SETS OF CONVERGENCE FOR SERIES DEFINED BY ITERATION ${ }^{1}$

George Brauer

(received July 28, 1963)

Let $f(x)$ be a real-valued function defined on an interval
∞
$I_{a}:[0, a]$. For each point x in I_{a} we form the series $\sum_{n=0} u_{n}$, where $u_{0}=x$ and $u_{n+1}=f\left(u_{n}\right)$ for $n \geq 0$. If the series
∞
Σu_{n} converges, x will be called a point of convergence; $\mathrm{n}=0$
if this series diverges, \mathbf{x} will be called a point of divergence. In this note several properties of sets of convergence ${ }^{2}$ will be obtained. We shall always assume that:
(1) f is continuous on I_{a},
(2) $f(0)=0,0 \leq f(x)<x$ for $0<x \leq a$.

Fort and Schuster [1] showed that if f satisfies (1) and (2) as well as the following additional conditions on an interval I_{b} :
(3) f is differentiable in I_{b},
(4) there exists a positive constant c such that $f^{\prime}(x) \geq c$ in I_{b},
(5) if $0<x_{1}<x_{2}<b, f\left(x_{1}\right) / x_{1} \geq f\left(x_{2}\right) / x_{2}>0$,

1 This research was supported by NSFG 24295.
2
The set of convergence is the set of points of convergence.
Canad. Math. Bull. vol. 9, no. 1, 1966
then, for each point $x=u_{o}$ in I_{b}, the series $\sum_{n=0}^{\infty} u_{n}$ converges or diverges according as the integral $\int_{0}^{b} \frac{y}{y-f(y)} d y$ converges or diverges.

THEOREM 1. If the function f satisfies conditions (1) and (2) in the interval I_{a} and there exists a number b, $0<\mathrm{b} \leq \mathrm{a}$, such that f is nondecreasing in I_{b}, then the set of convergence for f is either the entire interval I_{a} or it is $\frac{\text { a closed set containing }}{} 0$ as an isolated point. Furthermore $\frac{\text { is the set of convergence for a function satisfying (1) and (2) in }}{I_{a} \text { as well as (3), (4), and (5) in some interval } I_{b} .}$

Proof: If b is a point of convergence and $0 \leq y \leq b$, then, since f is nondecreasing in $I_{b}, f^{(n)}(y) \leq f^{(n)}(b)$ for all n; consequently y is a point of convergence. (We shall use the symbol $f^{(n)}$ to denote the $n^{\text {th }}$ iterate of f.) In this case all points of I_{b} are points of convergence. If b is a point of divergence and $0 \leq y \leq b$, then, since $\left\{f^{(n)}(y)\right\}$ is a null sequence, there exists a number k such that $f^{(k)}(b) \leq y$. Again, since f is nondecreasing in I_{b}, $f^{(n+k)}(b) \leq f^{(n)}(y)$ for all n; hence y is a point of divergence. Thus, if b is a point of divergence, all points of the interval ($0, b$] are points of divergence.

Now let x be an arbitrary point in I_{a}. The sequence $\left\{f^{(n)}(x)\right\}$ is monotone nonincreasing in n, and it tends to zero for each x. By a well-known theorem of Dini, the sequence $\left\{f^{(n)}(x)\right\}$ tends uniformiy to zero on I_{a}. Thus, there exists a natural number N, independent of x, such that if $n>N$ then each point $f^{(n)}(x)$ lies in L_{b}. If b is a
point of convergence, then $f^{(N)}(x)$ is a point of convergence for each x in I_{a}; certainly the point x is likewise a point of convergence. If b is a point of divergence, then the only point of convergence in I_{b} is 0 ; the point x is a point of convergence if and only if it lies in one of the sets

$$
F_{n}=\left\{x: f^{(n)}(x)=0\right\}
$$

Since f is continuous, each set F_{n} is closed. The set of convergence is the union of the sets $F_{n}(n=0,1, \ldots, N)$, and therefore it is closed. Since f does not vanish in $(0, b]$, 0 is an isolated point of convergence.

This concludes the proof of the first part of the theorem. We note that if (3), (4), and (5) hold in I_{b}, then, if b
$\int_{0}^{b} \frac{y}{y-f(y)} d y$ converges, the set of convergence is I_{a}, while if this integral diverges, the set of convergence is a closed set containing 0 as an isolated point.

Now let F denote a closed set which contains 0 as an isolated point. We construct a function f which satisfies (1) and (2) on an interval I_{a}, as well as (3), (4), and (5) on an interval I_{b} with $0<b \leq a$. We take $b \leq 1 / 2$ and such that the interval I_{b} contains no point of F except 0 . We define f as follows:

$$
\begin{array}{ll}
f(x)=\frac{\left(x-x^{2}\right) d(b, F)}{d(b, F)+1} & 0 \leq x \leq b, \\
f(x)=\frac{\left(b-b^{2}\right) d(x, F)}{d(x, F)+1} & b \leq x \leq a,
\end{array}
$$

where $d(x, F)$ denotes the distance of the point x from the set F. We note that the integral $\int_{0}^{b} \frac{y}{y-f(y)} d y$ diverges. The set F is the set of convergence for f.

THEOREM 2. The set of convergence for a function f is a set of type F_{σ}

Proof. The point x is a point of divergence if and only if, for each positive integer j there exists a number n such that

$$
\begin{equation*}
\sum_{i=0}^{n} f^{(i)}(x)>j \tag{6}
\end{equation*}
$$

Let $G_{j, n}$ denote the set of points which satisfy (6). Each set $G_{j, n}$ is open. The set of divergence is the set $\bigcap_{j} \bigcup_{n} G_{j, n}$, and this set is of type G_{δ}. Therefore, the set of convergence is of type F_{σ}.

THEOREM 3. If f satisfies (1) and (2), and its set of divergence is nonempty, then for each $x \neq 0$, the interval $(f(x), x)$ contains points of divergence. If, for each positive δ, the interval $(0, \delta)$ contains points of convergence, then the interval $(f(x), x)$ contains points of convergence.

Proof. We prove only the second part of the theorem; the first part is proved similarly. Again let $u_{0}=x$ and $u_{n+1}=f\left(u_{n}\right)$ for $n \geq 0$. It follows from (1) and (2) that $\left\{u_{n}\right\}$ is a null sequence. There is a point of convergence z arbitrarily close to 0 . For some positive integer \mathbf{r}, \mathbf{z} must lie in the interval $\left(u_{r+1}, u_{r}\right)$. Since $f^{(r)}\left(u_{0}\right)=u_{r}$ and $f^{(r)}\left(u_{1}\right)=u_{r+1}$, there is a point w in the interval $\left(u_{1}, u_{0}\right)$ such that $f^{(r)}(w)=z$; w is a point of convergence.

THEOREM 4. Suppose that f satisfies (1) and (2) and that the interval $(0, \delta)$ contains points of convergence for each positive ${ }^{\delta}$. If x is a point of divergence and y is a point of convergence, then the interval between x and y contains both points of convergence and points of divergence.

Proof. Without Ioss in generality we may take $\mathrm{y}<\mathrm{x}$.

Again we let $u_{0}=x, u_{k+1}=f\left(u_{k}\right)$ for $k \geq 0, v_{o}=y$, $v_{k+1}=f\left(v_{k}\right)$ for $k \geq 0$. Since y is a point of convergence it is impossible that $v_{k} \geq u_{k+1}$ for all values of k, for then we would have $\sum_{k=0}^{\infty} v_{k} \geq \sum_{k=1}^{\infty} u_{k}=\infty$, and y would be a point of divergence. Hence there exists a positive integer k such that $v_{k}<u_{k+1}<u_{k}$. By the intermediate value theorem
there is a point $w, v_{0}<w<u_{0}$, such that $f^{(k)}(w)=u_{k+1}$; clearly w is a point of divergence. By Theorem 3 the interval (u_{k+1}, u_{k}) contains a point of convergence z^{\prime}; since $v_{k}<u_{k+1}, v_{k}<z^{\prime}<u_{k}$. Again by the intermediate value theorem there is a point z such that $v_{0}<z<u_{0}$ and $f^{(k)}(z)=z^{\prime} ; z$ is a point of convergence.

We conclude with the following problem.
If f satisfies the conditions (1) and (2), and m_{δ} denotes
the Lebesgue measure of the intersection of the set of divergence with the interval $[0, \delta]$, is it true that $\lim m_{\delta} / \delta=0$ if and only if $\int_{0}^{a} \frac{x}{x-f(x)} d x<\infty$?

REFERENCE

1. M. K. Fort, Jr., and Seymour Schuster, Convergence of series whose terms are defined recursively, Amer. Math. Monthly, 71 (1964), 994-998.

University of Minnesota

