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IDEAL EXTENSIONS OF TOPOLOGICAL SEMIGROUPS 

FRANCIS T. CHRISTOPH, JR. 

1. Introduction. In the study of compact semigroups the constructive 
method rather than the representational method is usually the better plan of 
attack. As it was pointed out by Hofmann and Mostert in the introduction to 
their book [10] this method is more productive than searching for a representa
tion theory. Hofmann and Mostert described a constructive method called the 
Hormos and showed that any irreducible compact semigroup is obtained by 
the Hormos construction. Many of the important examples of irreducible 
semigroups which motivated their work were obtained by Hunter [11; 12; 
13; 14]. 

In this paper, we apply the constructive method of ideal extensions [5] in 
algebraic semigroups to topological semigroups which are not necessarily 
compact. Many of Hunter's examples and examples of the Hormos technique 
can also be obtained by our method of topological ideal extensions. The 
topological ideal extension method, however, is, in general, a different type of 
construction technique. Cohen and Wade [6] have actually implicitly used 
this technique to describe the structure of a clan with zero on an interval. 
Clifford [4] has used a particular case of the topological ideal extension method 
to study connected, ordered topological semigroups with idempotent endpoints. 
For an account of the algebraic theory of ideal extensions see [5]. 

A topological semigroup is a Hausdorff space with a continuous, associative 
multiplication. The set of idempotents of a topological semigroup S will be 
denoted by E(S) and the closure of a subset A of a topological space X by 
C\(A). Convergent nets will be denoted by Greek subscripts, e.g. oca ^ oc ano 
convergent sequences by italic subscripts, e.g. yt —±y. The term iseomorphism 
will mean topological isomorphism. 

Acknowledgement. I would like to thank P. S. Mostert and K. H. Hofmann 
for valuable conversations on the topic of extensions and especially for suggest
ing the possible use of product topologies in this investigation. 

2. Topological ideal extensions determined by con t i nuous par t i a l 
homomorphisms. In the algebraic theory of ideal extensions [5] it is shown 
that a partial homomorphism determines an ideal extension and that every 
extension of a semigroup with identity is obtained by a partial homomorphism. 
We now apply these results to topological semigroups. 
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(2.1) Definition. Let 5 and T be disjoint topological semigroups, T having 
a zero 0. A topological semigroup H is a topological (ideal) extension of S by T 
if and only if H contains an ideal S' which is iseomorphic to S such that H/S' 
is iseomorphic to T. 

(2.2) Definition. A partial homomorphism [5] of a subset B of a semigroup M 
into a subset C of a semigroup TV is a function/ of 5 into C such that if x, y £ -B 
and x;y Ç 5 , then/(x)/(3/) G C and/(x)/(y) = f{xy). 

If r is a topological semigroup with zero 0, let T* = T — {0}. 

(2.3) THEOREM. Let S and T be topological semigroups, T having a zero 0. 
Let f: T* —» S be a continuous partial homomorphism such that CI (f(T*)) is 
compact, and let f* = {(t,f(t)): te T*}. Then H = T* VJ (0 X S) is a topo
logical extension of S by T, where H is given the relative product topology and 
coordinatewise multiplication. Furthermore, H is closed in T X S. 

Proof. It is easy to check that H is a closed subsemigroup of T X 5. Also, 
S' = 0 X S is iseomorphic to 5. To show that H/S' is iseomorphic to T, 
define a continuous function g: H/S' —> T by g(t,f(t)) = t for (t,f(t)) 6 T* 
and g(Sf) = 0. To prove that g~x is continuous, let ta —» t in T. If t ^ 0, then 
we can assume that ta ?* 0 for each a: and thus 

g-HO = «.,/(O)-(',/(0) = rH0. 
If / = 0 and {g - 1 (0} does not converge to g -1(0) = S', then there exists a 
subnet {̂ } of {/«} such that tp 9^ 0 for each (3 and no subnet of Ig"1^)} con
verges to 5 ' . By the compactness of Cl(/(7**)) there exists a subnet {/7} of {tp\ 
such tha t / ( / 7 ) —> s for some s £ Cl(/(7*)). Then we have that 

in T X S and hence (ty,f(t7)) —>S' in i7. This contradiction shows that g - 1 

is continuous, and hence g is an iseomorphism. Therefore H is a topological 
extension of 5 by T. 

(2.4) Definition. A topological extension (H, o) of 5 by T with iseomorphism 
jfe: T —» iJ/S" is a product extension oi Shy T if and only if i f C T X S with 
the relative product topology, Sr = 0 X S, pip~~l(k(t)) = / for each t £ T*, 
where pi is the projection into the first coordinate and p: H —> H/S' is the 
natural projection, and (h, s\) o (t2, s2) = (W2, 5i52) for (*i, $i), (/2, s2) 6 -ff 
with ^ 2 7̂  0. 

The topological extension constructed in (2.3) is a product extension. We 
have the following converse. 

(2.5) THEOREM. Let S and T be disjoint topological semigroups, S with identity 
and T with zero 0. Then every product extension of S by T is obtained by the 
process in (2.3). (It is not necessary that the associated homomorphism f be such 
that Cl( / ( r*)) is compact.) 
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Proof, Let (H, o) be a product extension with iseomorphism k: T —>H/S'. 
The notation in (2.4) is used. Let p2: H —> H be the projection into the second 
coordinate. Define/: r* —>S by 

/ ( 0 = P2(p-1(k(t)) o ( 0 , l ) ) . 

We can prove in a straightforward manner that / is a continuous partial 
homomorphism and determines a topological extension which is (H, o). We 
omit the details except for the following which is typical in proving that the 
extension determined by / is (H, o). If t G T*, s G S, then we have 

(t,pt(p-lk(t)))o(0,s) = ((t,p2(p-i(k(t))))o(0,l))(0,s) 

= ( r w ) ) o«u)) «u) 
= (/,/(*)) (o,s) 
= (o,/(0*)-

Some examples are now given which show how a topological extension is 
obtained by a continuous partial homomorphism. Let R be the reals under 
addition, R+ the non-negative reals under addition, U = R+ U {oo} the 
one-point compactification of i?+ with the binary operation extended to U 
by defining a + o o =oo + a = oo for a G R+, and let C be the circle group 
considered as the boundary of the complex unit disk. 

(2.6) Example. Let 5 be any topological semigroup with E(S) non-empty 
and T any topological semigroup with zero. Fix e G E(S) and define 
fe: T* -*S b y / e ( 0 = e for each / G 71*. 

(2.7) Example. Let 5 be the non-negative reals under multiplication and T 
the reals with multiplication defined by 

(fefe, if fe, fe ^ 0, 
fe o fe = <0, if fe g 0, fe ^ 0 or fe ^ 0, fe ^ 0, 

(-fefe, if fe, fe ^ 0. 

Define/: T*->S by f(f) = 1 if t G (0,oo) a n d / ( 0 = 0 if* G ( - o o , 0 ) . 

(2.8) Example. Let T = U, S a, solenoidal group (i.e. compact with dense 
One-parameter group), a n d / : T* —>5 a dense one-parameter subsemigroup. 
Hofmann and Mostert [10] have shown that any solenoidal semigroup (i.e. a 
compact semigroup with a dense one-parameter subsemigroup) is either a 
solenoidal group or is H/Rr, where 0 < r ^ oo and ((ai, b1)(a2} b2)) G i? r if 
and only if &3 = b2 and ai, a2 è r. 

(2.9) Example. Let T = U, S the non-negative reals under multiplication, 
and le t / : T* -> 5 be defined by t-+l/e\t £ T*. 

(2.10) Example. Let T = (17 X C)/(0 X C), 5 = C X i?+, and let 
/ : T*->S be defined by / (« , c) = exp(27r ( - l ) 1 %). This is the familiar 
example of a tube winding down on a circle. 
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We now show how the extension process in (2.3) is useful in characterizing 
clans with zero on an interval. (A clan is a compact, connected topological 
semigroup with identity.) All pertinent définitions may be found in [6], 
Cohen and Wade [6] have characterized all clans with zero on an interval. 
From their work we see that any clan with zero on an interval is obtained from 
' 'standard" or familiar clans on an interval by the process in the following 
theorem. 

(2.11) THEOREM. Let S and T be clans with zeros on intervals [c, d] and [a, b], 
respectively, such that 

(a) 5 and T are matched and 
(b) either S is full, T is standard, or T is left trivial. 
Define f: T*->Sby fit) = d for t G (0, b] and fit) = c for t G [a, 0). Then 

f is a continuous partial homomorphism and hence determines a topological 
extension E of S by T. Conversely, every topological extension of S by T which is 
a clan is determined in this fashion. 

3. The translational hull and topological extensions. The translational 
hull of a topological semigroup will now be topologized and used to study 
topological extensions. 

The following definitions may be found in [5]. A right translation of a semi
group S is a transformation r of 5 such that r(ab) = a {rip)) for all a, b G S. A 
left translation is a transformation w of 5 such that w{ab) = {w{a))b for all 
a, b G S. A right translation r and a left translation w are linked if a{w{b)) = 
{r{a))b for all a,b G S. The set of left (right) translations L {P) is a subsemi-
group of the full semigroup of translations of S. The set of inner left (right) 
translations, i.e., the left (right) multiplications by elements of S, is a sub-
semigroup of L (P). For s G S let rs (ws) denote the right (left) inner trans
lation determined by s. The translational hull S of a semigroup 5 is the set of 
all pairs (w, r) of linked left and right translations w and ," of S. A semigroup 
structure is given to S by defining {w\, fi) (w2l r2) = (wiW2, r2ri). A weakly 
reductive semigroup is a semigroup 5 such that as = bs and sa = sb for all 
s G S implies that a = b. 

(3.1) LEMMA [5]. The set So = {(ws, rs): s G S} is a sub semigroup of S and 
the function s —» (ws, rs) is an algebraic isomorphism if and only if S is weakly 
reductive. 

The next definition is useful in extending Lemma 3.1 to topological semi
groups. 

(3.2) Definition. A topological semigroup S is net reductive if and only if {sa\ 
a net in S, s G «S, such that s^sa —» s's and saSBf —> ss' for all s$ —> sf in S 
imply sa —» s. 

A common example of a net reductive semigroup is a topological semigroup 
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with identity. Another common example is provided by the following easily 
proven result. 

(3.3) PROPOSITION. A compact, weakly reductive topological semigroup S is 
net reductive. 

Define a topology for the translational hull S of a topological semigroup 5 
by (wa, ra) —» (w, r) in S if and only if wasp —> ws and rasp —» rs for all s$—> s 
in S. We assume from now on that S is such that this type of convergence 
defines a Hausdorff topology. 

(3.4) THEOREM. Let S be a weakly reductive, net reductive topological semigroup. 
Then the translational hull S is a topological semigroup, S is iseomorphic to So, So 
is an ideal in S, and identifying S with So, we have (w,r)s = ws and s(w,r) = rs 
for all s £ S, (w, r) G S. 

Proof. It is easy to check that multiplication is continuous in S. By (3.1), 
the continuous function/: S —> S defined by f(s) = (ws,rs) is an algebraic 
isomorphism into S. Let (wS(x, rS(x) —» (w3, rs) in S0. If V —> s' in S, then 
saSp —> ss' and sp'sa —> s's. Now S net reductive implies sa —» s and hence / - 1 is 
continuous. Therefore / is an iseomorphism. The remaining algebraic results 
have been proved in [5, p. 12]. 

The next result shows how the translational hull is useful in studying topo
logical extensions. If S is weakly reductive and net reductive, then identify 
S and .So. If E is a topological extension of 5 by T, then in the notation 
E = (0 X S) VJ {(t, g{t)): t G T*},g(t) means the second coordinate of the 
element of E in which t occurs. It is not assumed that g is a partial homo-
morphism. 

(3.5) THEOREM. Let S be a weakly reductive, net reductive topological semigroup 
such that S is compact and let 

(E,o) = ((0XS)yj{(t,g(t)):te T*},o) 

be a product extension of S by a topological semigroup T with zero 0. Then there 
exists a product extension 

(£, *) = ((0 X S) KJ{(t,6(t)): t e T*}, *) 

of S by T such that 

(0,s)* (t,6(t)) = ( 0 , s ) o (t,g(t)) 

for s G S, t 6 T* and such that 

(tu 6(h)) * (h, 6(h)) = (h,g(h)) o (h,g(h)) 

for li, l2 G T* with t\h = 0. Conversely, if 

(£,•) = ((oxS)u(ft«w): *e r*},*) 
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is a product extension of S by T, then 

(£, *) = ((0 X So) U {(*,m(0): te T*}, *) = (E - (0 X (5 - So)), *) 

is a product extension of S by T if (£, *) is a sub semigroup of (E, *). 

Proof. Assume that 

(£,o) = ( (0XS)U{( / ,g(0):*G n , o ) 

is a product extension of 5 by J1 with iseomorphism fe: T—>E/Sf. Let 
i: 5 —» (0 X S) be the homeomorphism defined by i(s) = (0, s), pi and £>2 
the projections of T X 5 onto the first and second coordinates, respectively, 
and p: E —> E/S' the natural projection. Define 6: T* —> 5 by 

0(t) = (p2<wdkU)i1 p2rdkU)i) 

where d = £~\ wdk(t)\ 0 X S —» 0 X S is defined by 

wd*(o(0, s) = dfe(/) o (0, s) 

and rdfc(^: 0 X 5 - > 0 X 5 i s defined by 

rdk(t)(0,s) = (0,s) odk(t). 

One can show that 6 is a continuous partial homomorphism. By (2.3), 6 
determines a product extension 

(£ ,*) = ( 0 X 5 ) U { ( U W ) : *G T*},*) 

of S by T. If 5 G 5 and t G r*, then 

(0,5) * (t,6(t)) = (0, (ws,rs)) * M W ) =(0 , (w„r,))(*, {p2wmt)i, p2rdHl)i)) 

= (0, (wP2rd*(*)*(S),^2r<fifc(i)i(«)))=(0,^2rrf*(^(^)) = (0,p2((0,s) odk(t))) 
= (0,s)odk(t) =(0,s)o (t,g(t)). 

In a similar fashion one can show that if h, t2 G T* such that ht2 = 0, then 

(tu 6(h)) * (*2, 0(f2)) = (*i, g(h)) o (*2, g(fe)). 

The converse follows from arguments similar to the ones used in the first 
part of the theorem. 

4. a-topological ideal extensions. In § 2 it was shown how a continuous 
partial homomorphism produced a topological extension. This procedure 
constructed a new topological semigroup from two topological semigroups. 
This method can be repeated a finite number of times to produce a larger 
collection of topological semigroups. In this section we explicitly describe how 
the construction method of (2.3) can be repeated a countable number of times. 
If 5, T, a n d / are as in (2.3), then we will denote the resulting extension by 
H = 0 X 5 VJ {(J(t), t): te T*}. This differs from the notation in (2.3) in 
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as far as the first and second coordinates are reversed. Let Z+ denote the set of 
positive integers. 

For each i 6 Z+ let (S, Tt,ft) be a triple with S a topological semigroup, 
Ti a topological semigroup with zero 0t, and ff a continuous partial homo-
morphism with 

U Tt* - » ( 5 X 0(t - 1, * - 1)) W ((/i(7Y<), 7V) X 0(* - 1, * - 2)) 

W (( / 2 ( r 2 *) , T2*) X 0(i - 1, i - 3)) W . . . 

w ((/«_, (7\_2*)f r._2*) x o(* - l, i)) u ( / ^ ( T W ) , T\_I*) 

such that CI(ft(Ti*)) is compact where 

0(i,j) = (0«_«.i, 0 w + 2 , . . . , 00 for t è j ^ l , Î',7 € Z+, 

0(t, j ) = 0 forj ^ 0, 0(0, 0) X S = 5, and 

( M 7 V ) , ï \*) = {(/«(*),*): t 6 7\*} fori € Z+, 

(fi(T*), T*) = 0 for j ^ 0. Let £ ( 5 , T{,ft) be the subsemigroup 

(5,o1 ,o2 , . . .)w((/1(r1*), r1*),o2,o3,...) 
•u ((/2(r2*), r2*), o», o„ . . . ) w . . . w ((/,(r,*), r,*), o,+i, o,+2,...) 

of 51 X (IIj 'Lirj). We call E(S, Tt,ft) the ^-topological ideal extension over 
(5, Tuft). 

(4.1) Example. Let 5 = C, 7 \ = £7 and le t / i be defined by 

/ i O ) = exp(27r(-l)1 / 2^) 

forw G [/, and/z- denned by fi(u) = (/i(w),oo , . . . ,00 ) for^ G [7, 2 = 2 , 3 , . . . . 

(4.2) Example. Let S = C with identity 1, Tt = (U X C)/(oo X C) for 
eachi G Z+ , and let/ i be defined byfi(u, c) = exp(27r(— l)ll2u) for (w, c) G 7V, 
and / i defined by 

ft(u,c) = ( ( l , 0 ) ,_ 1 , exp (27r ( - l ) 1 / ^ ) ) 

where (M, c) G 7\* and (1, 0) , = (1, 0, 1, 0, . . . , 1, 0) with 1 and 0 each 
occurring i times. This example resembles a semigroup constructed by 
Hunter in [11]. 

We can construct the well-known semigroup of an arc winding on the unit 
disk as a topological extension by a process similar to the one in (2.10). Using 
this semigroup and constant homomorphisms, we can construct an example 
of Hunter [12, Example 2] which is a compact, connected semigroup with no 
arc at its identity element. 

Using the topological extension method of (2.6) in conjunction with o--topo-
logical ideal extensions, we can produce many of the topological semigroups 
which are constructed by the idea of tangency. 
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