beta\right)=\delta,
$$

and every zero (ξ, n) of f satisfies ord $(\xi-\alpha, n-\beta) \leqslant \delta$. One other result is the following. If p is an odd prime, $\alpha \geqslant 0$ and

$$
f(x, y)=a x^{3}+b x y^{2}+c x+d y+e
$$

is a polynomial in $Z_{p}[x, y]$ with ord $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$, ord $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \geqslant \alpha>\delta$ $\left(x_{0}, y_{0}\right)$ in Ω_{p}^{2} and $\delta=\max \left\{\operatorname{ord}_{p} 3 a, \frac{3}{2} \operatorname{ord}_{p} b\right\}$, then there are (ξ, n) in Ω_{p}^{2} with $\frac{\partial f}{\partial x}(\xi, n)=0, \frac{\partial f}{\partial y}(\xi, n)=0$ and

$$
\operatorname{ord}_{p}\left(x_{0}-\xi_{,} y_{0}-n\right) \geqslant \frac{1}{2}(\alpha-\delta)
$$

Chapter 5 estimates the exponential sums $S\left(f ; p^{\alpha}\right)$ with $\alpha \geqslant 1$ for certain polynomials f in $Z_{p}[x, y]$. Amongst other results in this chapter is the following. If $f(x, y)=a x^{3}+b x y^{2}+c x+d y+e$ and $\delta=\max \left\{\operatorname{or} d_{p} 3 a, \frac{3}{2}\right.$ ord $\left._{p} b\right\}$ then

$$
\begin{gathered}
\text { Newton polyhedra } \\
\left|S\left(f ; p^{\alpha}\right)\right| \leqslant 4 p^{\min \left\{2 \alpha, \frac{1}{2}(3 \alpha+2 \delta+1)\right\}}
\end{gathered}
$$157

The final chapter of this thesis considers the generalised form of the exponential sums associated with polynomials f in $Z_{p}\left[x_{1}, \ldots, x_{n}\right]$, with $n>2$, and gives an estimate to $S\left(f ; p^{\alpha}\right)$.

```
Jabatan Matematik,
Universiti Pertanian Malaysia,
Serdang, Selangor,
MALAYSIA.
```


[^0]: Received 2 April 1985. Thesis submitted to University of New South Wales, November 1984. Degree approved March 1985. Supervisor: Associate Professor J.H. Loxton.

