SETS OF CONVERGENCE FOR SERIES DEFINED BY ITERATION¹

George Brauer

(received July 28, 1965)

Let f(x) be a real-valued function defined on an interval ∞ I :[0,a]. For each point x in I we form the series Σ u, n=0 where u = x and u = f(u) for $n \ge 0$. If the series ∞ Σ u converges, x will be called a point of convergence; n=0 if this series diverges, x will be called a point of divergence. In this note several properties of sets of convergence² will be obtained. We shall always assume that:

(1) f is continuous on I , (2) f(0) = 0, 0 < f(x) < x for 0 < x < a.

Fort and Schuster [1] showed that if f satisfies (1) and (2) as well as the following additional conditions on an interval I_{L} :

(3) f is differentiable in I_{h} ,

(4) there exists a positive constant c such that $f'\left(x\right)\geq c$ in I_{h} ,

(5) if $0 < x_1 < x_2 < b$, $f(x_1)/x_1 \ge f(x_2)/x_2 > 0$,

¹ This research was supported by NSFG 24295.

² The set of convergence is the set of points of convergence.

Canad. Math. Bull. vol. 9, no. 1, 1966

then, for each point x = u in I, the series $\sum_{n=0}^{\infty} u$ converges n=0

or diverges according as the integral $\int_{0}^{b} \frac{y}{y - f(y)} dy$ converges or diverges.

THEOREM 1. If the function f satisfies conditions (1) and (2) in the interval I_a and there exists a number b, $0 < b \leq a$, such that f is nondecreasing in I_b , then the set of convergence for f is either the entire interval I_a or it is a closed set containing 0 as an isolated point. Furthermore each closed set in I_a which contains 0 as an isolated point is the set of convergence for a function satisfying (1) and (2) in I_a as well as (3), (4), and (5) in some interval I_b .

<u>Proof</u>: If b is a point of convergence and $0 \le y \le b$, then, since f is nondecreasing in I_b , $f^{(n)}(y) \le f^{(n)}(b)$ for all n; consequently y is a point of convergence. (We shall use the symbol $f^{(n)}$ to denote the nth iterate of f.) In this case all points of I_b are points of convergence. If b is a point of divergence and $0 \le y \le b$, then, since $\{f^{(n)}(y)\}$ is a null sequence, there exists a number k such that $f^{(k)}(b) \le y$. Again, since f is nondecreasing in I_b , $f^{(n+k)}(b) \le f^{(n)}(y)$ for all n; hence y is a point of divergence. Thus, if b is a point of divergence, all points of the interval (0, b] are points of divergence.

Now let x be an arbitrary point in I_a . The sequence $\{f^{(n)}(x)\}\$ is monotone nonincreasing in n, and it tends to zero for each x. By a well-known theorem of Dini, the sequence $\{f^{(n)}(x)\}\$ tends uniformly to zero on I_a . Thus, there exists a natural number N, independent of x, such that if n > N then each point $f^{(n)}(x)$ lies in I_b . If b is a

84

point of convergence, then $f^{(N)}(x)$ is a point of convergence for each x in I; certainly the point x is likewise a point of convergence. If b is a point of divergence, then the only point of convergence in I is 0; the point x is a point of convergence if and only if it lies in one of the sets

$$F_n = \{ x: f^{(n)}(x) = 0 \}$$

Since f is continuous, each set F_n is closed. The set of convergence is the union of the sets $F_n(n=0,1,\ldots,N)$, and therefore it is closed. Since f does not vanish in (0,b], 0 is an isolated point of convergence.

This concludes the proof of the first part of the theorem. We note that if (3), (4), and (5) hold in I_b , then, if $\int_0^b \frac{y}{y - f(y)} dy$ converges, the set of convergence is I_a , while if this integral diverges, the set of convergence is a closed set containing 0 as an isolated point.

Now let F denote a closed set which contains 0 as an isolated point. We construct a function f which satisfies (1) and (2) on an interval I, as well as (3), (4), and (5) on an interval I_b with $0 < b \le a$. We take $b \le 1/2$ and such that the interval I_b contains no point of F except 0. We define f as follows:

$$f(x) = \frac{(x-x^2)d(b, F)}{d(b, F) + 1} \qquad 0 \le x \le b ,$$

$$f(x) = \frac{(b-b^2)d(x, F)}{d(x, F) + 1}$$
 $b \le x \le a$,

where d(x, F) denotes the distance of the point x from the set F. We note that the integral $\int_{0}^{b} \frac{y}{y - f(y)} dy$ diverges. The set F is the set of convergence for f. THEOREM 2. The set of convergence for a function f is a set of type F_{σ} .

<u>Proof.</u> The point x is a point of divergence if and only if, for each positive integer j there exists a number n such that

(6)
$$\sum_{i=0}^{n} f^{(i)}(x) > j$$
.

Let $G_{j,n}$ denote the set of points which satisfy (6). Each set $G_{j,n}$ is open. The set of divergence is the set $\bigcap_{j \in n} \bigcup_{j \in n} G_{j,n}$, and this set is of type G_{δ} . Therefore, the set of convergence is of type F_{m} .

THEOREM 3. If f satisfies (1) and (2), and its set of divergence is nonempty, then for each $x \neq 0$, the interval (f(x), x) contains points of divergence. If, for each positive δ , the interval (0, δ) contains points of convergence, then the interval (f(x), x) contains points of convergence.

<u>Proof.</u> We prove only the second part of the theorem; the first part is proved similarly. Again let $u_0 = x$ and $u_{n+1} = f(u_n)$ for $n \ge 0$. It follows from (1) and (2) that $\{u_n\}$ is a null sequence. There is a point of convergence z arbitrarily close to 0. For some positive integer r, z must lie in the interval (u_{r+1}, u_r) . Since $f^{(r)}(u_0) = u_r$ and $f^{(r)}(u_1) = u_{r+1}$, there is a point w in the interval (u_1, u_0) such that $f^{(r)}(w) = z$; w is a point of convergence.

THEOREM 4. Suppose that f satisfies (1) and (2) and that the interval $(0, \delta)$ contains points of convergence for each positive δ . If x is a point of divergence and y is a point of convergence, then the interval between x and y contains both points of convergence and points of divergence.

Proof. Without loss in generality we may take y < x.

86

Again we let $u_0 = x$, $u_{k+1} = f(u_k)$ for $k \ge 0$, $v_0 = y$, $v_{k+1} = f(v_k)$ for $k \ge 0$. Since y is a point of convergence it is impossible that $v_k \ge u_{k+1}$ for all values of k, for then $we would have \sum_{k=0}^{\infty} v_k \ge \sum_{k=1}^{\infty} u_k = \infty$, and y would be a point k=0 ket volume k=1 ket volume k=1 ket volume k=0 ket volume k=1 ket v

We conclude with the following problem.

If f satisfies the conditions (1) and (2), and m_{δ} denotes the Lebesgue measure of the intersection of the set of divergence with the interval [0, δ], is it true that $\lim_{\delta \to 0} m_{\delta}/\delta = 0$ if and $\delta \to 0$

only if $\int_0^a \frac{x}{x - f(x)} dx < \infty$?

REFERENCE

 M. K. Fort, Jr., and Seymour Schuster, Convergence of series whose terms are defined recursively, Amer. Math. Monthly, 71 (1964), 994-998.

University of Minnesota