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Abstract

We prove two conjectural congruences on the (p − 1)th Apéry number, which were recently proposed by
Z.-H. Sun.
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1. Introduction
In 1979, Apéry [2] introduced the numbers

An =

n∑
k=0

(
n
k

)2(n + k
k

)2

and A′n =

n∑
k=0

(
n
k

)2(n + k
k

)
in his ingenious proof of the irrationality of ζ(2) and ζ(3). These numbers are
now known as Apéry numbers. Since the appearance of the Apéry numbers, their
interesting arithmetic properties have been gradually discovered. For instance, Beukers
[3] showed that for primes p ≥ 5 and positive integers m, r,

Ampr−1 ≡ Ampr−1−1 (mod p3r),

A′mpr−1 ≡ A′mpr−1−1 (mod p3r).

In 2012, Sun [13] proved that, for any prime p ≥ 5,
p−1∑
k=0

(2k + 1)Ak ≡ p +
7
6

p4Bp−3 (mod p5).

Here the nth Bernoulli number Bn is defined as

x
ex − 1

=

∞∑
n=0

Bn
xn

n!
.

In the past two decades, congruence properties for Apéry numbers and similar numbers
have been widely studied (see, for example, [3–7, 11, 13–16]).
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Our interest concerns two conjectural congruences on the (p − 1)th Apéry number,
which were recently proposed by Sun [16, Conjectures 2.1 and 2.2].

Conjecture 1.1 (Z.-H. Sun). For any prime p ≥ 5,

Ap−1 ≡ 1 + 2
3 p3Bp−3 (mod p4), (1.1)

A′p−1 ≡ 1 + 5
3 p3Bp−3 (mod p4). (1.2)

The aim of this paper is to prove (1.1) and (1.2) by establishing the following
generalisations.

Theorem 1.2. Let p ≥ 7 be a prime. Then

Ap−1 ≡ 1 + p3( 4
3 Bp−3 −

1
2 B2p−4

)
+ 1

9 p4Bp−3 (mod p5). (1.3)

Theorem 1.3. Let p ≥ 7 be a prime. Then

A′p−1 ≡ 1 + p3( 10
3 Bp−3 −

5
4 B2p−4

)
+ 5

18 p4Bp−3 (mod p5). (1.4)

By taking k = 1 and b = p − 3 in Kummer’s congruence,

Bk(p−1)+b

k(p − 1) + b
≡

Bb

b
(mod p)

(see [12, page 193]), we obtain

B2p−4 ≡
4
3 Bp−3 (mod p). (1.5)

Substituting (1.5) into (1.3) and (1.4) gives (1.1) and (1.2) for primes p ≥ 7. It is routine
to check that (1.1) and (1.2) also hold for p = 5.

We prove Theorem 1.2 in Section 2 and Theorem 1.3 in Section 3.

2. Proof of Theorem 1.2

Since (
p − 1 + k

k

)
=

p
p + k

(
p + k

k

)
, (2.1)

we have

Ap−1 =

p−1∑
k=0

p2

(p + k)2

(
p − 1

k

)2(p + k
k

)2

. (2.2)

Note that (
p − 1

k

)(
p + k

k

)
=

(p2 − 12)(p2 − 22) · · · (p2 − k2)
k!2

≡ (−1)k(1 − p2H(2)
k ) (mod p4), (2.3)

where H(r)
n denotes the nth generalised harmonic number of order r,

H(r)
n =

n∑
k=1

1
kr ,
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with the convention that Hn = H(1)
n . It follows from (2.2) and (2.3) that

Ap−1 = 1 +

p−1∑
k=1

p2

(p + k)2

(
p − 1

k

)2(p + k
k

)2

≡ 1 + p2
p−1∑
k=1

1 − 2p2H(2)
k

(p + k)2 (mod p6). (2.4)

Furthermore,
1

(p + k)2 ≡
1
k2 −

2p
k3 +

3p2

k4 (mod p3). (2.5)

Substituting (2.5) into (2.4) gives

Ap−1 ≡ 1 + p2H(2)
p−1 − 2p3H(3)

p−1 + 3p4H(4)
p−1 − 2p4

p−1∑
k=1

H(2)
k

k2 (mod p5). (2.6)

For 1 ≤ k ≤ p − 1,

H(2)
k + H(2)

p−k ≡ H(2)
k +

p−k∑
i=1

1
(p − i)2 (mod p)

= H(2)
p−1 +

1
k2

≡
1
k2 (mod p),

and so
H(2)

k

k2 +
H(2)

p−k

(p − k)2 ≡
1
k4 (mod p).

It follows that
p−1∑
k=1

H(2)
k

k2 =

(p−1)/2∑
k=1

(H(2)
k

k2 +
H(2)

p−k

(p − k)2

)
≡

(p−1)/2∑
k=1

1
k4 (mod p). (2.7)

By [12, Theorem 5.2(a)],
(p−1)/2∑

k=1

1
k4 ≡ 0 (mod p) (2.8)

for any prime p ≥ 7. From (2.7) and (2.8),
p−1∑
k=1

H(2)
k

k2 ≡ 0 (mod p). (2.9)

The following two congruences are special cases of results of Lehmer [8, page 353]:

H(3)
p−1 ≡ 0 (mod p2), (2.10)

H(4)
p−1 ≡ 0 (mod p), (2.11)
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for any prime p ≥ 7. Combining (2.6) and (2.9)–(2.11) gives

Ap−1 ≡ 1 + p2H(2)
p−1 (mod p5). (2.12)

Taking k = 2 in [12, Theorem 5.1(a)] and simplifying,

H(2)
p−1 ≡

( 4
3 Bp−3 −

1
2 B2p−4

)
p +

( 4
9 Bp−3 −

1
4 B2p−4

)
p2 (mod p3). (2.13)

Substituting (1.5) into (2.13) yields

H(2)
p−1 ≡

( 4
3 Bp−3 −

1
2 B2p−4

)
p + 1

9 p2Bp−3 (mod p3). (2.14)

Now (1.3) follows from (2.12) and (2.14).

3. Proof of Theorem 1.3

In order to prove Theorem 1.3, we need the following combinatorial identity.

Lemma 3.1. For any nonnegative integer n,
n∑

k=1

(−1)k

k

(
n
k

)(
n + 1 + k

k

)
= −2Hn +

(−1)n − 1
n + 1

. (3.1)

Proof. Since (
n + 1 + k

k

)
=

n + 1 + k
n + 1

(
n + k

k

)
,

we have
n∑

k=1

(−1)k

k

(
n
k

)(
n + 1 + k

k

)
=

n∑
k=1

(−1)k

k

(
n
k

)(
n + k

k

)
+

1
n + 1

n∑
k=1

(−1)k
(
n
k

)(
n + k

k

)
. (3.2)

By the Chu–Vandermonde identity,
n∑

k=1

(−1)k
(
n
k

)(
n + k

k

)
=

n∑
k=0

(
n

n − k

)(
−n − 1

k

)
− 1 = (−1)n − 1. (3.3)

On the other hand, by [1, (2.2)],
n∑

k=1

(−1)k

k

(
n
k

)(
n + k

k

)
= −2Hn. (3.4)

Now (3.1) follows from (3.2)–(3.4). �

Proof of Theorem 1.3. By (2.1) and (2.3),

A′p−1 = 1 +

p−1∑
k=1

p
p + k

(
p − 1

k

)2(p + k
k

)

≡ 1 + p
p−1∑
k=1

(−1)k

p + k

(
p − 1

k

)
(1 − p2H(2)

k ) (mod p5). (3.5)
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Taking n = p − 1 and x = p in the partial fraction decomposition
n∑

k=0

(−1)k

x + k

(
n
k

)
=

n!
x(x + 1) · · · (x + n)

,

we arrive at
p−1∑
k=0

(−1)k

p + k

(
p − 1

k

)
=

1

p
(

2p−1
p−1

) .
It follows that

p
p−1∑
k=1

(−1)k

p + k

(
p − 1

k

)
= p

p−1∑
k=0

(−1)k

p + k

(
p − 1

k

)
− 1 =

1(
2p−1
p−1

) − 1. (3.6)

We need the following congruence of McIntosh (see [9, (6)]):(
2p − 1
p − 1

)
≡ 1 − p2H(2)

p−1 (mod p5) (3.7)

for any prime p ≥ 7. Substituting (3.7) into (3.6) and using the fact that H(2)
p−1 ≡ 0

(mod p), we arrive at

p
p−1∑
k=1

(−1)k

p + k

(
p − 1

k

)
≡ p2H(2)

p−1 (mod p5). (3.8)

On the other hand, using
(

p−1
k

)
≡ (−1)k(1 − pHk) (mod p2),

p3
p−1∑
k=1

(−1)k

p + k

(
p − 1

k

)
H(2)

k ≡ p3
p−1∑
k=1

H(2)
k

p + k
− p4

p−1∑
k=1

HkH(2)
k

p + k
(mod p5). (3.9)

By [10, (55)],
p−1∑
k=1

HkH(2)
k

p + k
≡

p−1∑
k=1

HkH(2)
k

k
≡ 0 (mod p). (3.10)

Since
1

p + k
≡

1
k
−

p
k2 (mod p2),

by (2.9), we arrive at

p−1∑
k=1

H(2)
k

p + k
≡

p−1∑
k=1

H(2)
k

k
− p

p−1∑
k=1

H(2)
k

k2 ≡

p−1∑
k=1

H(2)
k

k
(mod p2). (3.11)

Combining (3.9)–(3.11) gives

p3
p−1∑
k=1

(−1)k

p + k

(
p − 1

k

)
H(2)

k ≡ p3
p−1∑
k=1

H(2)
k

k
(mod p5). (3.12)
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Letting n = p − 1 in (3.1),

p−1∑
k=1

(−1)k

k

(
p − 1

k

)(
p + k

k

)
= −2Hp−1.

It follows from (2.3) and the above that

p−1∑
k=1

1 − p2H(2)
k

k
≡ −2Hp−1 (mod p4)

and so

p2
p−1∑
k=1

H(2)
k

k
≡ 3Hp−1 (mod p4),

which implies that
p−1∑
k=1

H(2)
k

k
≡

3
p2 Hp−1 (mod p2). (3.13)

Substituting (3.13) into (3.12) gives

p3
p−1∑
k=1

(−1)k

p + k

(
p − 1

k

)
H(2)

k ≡ 3pHp−1 (mod p5). (3.14)

From [9, (6) and (7)],

pHp−1 ≡ −
p2

2
H(2)

p−1 (mod p5). (3.15)

Finally, combining (3.5), (3.8), (3.14) and (3.15) gives

A′p−1 ≡ 1 + 5
2 p2H(2)

p−1 (mod p5). (3.16)

Now (1.4) follows from (2.14) and (3.16). �

Remark 3.2. On WeChat, Professor Z.-W. Sun independently conjectured two
extensions of (1.1) and (1.2), namely,

Ap−1 ≡ 1 − 2pHp−1 (mod p5), (3.17)
A′p−1 ≡ 1 − 5pHp−1 (mod p5) (3.18)

for primes p ≥ 7, which have simpler forms than (1.3) and (1.4). We remark that (3.17)
and (3.18) can be deduced from (2.12), (3.15) and (3.16).
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polynomials’, J. Number Theory 132 (2012), 1731–1740.
[8] E. Lehmer, ‘On congruences involving Bernoulli numbers and the quotients of Fermat and

Wilson’, Ann. of Math. (2) 39 (1938), 350–360.
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